JPH0234594B2 - - Google Patents

Info

Publication number
JPH0234594B2
JPH0234594B2 JP57159664A JP15966482A JPH0234594B2 JP H0234594 B2 JPH0234594 B2 JP H0234594B2 JP 57159664 A JP57159664 A JP 57159664A JP 15966482 A JP15966482 A JP 15966482A JP H0234594 B2 JPH0234594 B2 JP H0234594B2
Authority
JP
Japan
Prior art keywords
gas
porous member
liquid
cream
liquid food
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57159664A
Other languages
Japanese (ja)
Other versions
JPS5951748A (en
Inventor
Akio Wada
Akifumi Ishibashi
Motokazu Kikuchi
Haruo Endo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Morinaga Milk Industry Co Ltd
Original Assignee
Morinaga Milk Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Morinaga Milk Industry Co Ltd filed Critical Morinaga Milk Industry Co Ltd
Priority to JP57159664A priority Critical patent/JPS5951748A/en
Publication of JPS5951748A publication Critical patent/JPS5951748A/en
Publication of JPH0234594B2 publication Critical patent/JPH0234594B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Dairy Products (AREA)
  • Confectionery (AREA)
  • Grain Derivatives (AREA)
  • Edible Oils And Fats (AREA)
  • Jellies, Jams, And Syrups (AREA)
  • Cereal-Derived Products (AREA)
  • General Preparation And Processing Of Foods (AREA)
  • Formation And Processing Of Food Products (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、微細な気泡を含有する食品の連続的
製造法及びその装置に関する。詳しくは、連続的
に流動する液状の食品原料(以下液状原料と記載
する)に対し、孔径の微小な多孔質部材を介して
気体を連続的に吹き込み、上記液状原料中に微小
化気泡を分散させ、かくして形成された気−液分
散系を更に必要に応じて連続的に攪拌し、微細な
気泡を保持する食品を製造する方法及びその装置
に関するものである。 本発明において「微細な気泡を含有する食品」
はホイツプクリーム、ホイツプマーガリン、ホイ
ツプチーブ、ホイツプバター、ホイツプヨーグル
ト、ムース、アイスクリーム、ソフトクリーム、
シヤーベツト、ホイツプゼリー、気泡入りゼリー
及びマシユマロ等微細な気泡を含有している食品
(以下「気泡気泡含有食品」と記載する)であり、
「液状の食品原料」は微細気泡含有食品に使用さ
れる通常の原料を常法により配合し、常法により
処理したものであつて、例えばホイツプ用クリー
ムにおいては、通常使用される所定量の原料を常
法によつて殺菌し、混合し、乳化し、均質化して
調製したホイツプクリーム用の原料である。従
来、微細気泡含有食品の製造において次の諸点が
技術上の問題となつていた。 (1) 気体を食品中に一定粒径の微小化気泡として
分散させる手段の相違、粒径の大小及び分散状
態の均一性などが製品の品質及びその安定性を
大きく左右するといわれているが、これらの問
題に十分対処し得る具体的な解決策は未だな
い。 (2) 分散される微小化気泡は、製品の一部であり
従つてオーバーラン値の所望の一定値に維持す
ることは、品質上はもとより歩留り管理の点か
らも重要である。つまり、連続的製造法におけ
るオーバーランの制御方法の精度の問題があ
る。 従来、オーバーランの制御方法の1つとし
て、気−液混合後のオーバーランを測定し、そ
の測定値と所望値の差異に基づいて、混合比率
をフイードバツク制御する方法がある。この場
合、測定方法として、製品を経時的にカツプな
どにサンプリングする方法があるが測定者の熟
練度による誤差が生じるばかりでなく、操作そ
のものも煩雑である。また、サンプリングなど
を要せず、密度計及び電気電導度計などを利用
して連続的間接測定手段も知られているが、こ
の場合、対象製品の物性、温度及び圧力などに
より変動し満足できる精度は望めない。 また他の制御方法としては、気−液混合前の
それぞれの量を予め個別に計測し、この計測値
の比率を所望の値に制御する方法がある。しか
しながらこの制御方法が十分な精度を保証され
るためには、この前提として、供給された気体
全部がオーバーランに有効に供されていなけれ
ばならず、従つていかなる工程中にあつても液
状原料中に気体塊として偏在したり、製造設備
内に滞留するものであつてはならないが、この
ための気体の効果的な供給方法は知られていな
い。 (3) ホイツプクリームの製造のように、気泡の分
散後に機械的せん断力を作用させ、気泡の囲り
の脂肪球を凝集させ系の安定化を図るものにあ
つては、気泡も粒径の大小及びその分散の均一
性の如何によつて同一せん断力の下でも仕上り
までに要する時間及び出来上りホイツプクリー
ムの性状などのホイツプ性が異なつてくる。そ
れ故、一定のせん断処理の下でも気泡の不均一
分散により、ホイツプクリームの仕上りに不十
分の部分が生じたり又逆に過度のホイツプとな
つて一部が完全に相転換を起しいわゆるバター
化まで進行したりする。このことは、ホイツプ
クリームの連続処理操作において大きな障害と
なつている。 一方食品製造の分野で従来から知られている微
細気泡含有食品の連続的製造装置としては、ホイ
ツプクリームの製造装置にその最も進歩した代表
例を見ることができる。例えば、特開昭53−
44680号公報及び特開昭53−56376号公報には、気
−液混合ポンプの吸入側より吸入した空気とクリ
ームを該ポンプにて混合し、これをラビリンス状
の流路を有する固定型攪拌器及び攪拌羽根を有す
る回転型攪拌器で攪拌するホイツプクリームの製
造装置が開示されており、また特開昭54−32677
号公報には、液状クリームの給液管の途中に給気
管を連結して気−液混合物となしたものを、気体
を微細に分散混合するようにした回動部を有しな
い有効長可変の流動装置及び回転部材を設置した
攪拌装置からなる製造装置が開示されている。こ
れらの装置において供給される気液の合流部以後
の混合についてみると、前者の2つの装置ではポ
ンプによる機械的混合が直ちになされ、後者の装
置では配管の接続部での単なる合流とその後の流
れによる流体力学的混合が行なわれている。しか
しながら、後者の気液の合流部以後の混合は、こ
の公報にも「デスパーサーの入口側へは空気と液
状クリームが混合状態で送入される。前記におけ
る空気は空気源より殺菌その他の清浄化処理を経
て送られるが、給液管内での混合はきわめて不十
分の状態である。」と記載されいる如く、前記し
たような気泡の望ましい均一分散が達成されてお
らず、それ故気体を微細に分散混合するための固
定型攪拌装置である流動装置を必要としている。
また、前者にあつても混合ポンプを使用している
ものの気体の均一な微細分散は十分なものといえ
ず、同様に固定型攪拌装置を回転型攪拌装置と共
に直列に設置することを余義なくされている。ま
た、これら両者における気液の合流以後の混合が
十分な気泡の微細分散にないことは、後記する
(実験3)によつても確認されている。 そして、以上の様な問題点を改良するものとし
て、特開昭55−7007号公報による方法が提案され
ている。この方法は、その公報の記載「従来のガ
スの導入方法は、通常のガス導入装置、例えばノ
ズル、あるいはパイプに***を開けたものをマー
