JPH0234716B2 - - Google Patents

Info

Publication number
JPH0234716B2
JPH0234716B2 JP57031707A JP3170782A JPH0234716B2 JP H0234716 B2 JPH0234716 B2 JP H0234716B2 JP 57031707 A JP57031707 A JP 57031707A JP 3170782 A JP3170782 A JP 3170782A JP H0234716 B2 JPH0234716 B2 JP H0234716B2
Authority
JP
Japan
Prior art keywords
flux
wire
welding
arc
sodium borate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57031707A
Other languages
Japanese (ja)
Other versions
JPS58151994A (en
Inventor
Nobuo Araki
Katsumi Fujibayashi
Takehisa Sakaguchi
Takashi Azumi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Welding and Engineering Co Ltd
Original Assignee
Nippon Steel Welding and Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Welding and Engineering Co Ltd filed Critical Nippon Steel Welding and Engineering Co Ltd
Priority to JP3170782A priority Critical patent/JPS58151994A/en
Publication of JPS58151994A publication Critical patent/JPS58151994A/en
Publication of JPH0234716B2 publication Critical patent/JPH0234716B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0255Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in welding
    • B23K35/0261Rods, electrodes, wires
    • B23K35/0266Rods, electrodes, wires flux-cored

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Nonmetallic Welding Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はアーク溶接用フラツクス入りワイヤ
(以下単にフラツクス入りワイヤと称す)に関す
るもので、特に溶接時のアーク安定性ならびに溶
接作業性に優れたフラツクス入りワイヤに関する
ものである。 従来、フラツクス入りワイヤに充填されるフラ
ツクスに、ナトリウムあるいはカリウムのアルカ
リ金属化合物、例えば炭酸ソーダあるいはチタン
酸カリウム等を配合することによつて、アーク状
態が良好になること、すなわち、生じた溶滴が細
粒スプレー状となつて移行しかつ広がりを持つて
安定化し、スパツタが少くなることは周知であ
る。また、アークの広がりと安定性を増すことに
よつて、ビードの形成段階においてビード止端部
の揃いおよびなじみが良くなることも良く知られ
ている。 ところでアルカリ金属化合物の粉末は一部の化
合物を除いて吸湿性であるから、之等吸湿性の化
合物を含むフラツクスを充填したフラツクス入り
ワイヤを長期間保存した場合、ワイヤ表面はフラ
ツクスを充填した封入口を持つために該封入口を
通じて前記化合物は吸湿し、かかるフラツクス入
りワイヤで溶接した場合に、吸湿水分によりアー
クが不安定となるほか、溶接金属の拡散性水素量
の増加をもたらし、耐われ性を劣化せしめる。従
つて多量のアルカリ金属化合物をフラツクス中に
添加するには制約がある。 アルカリ金属化合物はスラグの融点を下げ美麗
なビード形成に寄与するが、その添加量が多くな
ると良好なビード形成が容易でなくなるので、フ
ラツクス中へのアルカリ金属化合物の添加量には
制約があり、アルカリ金属成分をR2O(Rはアル
カリ金属)に換算して、ワイヤ1Kg当り3g以下
としているのが実情である。 ところでフラツクス入りワイヤは、中実ワイヤ
に比較して、充填フラツクスの作用により、アー
ク状態がより安定化され、スパツタがより少く、
より良好なビード形状が得られる等の効果があ
り、良好な作業性を必要とする溶接個所あるいは
構造物の溶接に使用され、その使用量も増加して
きている。 また最近は、炭酸ガスシールド直流アーク溶接
に、細径のフラツクス入りワイヤが実用化され、
下向あるいは水平隅肉溶接姿勢に加えて、立向ま
たは上向溶接姿勢の溶接、さらに薄肉鋼板の溶接
にも用いられている。これらの溶接は、従来の下
向あるいは水平隅肉溶接姿勢での厚肉溶接と相違
して、比較的に低電圧、低電流での溶接条件で溶
接施工がなされている。 しかるに、アーク安定剤であるアルカリ金属化
合物の充填フラツクス中への添加量は前記したよ
うに制約を受けているために、低電圧、低電流で
溶接が実施された場合、アークの状態は良好では
なく、生ずる溶滴が大きくなつて広がりがなくな
るのに加えて、スパツタが多くなり、またビード
形状も止端部の不揃いあるいはなじみ不足の現象
が生ずる等、溶接作業性の劣化が著しくなる。そ
のため溶接施工者はシールドガスとして、炭酸ガ
スにアルゴンガスを混合して溶接作業性を改善す
というような対応をしているのが現状である。 次に従来のフラツクス入りワイヤの製造例に基
づいて問題点を説明する。 まず、帯鋼外皮材を連続的に成形ローラにより
U字形に成形し、そのU字溝部内に、充填フラツ
クスの所定量を給粉機から落下方式で供給して充
填し、外皮材を円形状に成形して、フラツクスを
封入してからローラダイスもしくは孔ダイスを用
いる伸線機により、所定径まで減面伸線したの
ち、得られたワイヤ表面に潤滑剤を付着させて仕
上げる。 ところが、直径0.8〜2.0mmの細径の炭酸ガスシ
ールド直流アーク溶接用のフラツクス入りワイヤ
は、一般に溶接機のワイヤ送給ローラのみでコン
ジツトケーブルを経由して溶接トーチからコンタ
クトチツプへ送給されるものであるから、送給ロ
ーラの押しに耐え得るワイヤ自体の剛性を必要と
し、直径1.2mmの場合、鋼製外皮材部分がワイヤ
の断面積割合において70%以上であるのが一般的
である。従つて仮に、ワイヤ断面のフラツクス充
填部分を単純な円形として鋼製外皮材部分の断面
積割合を75%とした場合、直径1.2mmワイヤのフ
ラツクス充填部分の直径は0.6mmと極めて細径に
なる。それ故、溶接時のアーク安定化を図るため
には微量のアルカリ金属化合物の粉末はこの0.6
mm内に連続的で均一な状態で充填されていなけれ
ばならない。 ところが、上述の製造例の様に、充填フラツク
スは高速で移動している帯鋼のU字溝部内に落下
方式で供給されるものであり、また、飛散、成分
偏在防止のため、粒子径の制約もあり、かつ伸線
に際して充填されたフラツクスも押し伸ばされる
ものであり、これらの種々の原因で充填フラツク
ス中のアーク安定剤はワイヤ長さ方向にも成分偏
在が発生し、前記の如く、低電圧、低電流条件下
での溶接に際してアーク不安定の要因となつてい
た。 本発明は前記した従来技術の問題点を解決しう
るアーク溶接用フラツクス入りワイヤを提供する
ことを目的とするもので、その要旨とするところ
は鋼製外皮材にアルカリ金属の硼酸塩をワイヤ1
Kg当り0.1〜10g付着してなることを特徴とするア
ーク溶接用フラツクス入りワイヤにある。 すなわち本発明は鉄鋼材に対して水溶液で付着
性のよいアルカリ金属の硼酸塩、例えば硼酸ナト
リウム(分子式Na2B4O7)を均一にフラツクス
入りワイヤの鋼製外皮材に付着させ、低電圧、低
電流条件下での溶接時のアークへアルカリ金属の
硼酸塩を連続的に供給することによつて、アーク
安定性を向上せしめ、溶接作業性の改善を図つた
ものである。 本発明を説明するにあたつて、アルカリ金属の
硼酸塩の代表例として硼酸ナトリウムを選ぶが、
本発明を之に限定するものではなく、その他のア
ルカリ金属の硼酸塩についても適用可能である。 先づ本発明の溶接棒の製造方法の実施例を説明
する。鋼帯あるいは所定幅にスリツトした鋼帯
を、硼酸ナトリウムの温水溶液中に所定時間浸漬
した後、取出して乾燥し、之を外皮材として常法
によりフラツクス入りワイヤを製造する。あるい
は予め鋼帯に硼酸ナトリウム水溶液への浸漬処理
は施さないで、常法によりフラツクス入りワイヤ
を製造した後に、得られたワイヤを硼酸ナトリウ
ム水溶液中に浸漬して、取出した後に乾燥する。 本発明の溶接用ワイヤにおける硼酸ナトリウム
の付着量の範囲について、溶接時のアーク電圧の
不安定回数によるアーク安定性を調査した結果を
示す第1図を用いて説明する。 供試ワイヤは次の如くして製造された。スリツ
トしたJIS SPCCの鋼帯を脱脂洗浄後、鋼帯への
硼酸ナトリウムの付着量が変化するように硼酸ナ
トリウムの溶解濃度を変化させた90℃の温水中に
1秒間浸漬し、その後200℃の熱風炉において、
2秒間乾燥し、ルチールを主成分とした、アルカ
リ金属化合物を含まない充填フラツクスをワイヤ
重量当り15%充填し、成形し、ワイヤ表面に硼酸
ナトリウム以外の付着物が付着しないようにカセ
ツトローラダイスで減面、伸線して直径1.2mmの
フラツクス入りワイヤとした。 試験は吸湿による影響をも含めて調査するため
に、前記フラツクス入りワイヤを25℃、90%RH
の雰囲気中に48時間放置した後、長さ3mのコン
ジツトケーブルを直線状にして、直流溶接電源を
用い、電圧24V、電流180A、炭酸ガス流量20
/分、溶接速度300mm/分の溶接条件で隅肉溶
接を10分間溶接し、その間のアーク電圧変化を連
続して記録し、アーク電圧が±2V以上変化した
回数を調査した。 第1図に示すように外皮材への硼酸ナトリウム
の付着量がワイヤ1Kg当り0.1g未満では、アーク
を安定化する硼酸ナトリウム成分の不足のため、
±2V以上の溶接アーク電圧の変動が多く発生し
てアークが不安定となり、他方外皮への硼酸ナト
リウムの付着量がワイヤ1Kg当り0.1〜10gの場合
においては、溶接アーク電圧の変動巾が±2V以
内にあり、アークが安定していることが判る。他
方、外皮への硼酸ナトリウムの付着量がワイヤ1
Kg当り10gを超える場合は、アークの吹き付けが
強くなり、±2V以上の溶接アーク電圧変動が多く
発生してアークが不安定となることが判る。 すなわち、外皮材への硼酸ナトリウムの付着量
がワイヤ1Kg当り0.1g程度の場合には、アーク柱
の溶滴の大部分を占める外皮材に硼酸ナトリウム
が均一に被覆されているために、付着量が微量で
もアーク安定化の効果があり、又一方、外皮材へ
の硼酸ナトリウムの付着量がワイヤ1Kg当り10g
程度の場合には、アーク安定化の効果が奏せられ
るのは勿論であるが、外皮材に付着している硼酸
ナトリウムはアーク柱において蒸発してしまい、
溶融スラグ中には歩留らないので、該溶融スラグ
の融点降下には何等の影響を与えず、そのため良
好な溶接ビード形状の形成が達成される。 次に本発明に係るフラツクス入りワイヤの実施
例として直径1.2mmの炭酸ガスシールド直流アー
ク溶接用フラツクス入りワイヤの例を比較例とと
もに第1表に示す。 厚さ0.9mmの鋼帯(JIS SPCC)を幅13mmにスリ
ツトし、脱脂洗浄後該鋼帯を、硼酸ナトリウム濃
度を0.1、3、10、20、30重量%に変化させた90
℃の水溶液中に、1秒間浸漬し、取出した後200
℃の熱風炉で2秒間乾燥し、成形ローラで断面U
型から単純な断面O型に成形する。その工程の途
中でU型溝部内に酸化チタンを主成分とし、アル
カリ金属化合物を全く含有しないフラツクスをワ
イヤ重量当り15%充填し、直径2.2mm伸線して素
線とし、その後9組のカセツトローラダイスで直
径1.2mmまで伸線して、フラツクス入りワイヤを
製造した。 このフラツクス入りワイヤを25℃、90%RHの
雰囲気中に48時間放置した後、炭酸ガスシールド
直流アーク溶接により10分間溶接し、その時の溶
接アーク電圧が変動した変化回数によりアークの
安定性について調査した。 なお、上記の溶接条件は電圧24V、電流180A、
炭酸ガス流量20/分、溶接速度300mm/分で水
平隅肉溶接を行い、使用したコンジツトケーブル
は長さ3mで直径400mmの1ループを設けたもので
ある。 No.1、2及び6のワイヤは硼酸ナトリウムのワ
イヤ外皮材への付着量が本発明の好ましい範囲外
のものでアークの安定性に劣る。 No.3、4及び5のワイヤは硼酸ナトリウムの付
着量が本発明の好ましい範囲内のもののでありア
ーク安定性がすぐれている。 以上の実施例は帯鋼を断面U型に成形してフラ
ツクスを充填し、次に断面円形にして伸線したフ
ラツクス入りワイヤであるが、シームレスまた
は、シームドパイプにフラツクスを充填し、伸線
して製造する細径アーク溶接用フラツクス入りワ
イヤにおいても、ワイヤ表面に硼酸ナトリウムを
付着させることによつて、同様な効果が得られる
ものである。 以上の如く本発明によれば、偏在し易い微量成
分のアーク安定剤を含む従来のフラツクス入りワ
イヤの問題点を完全に排除したフラツクス入りワ
イヤを提供しうるもので、その工業的価値は極め
て大きい。