ガリンミツクスあるいはシヨートニング用油脂を
送るパイプ中に開口させるなどしてガスを圧入し
ていた。…そして気泡の大きさや分散性が安定せ
ず、オーバーランもばらつくことがあつた。」に
示される技術的課題について、即ちガスの導入方
法に新規な特徴を有するものである。具体的に
は、「ガスを導入する際、マーガリンミツクスを
送るパイプの間にベンチユリー管あるいはオリフ
イスを接続し、ベンチユリー管の場合はその最狭
部に、オリフイスの場合はその直前にガスの導入
口を開口させてガスを導入することにより、これ
らベンチユリー管あるいはオリフイスを通過後の
ガスの導入されたマーガリンミツクスに乱流を起
させ、マーガリンミツクスにガスを均一に分散さ
せ、溶解を速やかに行なわせるのである。」が、
ガスの導入後のフイードポンプ吐出側の系の内圧
が25〜50Kg/cm2であるため、「大気圧に解放する
場合、特にガス導入管オーバーラン40〜100%と
いうような大きな比率の場合には、大気圧に解放
した時に極めて短時間に溶解ガスをほとんど全て
微細な気泡として均一に分散させることは困難で
あり、その上大気圧に解放後…気泡の粗大化…気
泡の偏圧とそれによる縞模様が生じやすい」の
で、これを防止するため、デイフエーザーをはめ
込んだ特別仕様の圧力調節弁を出口部に設け一定
比率で減圧する手段を必要としている。このよう
に、特開昭55−7007号公報の方法においても、上
記した系の高圧性から生じる耐圧設備及び上記の
問題、一定以上の乱流状態を要することから流速
の下限即ち能力の制限の問題及び液状クリームで
は流れの縮流部の強いせん断作用により一部がチ
ヤーニングを起すために対象製品に制限のあるこ
となどがあり、未だ十分なものとはいえない。
尚、この方法で系の圧力を約2Kg/cm2にしてホイ
ツピングクリームの気体供給手段として実験した
結果を後記(実験3)に示した。 本発明の目的は、従来技術の有する以上の如き
問題点を解決し、微細気泡含有食品の新規な製造
法及びその装置を提供することにある。 本発明の方法においては、常法により調製され
た液状の食品原料に、孔径の微小な多孔質部材か
ら、所定量の気体を微小な気泡として一定値の不
変動量を絶えず維持して連続的に又は一定の周期
的変動量をもたせて連続的に吹き込み、微小気泡
を液状の食品原料中に分散させ、必要に応じて更
に攪拌することもできる。液状の食品原料に分散
させる気体は、例えば空気、窒素ガス、炭酸ガス
等であり、分散させる気体の量は製品により適宜
決定される。尚気体の吹込みについては本発明の
装置の説明において詳述する。液状の食品原料に
気体を一定の周期的変動量として連続的に吹き込
む場合、液状の食品原料の物性等から予め試行に
より、気体を吹き込む間隔、量を最終製品のオー
バーランとの関係を求め、実際の製造を行なう。
気体を不変動量として吹き込まず、一定の周期的
変動量として吹き込む方法は、液状原料がピスト
ン流れとならず流量分布を有する場合バツクミキ
シングにより、いずれ微細気泡は流れ方向に一定
の分布をもつように平均化されるから採用可能な
のであり、この意味で一定間隔の間欠的な吹き込
み方法もこの方法に含まれる。 微小気泡を含有する液状の食品原料を、そのま
ま容器に充填して最終製品とすることができる。
例えば気泡入りゼリーの製造においては、常法に
より調製された液状のゼリー原料に気体を上記の
如く連続的に吹き込み、必要に応じ攪拌して微小
気泡を分散させ、直ちに容器に連続的に充填し、
冷却して固化し、気泡入りゼリーを製造する。微
小気泡を含有する液状の食品原料を、更に常法に
より泡立てすることもできる。例えばホイツプク
リームの製造においては、常法により調製された
液状のホイツプクリーム用原料に気体を上記の如
く連続的に吹き込み、微小気泡を分散させ、次い
で連続式ホイツパーにより泡立てし、所定のオー
バーランを与えてホイツプクリームを連続的に製
造する。この場合、気体を吹き込む前の液体の食
品原料に本発明者らが先きに発明し、昭和57年9
月7日付で特許出願した方法(昭和57年特許願第
154608号「泡立て食品の製造法および装置」)に
より、超音波を照射し、ホイツプする時間を短縮
し、性状のすぐれたホイツプ食品を製造すること
もできる。 次に本発明の装置を1実施例を示す第1図に基
づいて説明する。 第1図において、矢印1は供給口2より導入さ
れる液状原料の管3の内部の流れ方向を示し、4
は気体供給口5より導入される気体吹き込み用導
管であり、その一端が管3と同軸に配置された円
筒形状の孔径微小な多孔質部材6に連通されてい
る。7は気体吹き込み用導管4を気体供給口5と
解脱自在に連結するユニオンである。このように
されているため、連続的に流動する液状原料に
は、多孔質部材6より吹き込まれた気体が微小化
気泡となつて分散され、多孔質部材6と管3の空
間の環状流路8を流れ、以後の処理装置へ移送さ
れる。 また第1図のような円筒形の多孔質部材内部空
間を閉鎖してこの閉鎖部9より気体を吹き込むこ
となく、この円筒形と管3の間に還状の空間を閉
鎖部として該部より円筒形内部に向けて気体を吹
き込み該内部円を液状原料の流路とすることも可
能である。 いずれにしても、気体の吹き込み方向が液状原
料の流れ方向と略垂直にするのが望ましい。この
ことは、多孔質部材を管内に配置することによ
り、この部分での液状原料の実質流路面積を大巾
に減少させて多孔質部材表面での液状原料の流速
を高くすることと相いまつて、吹き込み気体に対
して液状原料によるせん断力を最も有効に利用で
きるからである。その結果、吹き込まれた気体
は、絶えず高速で引きちぎられるようになるため
原料の食品液中で生成される気泡はその径が極め
て微小なものとなる。 そして、本発明でいう孔径微小な多孔質部材と
は、部材自体が数mm程度の一定の厚さを有してこ
の内外面の無数の孔が単独に又は相互に絡みあつ
て貫通するものまたは極めて薄い膜状物に無数の
小孔を有するものでもよく、いずれにしてもその
孔の分布は均一であつて、孔径は可及的に微小の
もの、例えば1μm〜100μmの範囲のものが望まし
い。具体的な前者の例としては粉末治金法により
製造された焼結材料及びガラス繊維などがあり、
後者の例としてはパンチングメタル並びにセルロ
ースエステル及びナイロン等のメンブレンフイル
ター材料などの膜が利用できる。しかし、膜状物
は何らかの支持部材を必要としかつ強度上の問題
もあるため、最も適しているのは強度、剛性及び
他金属との溶接性などの点から前記の焼結材料で
ある。第1図に示した装置の多孔質部材の寸法
は、管3の内径22mm、円筒外形16mmその厚さ2mm
及び長さ100mmのステンレス焼結金属(焼結金属
工業製)を使用したものである。 次に本発明の装置の特性及び効果を実験結果に
より詳述する。先ず、第1図に示した装置をホイ
ツプクリーム製造設備に組み込んでその諸特性を
検討した。第2図は、その製造設備の流れ図を示
すものであり、空気供給ライン10には、空気の
流れ方向に向け順次、減圧弁11、圧力計12、
空気流量計13、空気流量調節用ニードル・バル
ブ14、除菌フイルタ15及び電磁弁16が設け
られ、温度を一定に保持するジヤケツト付きの貯
蔵タンク18以後の液状クリームライン17に
は、液状クリームに対するせん断力を最小にして
移送するためのロータリーポンプ19が設置され
ている。そして、20は第1図に示したと同一の
本発明の気体導入部であり、ここで微小気泡の分
散された液状クリームがホイツピング作用を受け
持つダツシヤーと呼ばれる回転型攪拌機21に移
送され、ホイツプクリームが連続的に製造される
ことになる。回転型攪拌機21は第3図に示す如
きもので、歯車状の回転板材31とそれと若干の
間隔をもつて囲繞し相補的に対応する固定板材3
2とが回転軸方向に交互にそれぞれ36枚及び37枚
位置され、気泡の分散された液状クリームは上記
間隔を通過しながらせん断力を受けつつホイツプ
される(第3図イは軸方向断面図、ロは半径方向
断面よりみた板材31及び32を示す)。空気供
給ラインでは予めオイル及びその他の異物が除去
された5.8〜6.5Kg/cm2の圧縮空気が減圧弁11に
て293Kg/cm2に減圧されそして流量調節される。 そして、第2図の製造設備を使用して、多孔質
部材の表面近傍での液状クリームの見掛け流速が
液状クリーム中に分散される微細気泡の径に及ぼ
す影響について実験を行なつた。 〔実験1〕 実施例1と同一の方法で製造したホイツプ用合
成クリーム及び第1図に示したものと同一の本発
明装置を使用した。その他の条件は次の通りであ
る。 (1) 実験温度10℃における合成クリームの物性値 密度:1000Kg/cm3、粘度:0.3Kg/m・sec、
表面張力:4.8×10-2N/m (2) 空気流量パネル 120N/hr (3) 多孔質部材 焼結金属工業株式会社のステンレス焼結体で