The present invention relates to a flux-cored wire for arc welding (hereinafter simply referred to as flux-cored wire), and particularly to a flux-cored wire that has excellent arc stability during welding and welding workability. Conventionally, by adding an alkali metal compound of sodium or potassium, such as soda carbonate or potassium titanate, to the flux used in flux-cored wire, it has been possible to improve the arc condition. It is well known that the particles migrate in the form of a fine spray and are stabilized by spreading, thereby reducing spatter. It is also well known that increasing the spread and stability of the arc improves the alignment and conformability of the bead toe during the bead formation stage. Incidentally, powders of alkali metal compounds are hygroscopic, except for some compounds, so if a flux-cored wire filled with a flux containing such hygroscopic compounds is stored for a long period of time, the surface of the wire will become hygroscopic. Because of the inlet, the compound absorbs moisture through the sealing port, and when welding with such a flux-cored wire, the absorbed moisture not only makes the arc unstable, but also increases the amount of diffusible hydrogen in the weld metal, making it difficult to withstand. Deteriorate sexuality. Therefore, there are restrictions on adding large amounts of alkali metal compounds to the flux. Alkali metal compounds lower the melting point of slag and contribute to the formation of beautiful beads, but if the amount added is too large, it becomes difficult to form good beads, so there are restrictions on the amount of alkali metal compounds added to the flux. The actual situation is that the alkali metal component, converted into R 2 O (R is an alkali metal), is 3 g or less per 1 kg of wire. By the way, compared to solid wire, flux-cored wire has a more stable arc condition due to the action of the filling flux, and has fewer spatters.
It has effects such as obtaining a better bead shape, and is used for welding parts or structures that require good workability, and its usage is increasing. Recently, small diameter flux-cored wires have been put into practical use for carbon dioxide shielded DC arc welding.
In addition to downward or horizontal fillet welding positions, it is also used for welding in vertical or upward welding positions, as well as for welding thin-walled steel plates. These welds are performed under welding conditions of relatively low voltage and low current, unlike conventional thick wall welding in a downward or horizontal fillet welding position. However, since the amount of the alkali metal compound, which is an arc stabilizer, added to the filling flux is restricted as mentioned above, the arc condition may not be good when welding is carried out at low voltage and low current. As a result, the resulting droplets become larger and do not spread, and in addition, spatter increases, and the welding workability deteriorates significantly, such as uneven bead shape or poor fitting of the toe. For this reason, welders are currently taking measures such as mixing argon gas with carbon