孔経は公称濾過精度5μm 尚、合成クリームの見掛け流速とは、流量を環
状の流路断面8の面積で除した値とした。また気
泡径は回転型攪拌機の手前でサンプリングを行な
い顕微鏡写真により観察、測定した。この結果を
第4図〔気泡径(mm)は対数目盛で表示〕に示し
た。 第4図から、見掛け流速の上昇は、気泡径をよ
り微細なものとするが、ある一定流速(約14cm/
sec)以上になるとほぼ一定値に近づくことがわ
かる。従つて微細な気泡の分散を得るためには、
この一定流速以上の見掛け流速が多孔質部材表面
近傍で達成されることが望ましい。 次に多孔質部材の孔径が分散される気泡の径に
及ぼす影響について実験を行なつた。 〔実験2〕 合成クリームの流量を100/hr即ち見掛け流
速を15.5cm/secとし、多孔質部材の孔径を変化
させた以外は、実験1と全く同じ方法及び条件下
で行なつた。その結果を第5図(グラフは両軸と
も対数目盛)に示した。このことから、気泡径
(mm)は孔径(μm)の約1/3乗に比例することが
判明した。つまり、できるだけ微細な気泡径を得
るためには、可及的微小な孔径が望ましいが焼結
材料等の場合現在のところ実施可能な孔径として
は1μm以上といわれており、従つて孔径1μm〜
100μmの範囲のものが使用され得る。 以上、実験1及び実験2からホイツプクリーム
の製造において本発明の装置を用いることにより
液状クリーム中に分散される気泡径については、
0.6mm〜2.5mmという極めて微細なものが得られる
ことが判明したが、この様な気体吹き込み後の微
細な気泡が実験のホイツプクリームの品質に及ぼ
す影響について、従来の方法と対比し以下説明す
る。 〔実験3〕 第2図に示した製造装置の気体吹き込み部分2
0として次のa)〜d)の4種を用い、実施例1
と同一の方法で製造したホイツプ用合成クリーム
からのホイツプクリームを製造した。合成クリー
ムの流量は60/hr、空気流量は72N/hr、目
標オーバーランは120%とした。そして空気吹き
込み直後の得られた各試料について実験1と同一
の方法でサンプリングを行ない、気泡径を測定
し、更にサンプリング直後の合成クリームの一定
量をメスシリンダーに注ぎ込み、その高さL
(cm)、5秒間静止後に分離浮上した泡沫層の高さ
(cm)を測定し、〔(L−1.8)/L〕×100
(%)の値を算出し、気泡の分離浮上に対する安
定性を試験した。又得られた各ホイツプクリーム
について常法によりオーバーランを測定し、更に
常法により造花し、造花の肌、腰及びトツプを、
そして更にその造花を10℃で24時間保持した後の
保型性を肉眼で観察し、ホイツプクリームの性状
を試験した。 a) 本発明に係る第1図の装置として孔径2μm
の焼結ステンレス(焼結金属工業製)を用いた
(以下本発明法と記載する)。 b) 特開昭54−32677号公報に開示されている
気体導入手段として、第1図の管3と同径の管
に径3mmの気体吹き込み管を垂直に連絡したも
のを用いた(以下吹き込み管法と記載する)。 c) 特開昭53−44680号公報及び特開昭53−
56376号公報記載の手段に類似するものとして、
上記吹き込み管法の吹き込み管の位置の直後に
インライン式回転型ミキサー(特殊機化工業
製。型式PL−SL。回転速度2000r・p・m)
を接続したものを用いた(以下ミキサー法と記
載する)。 d) 特開昭55−7007号公報記載の手段として、
第6図に示すデイフユーザーを用いた(以下デ
イフユーザー法と記載する。尚第6図において
33は空気供給口、34は液状クリーム供給口
を示す。
TECHNICAL FIELD The present invention relates to a continuous production method and apparatus for food products containing fine air bubbles. Specifically, gas is continuously blown into a continuously flowing liquid food raw material (hereinafter referred to as liquid raw material) through a porous member with a minute pore diameter, and microscopic air bubbles are dispersed in the liquid raw material. The present invention relates to a method and an apparatus for producing a food product that retains fine air bubbles by further stirring the gas-liquid dispersion thus formed continuously as necessary. In the present invention, "food containing fine air bubbles"
Whipped cream, whipped margarine, whipped cheese, whipped butter, whipped yogurt, mousse, ice cream, soft serve,
Foods containing fine air bubbles (hereinafter referred to as "foods containing air bubbles") such as sherbet, whipped jelly, aerated jelly, and marshmallows,
"Liquid food raw materials" are those that are prepared by blending ordinary raw materials used for microfoam-containing foods and processing them according to ordinary methods. It is a raw material for whipped cream prepared by sterilizing, mixing, emulsifying, and homogenizing by conventional methods. Conventionally, the following points have been technical problems in the production of foods containing microbubbles. (1) It is said that differences in the means of dispersing gas into food as microscopic bubbles of a certain particle size, the size of the particle size, and the uniformity of the dispersion state greatly affect the quality and stability of the product. There are still no concrete solutions that can adequately address these problems. (2) The microscopic bubbles to be dispersed are part of the product, and therefore, maintaining the overrun value at a desired constant value is important not only from the viewpoint of quality but also from the viewpoint of yield control. In other words, there is a problem with the accuracy of the overrun control method in the continuous manufacturing method. Conventionally, one method for controlling overrun is to measure the overrun after gas-liquid mixing, and to feedback control the mixing ratio based on the difference between the measured value and a desired value. In this case, there