dioxide gas as a shielding gas to improve welding workability. Next, the problems will be explained based on an example of manufacturing a conventional flux-cored wire. First, a strip steel skin material is continuously formed into a U-shape by a forming roller, and a predetermined amount of filling flux is supplied and filled by falling from a powder feeder into the U-shaped groove, and the skin material is shaped into a circular shape. After encapsulating flux, the wire is drawn to a predetermined diameter using a wire drawing machine using a roller die or hole die, and then finished by applying a lubricant to the surface of the obtained wire. However, flux-cored wire for carbon dioxide shielded DC arc welding with a small diameter of 0.8 to 2.0 mm is generally fed from the welding torch to the contact tip via a conduit cable using only the wire feed roller of the welding machine. Therefore, the wire itself needs to be rigid enough to withstand the pressure of the feed roller, and in the case of a wire with a diameter of 1.2 mm, it is common for the steel outer skin to account for 70% or more of the cross-sectional area of the wire. be. Therefore, if the flux-filled portion of the wire cross section is a simple circle and the cross-sectional area ratio of the steel sheath material is 75%, the diameter of the flux-filled portion of a 1.2 mm diameter wire will be extremely small at 0.6 mm. . Therefore, in order to stabilize the arc during welding, a trace amount of alkali metal compound powder must be
It must be filled in a continuous and uniform manner within a mm. However, as in the above manufacturing example, the filling flux is supplied by falling into the U-shaped groove of the steel strip that is moving at high speed, and in order to prevent scattering and uneven distribution of components, the particle size is There are restrictions, and the filled flux is also stretched during wire drawing, and due to these various reasons, the arc stabilizer in the filled flux is unevenly distributed in the length direction of the wire, and as described above, This has been a cause of arc instability during welding under low voltage and low current conditions. The object of the present invention is to provide a flux-cored wire for arc welding that can solve the problems of the prior art described above.
A flux-cored wire for arc welding is characterized in that the wire has an adhesion of 0.1 to 10 g/kg. That is, the present invention applies an alkali metal borate, such as sodium borate (molecular formula: Na 2 B 4 O 7 ), which has good adhesion to steel materials in an aqueous solution, to uniformly adhere to the steel sheath material of a flux-cored wire, and to apply it at low voltage. By continuously supplying an alkali metal borate to the arc during welding under low current conditions, arc stability is improved and welding workability is improved. In explaining the present invention, sodium borate will be selected as a representative example of an alkali metal borate;