is a method of sampling the product into a cup or the like over time, but this not only causes errors due to the level of skill of the measurer, but also is complicated to operate. Continuous indirect measurement methods are also known that do not require sampling, using density meters, electrical conductivity meters, etc., but in this case, the results may vary depending on the physical properties of the target product, temperature, pressure, etc. Accuracy cannot be expected. As another control method, there is a method in which each amount of gas and liquid is individually measured before mixing, and the ratio of the measured values is controlled to a desired value. However, in order for this control method to guarantee sufficient accuracy, the premise is that all of the supplied gas must be effectively used for overrun, and therefore no liquid material is present during any process. It must not be unevenly distributed in the form of gas lumps or remain in the manufacturing equipment, but an effective method for supplying gas for this purpose is not known. (3) When producing whipped cream, which uses mechanical shearing force after dispersing air bubbles to aggregate fat globules around the air bubbles to stabilize the system, the air bubbles also vary in particle size. Depending on the uniformity of the dispersion, the whipping properties such as the time required to finish and the properties of the finished whipped cream will vary even under the same shearing force. Therefore, even under a certain shearing process, the non-uniform dispersion of air bubbles may result in parts of the whipped cream with an insufficient finish, or conversely, excessive whipping may result in complete phase transformation of part of the whipped cream, resulting in what is known as butter. It progresses until. This poses a major obstacle in continuous processing operations for whipped cream. On the other hand, the most advanced representative example of continuous manufacturing equipment for foods containing microbubbles that has been known in the field of food manufacturing can be seen in the equipment for manufacturing whipped cream. For example, JP-A-53-
No. 44680 and Japanese Patent Application Laid-Open No. 53-56376 disclose a fixed agitator having a labyrinth-shaped flow path, in which air and cream sucked from the suction side of a gas-liquid mixing pump are mixed by the pump, and the mixture is mixed with a fixed agitator having a labyrinth-like flow path. A device for producing whipped cream that is stirred with a rotary stirrer having stirring blades is also disclosed, and Japanese Patent Application Laid-Open No. 54-32677
The publication discloses that a gas-liquid mixture is created by connecting an air supply pipe in the middle of a liquid cream supply pipe, and that a variable effective length without rotating parts is used to finely disperse and mix the gas. A manufacturing apparatus is disclosed that includes a fluidizing device and a stirring device equipped with a rotating member. Looking at the mixing of the gas and liquid supplied after the convergence point in these devices, in the former two devices mechanical mixing is done immediately using a pump, while in the latter device, the gas and liquid are simply mixed at the connection point of the piping and the subsequent flow occurs. Hydrodynamic mixing is performed by However, regarding the latter mixing after the gas-liquid convergence point, this publication also states that ``Air and liquid cream are sent in a mixed state to the inlet side of the desperser. However, the mixing within the liquid supply pipe is extremely insufficient, and the desired uniform dispersion of air bubbles as described above has not been achieved, and therefore the gas is A fluidized device, which is a fixed stirring device, is required for finely dispersed mixing.
Furthermore, even in the former case, although a mixing pump is used, the uniform and fine dispersion of the gas is not sufficient, and similarly it is necessary to install a fixed stirring device in series with a rotating stirring device. has been done. Furthermore, it was also confirmed by (Experiment 3) described later that the mixing after the gas-liquid convergence in both cases did not result in sufficient fine dispersion of bubbles. In order to improve the above-mentioned problems, a method has been proposed in Japanese Patent Application Laid-open No. 7007/1983. This method is described in the publication as follows: ``Conventional gas introduction methods include opening a small hole in a normal gas introduction device, such as a nozzle or a pipe, into a pipe for feeding margarine mixes or shortening oils.'' ``The size and dispersion of the bubbles were not stable, and the overrun also varied.'' It is something that you have. Specifically, ``When introducing gas, connect a ventilary tube or orifice between the pipes that send margarine mixture, and in the case of a ventilary tube, connect the gas to the narrowest part, and in the case of an orifice, connect the gas to the narrowest part. By opening the mouth and introducing gas, a turbulent flow is created in the margarine mix into which the gas has been introduced after passing through these ventilates or orifices, and the gas is uniformly dispersed in the margarine mix, resulting in rapid dissolution. ”, but
Since the internal pressure of the system on the feed pump discharge side after gas is introduced is 25 to 50 kg/ cm2 , "when releasing to atmospheric pressure, especially in the case of a large ratio of gas introduction pipe overrun of 40 to 100%, , when released to atmospheric pressure, it is difficult to uniformly disperse almost all the dissolved gas as fine bubbles in a very short time, and furthermore, after release to atmospheric pressure... the bubbles become coarser... the uneven pressure of the bubbles and the resulting To prevent this, it is necessary to install a specially designed pressure regulating valve fitted with a diffuser at the outlet to reduce the pressure at a constant rate. As described above, the method of JP-A-55-7007 also requires pressure-resistant equipment and the above-mentioned problems caused by the high pressure nature of the system, and requires a turbulent flow state above a certain level, so the lower limit of the flow rate, that is, the limit of the capacity, is Problems: Liquid creams are not yet satisfactory, as some parts of the liquid cream tend to charn due to the strong shearing action of the contraction part of the flow, which limits the range of products that can be used.
The results of an experiment using this method as a gas supply means for whipping cream at a system pressure of approximately 2 kg/cm 2 are shown later (Experiment 3). An object of the present invention is to solve the above-mentioned problems of the prior art and to provide a novel method for producing microfoam-containing foods and an apparatus therefor. In the method of the present invention, a predetermined amount of gas is added to a liquid food material prepared by a conventional method as minute bubbles through a porous member with a minute pore size, and continuously maintains an unchanging amount of gas at a constant value. Microbubbles can be dispersed in the liquid food raw material by continuously blowing at a constant rate or with a constant periodic variation, and further stirring can be performed as necessary. The gas to be dispersed in the liquid food raw material is, for example, air, nitrogen gas, carbon dioxide gas, etc., and the amount of the gas to be dispersed is appropriately determined depending on the product. The blowing of gas will be explained in detail in the description of the apparatus of the present invention. When continuously blowing gas into liquid food raw materials in a constant periodic variation amount, the relationship between the interval and amount of gas blowing and the overrun of the final product is determined through trials based on the physical properties of the liquid food raw materials, etc. Perform actual manufacturing.
A method in which gas is injected in a constant periodic amount rather than in a constant amount is that when the liquid raw material does not have a piston flow but has a flow rate distribution, by back mixing, the microbubbles will eventually have a constant distribution in the flow direction. This method can be adopted because the air is averaged over the air, and in this sense, intermittent blowing at regular intervals is also included in this method. A liquid food raw material containing microbubbles can be filled into a container as it is to produce a final product.
For example, in the production of aerated jelly, gas is continuously blown into the liquid jelly raw material prepared by a conventional method as described above, stirred as necessary to disperse microbubbles, and immediately filled into containers continuously. ,
Cool and solidify to produce aerated jelly. Liquid food ingredients containing microbubbles can also be further foamed by conventional methods. For example, in the production of whipped cream, gas is continuously blown into liquid whipped cream ingredients prepared by a conventional method to disperse microbubbles, and then whipped with a continuous whipper to give a predetermined overrun. Continuously manufacture whipped cream. In this case, the inventors of the present invention had previously invented the liquid food raw material before blowing gas into it, and in September 1981,
A method for which a patent application was filed on July 7th (1988 patent application no.
No. 154608, ``Method and Apparatus for Producing Whipped Foods''), it is possible to irradiate ultrasonic waves, shorten the whipping time, and produce whipped foods with excellent properties. Next, the apparatus of the present invention will be explained based on FIG. 1 showing one embodiment. In FIG. 1, an arrow 1 indicates the flow direction inside the pipe 3 of the liquid raw material introduced from the supply port 2;
is a gas blowing conduit introduced from the gas supply port 5, one end of which communicates with a cylindrical porous member 6 with a minute pore diameter disposed coaxially with the tube 3. 7 is a union that releasably connects the gas blowing conduit 4 to the gas supply port 5. Because of this, the gas blown from the porous member 6 becomes microscopic bubbles and is dispersed in the continuously flowing liquid raw material, and the annular flow path in the space between the porous member 6 and the pipe 3 is dispersed. 8 and is transferred to subsequent processing equipment. Moreover, without closing the internal space of the cylindrical porous member as shown in FIG. It is also possible to blow gas into the cylindrical interior and use the inner circle as a flow path for the liquid raw material. In any case, it is desirable that the gas blowing direction be substantially perpendicular to the flow direction of the liquid raw material. This is consistent with the fact that by arranging the porous member inside the pipe, the effective flow path area of the liquid raw material in this area is greatly reduced, and the flow velocity of the liquid raw material on the surface of the porous member is increased. This is because the shearing force of the liquid raw material against the blown gas can be used most effectively. As a result, the blown gas is constantly torn off at high speed, and the bubbles generated in the raw food liquid become extremely small in diameter. A porous member with a small pore diameter as used in the present invention refers to a member that has a certain thickness of several millimeters, through which countless pores on the inner and outer surfaces pass through, either singly or intertwined with each other. It may be an extremely thin membrane with countless small pores; in any case, the distribution of the pores should be uniform, and the pore diameter should preferably be as small as possible, for example, in the range of 1 μm to 100 μm. . Specific examples of the former include sintered materials and glass fibers manufactured by powder metallurgy.