The present invention is not limited thereto, and can also be applied to borates of other alkali metals. First, an embodiment of the method for manufacturing a welding rod of the present invention will be described. A steel strip or a steel strip slit to a predetermined width is immersed in a hot aqueous solution of sodium borate for a predetermined period of time, then taken out and dried, and a flux-cored wire is manufactured using this as a sheath material by a conventional method. Alternatively, a flux-cored wire is produced by a conventional method without pre-dipping the steel strip in an aqueous sodium borate solution, and then the resulting wire is immersed in an aqueous sodium borate solution, taken out, and then dried. The range of the adhesion amount of sodium borate in the welding wire of the present invention will be explained with reference to FIG. 1, which shows the results of investigating the arc stability depending on the number of times the arc voltage becomes unstable during welding. The test wire was manufactured as follows. After degreasing and cleaning the slit JIS SPCC steel strip, it was immersed for 1 second in warm water at 90°C in which the dissolved concentration of sodium borate was varied so that the amount of sodium borate attached to the steel strip was changed, and then heated at 200°C. In a hot stove,
After drying for 2 seconds, fill the wire with 15% filling flux, which is mainly composed of rutile and does not contain alkali metal compounds, and shape it using a cassette roller die to prevent deposits other than sodium borate from adhering to the wire surface. The area was reduced and wire drawn to create a flux-cored wire with a diameter of 1.2 mm. In order to investigate the effects of moisture absorption, the flux-cored wire was heated at 25℃ and 90%RH.
After leaving it for 48 hours in an atmosphere of
Fillet welding was performed for 10 minutes under welding conditions of 300 mm/min and a welding speed of 300 mm/min, and changes in arc voltage during that time were continuously recorded, and the number of times the arc voltage changed by ±2 V or more was investigated. As shown in Figure 1, if the amount of sodium borate attached to the outer sheath material is less than 0.1g per kg of wire, the sodium borate component that stabilizes the arc is insufficient.
If there are many fluctuations in the welding arc voltage of ±2V or more and the arc becomes unstable, and if the amount of sodium borate deposited on the outer sheath is 0.1 to 10g per 1kg of wire, the fluctuation range of the welding arc voltage will be ±2V. It can be seen that the arc is stable. On the other hand, the amount of sodium borate attached to the outer skin was
When the amount exceeds 10 g per kg, the arc blows stronger, welding arc voltage fluctuations of ±2 V or more occur frequently, and the arc becomes unstable. In other words, if the amount of sodium borate deposited on the outer sheath material is approximately 0.1 g per 1 kg of wire, the amount of sodium borate deposited on the outer sheath material, which accounts for most of the droplets in the arc column, is uniformly coated. Even a small amount of sodium borate has the effect of stabilizing the arc, and on the other hand, the amount of sodium borate deposited on the outer sheath material is 10g per 1kg of wire.