Examples of the latter include membranes such as perforated metal and membrane filter materials such as cellulose esters and nylon. However, since the film-like material requires some kind of support member and has problems with strength, the most suitable material is the above-mentioned sintered material in terms of strength, rigidity, and weldability with other metals. The dimensions of the porous member of the device shown in Figure 1 are: the inner diameter of the tube 3 is 22 mm, the outer diameter of the cylinder is 16 mm, and the thickness is 2 mm.
and 100mm long stainless steel sintered metal (manufactured by Sintered Metal Industry). Next, the characteristics and effects of the device of the present invention will be explained in detail based on experimental results. First, the device shown in FIG. 1 was installed in whipped cream manufacturing equipment and its various characteristics were investigated. FIG. 2 shows a flowchart of the manufacturing equipment, and the air supply line 10 includes a pressure reducing valve 11, a pressure gauge 12, a pressure gauge 12,
An air flow meter 13, a needle valve 14 for adjusting the air flow rate, a sterilization filter 15, and a solenoid valve 16 are provided, and a liquid cream line 17 after a storage tank 18 with a jacket that maintains a constant temperature is provided with a liquid cream line 17 for liquid cream. A rotary pump 19 is installed for transporting with minimal shear force. 20 is the same gas introduction part of the present invention as shown in FIG. 1, and here the liquid cream in which microbubbles are dispersed is transferred to a rotary stirrer 21 called a dasher which has a whipping action, and the whipped cream is continuously produced. will be manufactured. The rotary stirrer 21 is as shown in FIG. 3, and includes a gear-shaped rotating plate 31 and a fixed plate 3 that surrounds it at a slight distance and corresponds to it complementary to the rotary plate 31.
2 and 36 sheets and 37 sheets are placed alternately in the direction of the rotation axis, and the liquid cream with dispersed air bubbles is whipped while passing through the above-mentioned intervals while being subjected to shear force (Fig. 3 A is an axial cross-sectional view , b shows the plates 31 and 32 seen from a radial cross section). In the air supply line, compressed air of 5.8 to 6.5 kg/cm 2 from which oil and other foreign substances have been removed in advance is reduced in pressure to 293 kg/cm 2 by a pressure reducing valve 11, and the flow rate is adjusted. Then, using the manufacturing equipment shown in FIG. 2, an experiment was conducted to examine the effect of the apparent flow velocity of the liquid cream near the surface of the porous member on the diameter of fine bubbles dispersed in the liquid cream. [Experiment 1] A synthetic cream for whipping prepared in the same manner as in Example 1 and the same apparatus of the present invention as shown in FIG. 1 were used. Other conditions are as follows. (1) Physical properties of synthetic cream at experimental temperature of 10℃ Density: 1000Kg/cm 3 , Viscosity: 0.3Kg/m・sec,
Surface tension: 4.8×10 -2 N/m (2) Air flow panel 120N/hr (3) Porous member A stainless steel sintered body manufactured by Sintered Metal Industry Co., Ltd. with a nominal filtration accuracy of 5 μm. The apparent flow velocity was defined as a value obtained by dividing the flow rate by the area of the annular channel cross section 8. In addition, the bubble diameter was observed and measured by taking a sample before the rotary stirrer and using a micrograph. The results are shown in FIG. 4 (bubble diameters (mm) are shown on a logarithmic scale). From Figure 4, an increase in the apparent flow velocity makes the bubble diameter finer, but at a certain flow velocity (approximately 14 cm/
sec) or more, it approaches a constant value. Therefore, in order to obtain fine bubble dispersion,
It is desirable that an apparent flow velocity higher than this constant flow velocity be achieved near the surface of the porous member. Next, an experiment was conducted to examine the effect of the pore diameter of the porous member on the diameter of the dispersed bubbles. [Experiment 2] Experiment 2 was conducted under exactly the same method and conditions as Experiment 1, except that the flow rate of the synthetic cream was 100/hr, that is, the apparent flow velocity was 15.5 cm/sec, and the pore diameter of the porous member was changed. The results are shown in FIG. 5 (both axes of the graph are on a logarithmic scale). From this, it was found that the bubble diameter (mm) is proportional to the pore diameter (μm) to the approximately 1/3 power. In other words, in order to obtain the smallest possible pore size, it is desirable to have as small a pore size as possible, but in the case of sintered materials, it is currently said that the pore size that can be implemented is 1 μm or more, and therefore, the pore size is 1 μm or more.
A range of 100 μm can be used. As mentioned above, from Experiments 1 and 2, the diameter of air bubbles dispersed in liquid cream by using the apparatus of the present invention in the production of whipped cream is as follows:
It has been found that extremely fine bubbles of 0.6 mm to 2.5 mm can be obtained.The effect of such fine bubbles after gas blowing on the quality of the whipped cream in the experiment will be explained below in comparison with the conventional method. [Experiment 3] Gas blowing section 2 of the manufacturing equipment shown in Figure 2
Using the following four types a) to d) as 0, Example 1
Whipped cream was produced from synthetic whipped cream produced in the same manner as above. The synthetic cream flow rate was 60/hr, the air flow rate was 72 N/hr, and the target overrun was 120%. Then, each sample obtained immediately after air blowing was sampled in the same manner as in Experiment 1, the bubble diameter was measured, and a certain amount of the synthetic cream immediately after sampling was poured into a graduated cylinder, and the height L
(cm), the height (cm) of the foam layer that separated and floated after standing still for 5 seconds was measured, [(L-1.8)/L] x 100
(%) was calculated and the stability against bubble separation and flotation was tested. In addition, the overrun of each whipped cream obtained was measured using a conventional method, and then an artificial flower was made using a conventional method to measure the skin, waist, and top of the artificial flower.
Furthermore, the shape retention of the artificial flower was observed with the naked eye after it was kept at 10°C for 24 hours, and the properties of the whipped cream were tested. a) A pore diameter of 2 μm as the device of FIG. 1 according to the present invention.