Of course, in cases where the arc is stabilized, the sodium borate adhering to the outer skin material evaporates in the arc column.
Since it is not retained in the molten slag, it does not have any effect on lowering the melting point of the molten slag, thereby achieving the formation of a good weld bead shape. Next, as an example of the flux-cored wire according to the present invention, an example of a flux-cored wire for carbon dioxide shielded DC arc welding having a diameter of 1.2 mm is shown in Table 1 along with a comparative example. A steel strip (JIS SPCC) with a thickness of 0.9 mm was slit to a width of 13 mm, and after degreasing and cleaning, the steel strip was treated with sodium borate concentrations of 0.1, 3, 10, 20, and 30% by weight90.
200°C after being immersed in an aqueous solution for 1 second and taken out.
Dry in a hot air oven at ℃ for 2 seconds, and use a forming roller to shape the cross section U.
Shape from a mold into a simple O-shaped cross section. During the process, the U-shaped groove is filled with 15% flux based on the weight of the wire, which is mainly composed of titanium oxide and does not contain any alkali metal compounds, and the wire is drawn to a diameter of 2.2 mm, and then nine sets of cassettes are drawn. The wire was drawn to a diameter of 1.2 mm using a roller die to produce a flux-cored wire. This flux-cored wire was left in an atmosphere of 25°C and 90% RH for 48 hours, then welded for 10 minutes by carbon dioxide shielded DC arc welding, and the stability of the arc was investigated by measuring the number of changes in the welding arc voltage during that time. did. The above welding conditions are voltage 24V, current 180A,
Horizontal fillet welding was performed at a carbon dioxide gas flow rate of 20/min and a welding speed of 300 mm/min, and the conduit cable used was 3 m long and had one loop with a diameter of 400 mm. Wires Nos. 1, 2, and 6 had an amount of sodium borate attached to the wire sheathing material that was outside the preferred range of the present invention, and the arc stability was poor. Wires Nos. 3, 4, and 5 have a coating amount of sodium borate within the preferred range of the present invention, and have excellent arc stability. The above examples are flux-cored wires made by forming a steel band into a U-shaped cross section, filling it with flux, and then drawing it into a circular cross-section. Similar effects can be obtained by attaching sodium borate to the surface of the manufactured flux-cored wire for arc welding. As described above, according to the present invention, it is possible to provide a flux-cored wire that completely eliminates the problems of conventional flux-cored wires that contain a trace amount of arc stabilizer that tends to be unevenly distributed, and its industrial value is extremely large. .