Sintered stainless steel (manufactured by Sintered Metal Industry) was used (hereinafter referred to as the method of the present invention). b) As a gas introducing means disclosed in Japanese Patent Application Laid-Open No. 54-32677, a tube with the same diameter as the tube 3 in Fig. 1 was connected vertically to a gas blowing tube with a diameter of 3 mm. ). c) JP-A-53-44680 and JP-A-53-
Similar to the means described in Publication No. 56376,
In-line rotary mixer (manufactured by Tokushu Kika Kogyo, model PL-SL, rotation speed 2000 r/p/m) immediately after the blowing pipe position of the above blowing pipe method.
(hereinafter referred to as the mixer method). d) As a means described in Japanese Patent Application Laid-open No. 55-7007,
A differential user shown in FIG. 6 was used (hereinafter referred to as the differential user method). In FIG. 6, 33 indicates an air supply port, and 34 indicates a liquid cream supply port.

【表】 デイフユ
同上
ーザー法
第1表の結果を気泡平均径についてみると本発
明法によれば、他の方法に比べて約1/10以下であ
り、極めて微細であるが、他の方法は非常に粗大
であり、それ故前記した如く、気体を微細に分散
混合するための固定型攪拌装置を必要としている
ことが理解される。また、気体の導入方法を改善
したものとされるデイフユーザー法に比しても本
発明法の微細化効果は格段に優れていることが示
されている。同時に、気泡径が微細になるほど気
泡の分離浮上に対する安定性、オーバーランの達
成度及び造花にも好影響を及ぼしていることが示
されており、いかに気泡径を効率よく微細化する
かがホイツプクリームの製造に重要であることが
理解できる。 上記の実験3では、気体の導入後可及的速やか
にかつ微細な気泡を均一に分散させることが技術
的中心課題とされているホイツプクリームの製造
において、従来より用いられていた手段と本発明
の手段と比較したものであるが、本発明が他の一
般に液状原料中に微小化気泡をいかに効率よく均
一に分散せしめるものであるか理解できる。即ち
本発明は、前記のホイツプ食品をはじめアイスク
リームソフトクリーム及びマシユマロ等の食品分
野での利用はもとより微小化気泡を含有する製品
の製造において十分な効果を発揮するものであ
る。 次に本発明の実施例を示す。 実施例 1 前記第2図に示したホイツプクリームの製品設
備を用いてホイツプクリームを製造した。同図の
気体導入部20は前記第1図と同寸法同形状の多
孔質部材(焼結金属工業製。公称濾過精度による
孔径2μm、ステンレス焼結材料)を用いた。そし
てホイツプ用合成クリームを次のようにして調製
した。 市販の硬化大豆油(上昇融点35℃)50部を65℃
に加温し、市販の精製大豆レシチン0.3部及びモ
ノグリセライド0.3部を加え、攪拌して溶解分散
させて油相を得た。一方脱脂乳50部に市販のシユ
ガーエステル0.4部を加え、攪拌して溶解分散さ
せて水相を得た。 前記油相と水相とを混合して乳化し、70℃で15
分間加熱殺菌し、次いで50Kg/cm2及び10Kg/cm2
圧力で2度均質化し貯蔵タンク18に移送し、8
℃に冷却し、同温度で1夜エージングし、ホイツ
プ用合成クリームを得た。 このホイツプ用合成クリームをポンプ19にて
流量150/hrで移送し、同時に空気ライン10
より流量180N/hrで前記気体導入部20から
空気を吹き込み、この微細気泡の分散された液状
クリームは回転速度550r.p.mのダツシヤー21で
泡立てされ、ホイツプクリームが製造された。製
造されたホイツプクリームは、、造花性及び保型
性が優れた設定値通り120%のオーバーランを有
していた。 実施例 2 実施例1で用いた第2図の製造設備において、
多孔質部材の焼結材料の孔径を5μm、ダツシヤー
の回転速度を300r.p.mとした以外は同一の設備で
ホイツプヨーグルトを製造した。先ず次の如くホ
イツプ用ヨーグルトを製造した。 脱脂乳100部に脱脂粉乳5部を加えて溶解し、
82℃で30分間加熱殺菌し、ラクトバチルス・ブル
ガリカスとストレプトコツカス・サーモフイラス
とからなるスターター3部を加え、37℃で7時間
発酵し、ヨーグルトを得た。 一方水50部に、生クリーム(脂肪含量45%)60
部、市販のモノグリセライド2.5部、ゼラチン5
部、砂糖32.5部を加えて溶解し、85℃で20分間殺
菌し、40℃に冷却して混合液を調製した。 前記ヨーグルト70部と混合液30部を貯蔵タンク
18に投入し、攪拌して均一に混合し、150Kg/
cm2の圧力で均質化し、ホイツプ用ヨーグルトを得
た。 このホイツプ用ヨーグルトをポンプ19にて流
量100/hrで移送し、同時に空気ライン10よ
り流量80N/hrで前記気体導入部20から空気
を吹き込み、かくして微細気泡の分散された液状
ヨーグルトは前記ダツシヤー21でホイツプさ
れ、ホイツプヨーグルトが製造された。得られた
ホイツプヨーグルトは設定値通り約80%のオーバ
ーランを有し、微細な気泡が均一に分散し、すぐ
れた状態であつた。
[Front] Dayfuyu
Same as above
Looking at the results in Table 1 of the Laser method, the bubble average diameter according to the method of the present invention is about 1/10 or less compared to other methods, which is extremely fine, whereas the other methods have very coarse diameters. Therefore, as mentioned above, it is understood that a fixed stirring device is required for finely dispersing and mixing the gas. Furthermore, it has been shown that the miniaturization effect of the method of the present invention is much superior to that of the diffuse user method, which is said to be an improved method of introducing gas. At the same time, it has been shown that the finer the bubble diameter is, the more it has a positive effect on the stability of bubble separation and flotation, the degree of overrun achievement, and the quality of artificial flowers.The question of how to efficiently reduce the bubble diameter is how to make whipped cream. It can be understood that it is important for the production of In the above experiment 3, in the production of whipped cream, where the central technical issue is to uniformly disperse fine air bubbles as quickly as possible after the introduction of gas, the method used in the past and the method of the present invention were compared. Although this is a comparison with other methods, it can be seen how the present invention can efficiently and uniformly disperse microscopic air bubbles in other generally liquid raw materials. That is, the present invention exhibits sufficient effects not only for use in the food field such as the above-mentioned whipped foods, ice cream soft serve, and marshmallows, but also for the production of products containing microscopic bubbles. Next, examples of the present invention will be shown. Example 1 Whipped cream was manufactured using the whipped cream manufacturing equipment shown in FIG. 2 above. For the gas introduction section 20 in the same figure, a porous member (manufactured by Sintered Metal Industry Co., Ltd., pore diameter 2 μm based on nominal filtration accuracy, stainless steel sintered material) having the same size and shape as in FIG. 1 was used. A synthetic cream for whipping was prepared as follows. 50 parts of commercially available hydrogenated soybean oil (rising melting point 35℃) at 65℃
0.3 part of commercially available purified soybean lecithin and 0.3 part of monoglyceride were added, and the mixture was stirred to dissolve and disperse to obtain an oil phase. On the other hand, 0.4 parts of commercially available sugar ester was added to 50 parts of skim milk, and the mixture was stirred to dissolve and disperse to obtain an aqueous phase. The oil phase and water phase were mixed and emulsified, and the mixture was heated at 70°C for 15 minutes.