【表】【table】

【表】【table】 【図面の簡単な説明】[Brief explanation of drawings]

第1図は硼酸ナトリウムのワイヤ付着量と溶接
アーク電圧が±2V以上変動した10分間あたりの
変化回数を示したものである。
Figure 1 shows the number of changes per 10 minutes in which the amount of sodium borate deposited on the wire and the welding arc voltage fluctuated by ±2V or more.

Claims (1)

【特許請求の範囲】[Claims] 1 鋼製外皮材にアルカリ金属の硼酸塩をワイヤ
1Kg当り0.1〜10g付着してなることを特徴とする
アーク溶接用フラツクス入りワイヤ。
1. A flux-cored wire for arc welding, characterized in that 0.1 to 10 g of an alkali metal borate is adhered to a steel outer sheath material per 1 kg of wire.
JP3170782A 1982-03-02 1982-03-02 Flux cored wire for arc welding Granted JPS58151994A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3170782A JPS58151994A (en) 1982-03-02 1982-03-02 Flux cored wire for arc welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3170782A JPS58151994A (en) 1982-03-02 1982-03-02 Flux cored wire for arc welding

Publications (2)

Publication Number Publication Date
JPS58151994A JPS58151994A (en) 1983-09-09
JPH0234716B2 true JPH0234716B2 (en) 1990-08-06

Family

ID=12338538

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3170782A Granted JPS58151994A (en) 1982-03-02 1982-03-02 Flux cored wire for arc welding

Country Status (1)

Country Link
JP (1) JPS58151994A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5246893A (en) * 1975-10-13 1977-04-14 Agency Of Ind Science & Technol Method of measuring free oil content in oil-contained sludge and appar atus for same
JPS5426937A (en) * 1977-08-02 1979-02-28 Kawasaki Steel Corp Coating material for welding material
JPS5550757A (en) * 1978-10-06 1980-04-12 Hitachi Denshi Ltd Signal change-over control device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5246893A (en) * 1975-10-13 1977-04-14 Agency Of Ind Science & Technol Method of measuring free oil content in oil-contained sludge and appar atus for same
JPS5426937A (en) * 1977-08-02 1979-02-28 Kawasaki Steel Corp Coating material for welding material
JPS5550757A (en) * 1978-10-06 1980-04-12 Hitachi Denshi Ltd Signal change-over control device

Also Published As

Publication number Publication date
JPS58151994A (en) 1983-09-09

Similar Documents

Publication Publication Date Title
US11633814B2 (en) Systems and methods for welding electrodes
KR102210291B1 (en) A tubular welding wire
US11052493B2 (en) Systems and methods for corrosion-resistant welding electrodes
US6723954B2 (en) Straight polarity metal cored wire
CA2874194C (en) A tubular welding wire, a welding method and a welding system
US3452419A (en) Method of making a tubular welding wire of welding rod enclosing a core composed of powdered constituents
US20140061179A1 (en) Systems and methods for welding electrodes
US9579751B2 (en) Cellulose coated stick electrode
CA2870145A1 (en) Systems and methods for welding electrodes
US11697171B2 (en) Systems and methods for welding zinc-coated workpieces
EP3138657B1 (en) Welding wires for welding zinc-coated workpieces
CA2943252A1 (en) Systems and methods for welding zinc-coated workpieces
US3584187A (en) Method of welding stainless steel
KR102210287B1 (en) Method of manufacturing a tubular welding wire
JPH0234716B2 (en)
CA3119541A1 (en) Metal-cored electrode for producing lower slag volume welds
TWI655988B (en) Tubular corrosion-resistant welding wires
US4575606A (en) Method of electroslag welding and flux
US1998947A (en) Welding electrode and process of making the same
JPS6032560B2 (en) Manufacturing method of welding wire
CN104625479A (en) Welding rod
JPH05245690A (en) Flux cored wire for high-hydrogen fillet welding
JPH0777674B2 (en) Method for manufacturing composite wire for arc welding with excellent arc welding characteristics
JPH069757B2 (en) A wire with a seamless flux for arc welding
JPH06312267A (en) High-speed horizontal fillet gas shielded arc welding method