Heat sterilized for 1 minute, then homogenized twice at pressures of 50 Kg/cm 2 and 10 Kg/cm 2 and transferred to storage tank 18.
The mixture was cooled to ℃ and aged overnight at the same temperature to obtain a synthetic cream for whipping. This synthetic cream for whipping is transferred by a pump 19 at a flow rate of 150/hr, and at the same time the air line 10
Air was blown from the gas inlet 20 at a flow rate of 180 N/hr, and the liquid cream in which fine air bubbles were dispersed was whipped with a dasher 21 at a rotational speed of 550 rpm to produce whipped cream. The produced whipped cream had an overrun of 120%, which was in line with the set value, and had excellent artificial flower properties and shape retention. Example 2 In the manufacturing equipment shown in Figure 2 used in Example 1,
Whipped yogurt was produced using the same equipment except that the pore diameter of the sintered material of the porous member was 5 μm and the rotation speed of the dasher was 300 rpm. First, yogurt for whipping was produced as follows. Add 5 parts of skim milk powder to 100 parts of skim milk and dissolve.
The mixture was heat sterilized at 82°C for 30 minutes, 3 parts of a starter consisting of Lactobacillus bulgaricus and Streptococcus thermophilus was added, and fermented at 37°C for 7 hours to obtain yogurt. Meanwhile, to 50 parts water, 60 parts heavy cream (45% fat content)
2.5 parts commercially available monoglyceride, 5 parts gelatin
1 part and 32.5 parts of sugar were added and dissolved, sterilized at 85°C for 20 minutes, and cooled to 40°C to prepare a mixed solution. 70 parts of the yogurt and 30 parts of the mixed liquid were put into the storage tank 18, stirred and mixed uniformly, and 150 kg/
Homogenization was performed under a pressure of cm 2 to obtain yogurt for whipping. This yogurt for whipping is transferred with a pump 19 at a flow rate of 100/hr, and at the same time, air is blown from the gas introduction section 20 through the air line 10 at a flow rate of 80 N/hr, so that the liquid yogurt with fine bubbles dispersed is transferred to the dossier 21. Whipped yogurt was produced. The whipped yogurt obtained had an overrun of about 80% as per the set value, fine air bubbles were uniformly dispersed, and was in an excellent state.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の装置の気体導入部の断面図を
示し、第2図はホイツプクリーム製造設備の流れ
図を示し、第3図は第2図の回転型攪拌機を示
し、イは軸方向断面図、ロは半径方向からみた板
材の配置を示す断面図である。第4図は、合成ク
リームの見掛け流速と気泡径の関係を示すグラフ
であり、第5図は多孔質部材の孔径と気泡径の関
係を示すグラフである。第6図は気体の導入部を
デイフユーザーとした場合の断面図を示す。 符号の簡単な説明、4:気体導入管、6:多孔
質部材、10:空気ライン、17:クリームライ
ン、20:気体導入部。
Fig. 1 shows a cross-sectional view of the gas introduction part of the apparatus of the present invention, Fig. 2 shows a flowchart of the whipped cream manufacturing equipment, Fig. 3 shows the rotary stirrer of Fig. 2, and A is an axial cross-sectional view. , B are cross-sectional views showing the arrangement of plate materials viewed from the radial direction. FIG. 4 is a graph showing the relationship between the apparent flow velocity of the synthetic cream and the bubble diameter, and FIG. 5 is a graph showing the relationship between the pore diameter of the porous member and the bubble diameter. FIG. 6 shows a cross-sectional view when the gas introduction section is a differential user. Brief explanation of the symbols: 4: gas introduction pipe, 6: porous member, 10: air line, 17: cream line, 20: gas introduction part.

Claims (1)

【特許請求の範囲】 1 微細な気泡を含有する食品の製造において、
管内を一方向に連続的に流動する液状の食品原料
に、孔径1μm〜100μmの多孔質部材を介して該液
状の食品原料の流量と一定比率の気体を不変動量
または一定の周期的変動量において連続的に吹き
込み、該液状の食品原料内に微小化気泡を分散さ
せることを特徴とする微細な気泡を含有する食品
の連続的製造法。 2 多孔質部材からの気体の吹き込み方向が、該
液状の食品原料の流れ方向に対し略々垂直である
ことを特徴とする特許請求の範囲第1項に記載の
製造法。 3 微小化気泡を分散させた該液状の食品原料を
連続的に攪拌することを特徴とする特許請求の範
囲第1項または第2項に記載の製造法。 4 多孔質部材が、粉末治金法により製造された
ことを特徴とする特許請求の範囲第1項ないし第
3項のいずれかに記載の製造法。 5 微細な気泡を含有する食品を製造する装置に
おいて、液状の食品が一方向に連続的に流動する
管内に、該管と同軸に円筒形状の孔径1μm〜
100μmの多孔質部材を配置し、該多孔質部材の内
部空間または該多孔質部材と上記管の間の空間の
いずれか一方を閉鎖し、該閉鎖部に気体吹き込み
用導管の一端部を連通させて気体導入部とし、該
閉鎖部とされた以外の上記空間を気体の吹き込ま
れた該液状の食品原料の流路としたことを特徴と
する微細な気泡を含有する食品の製造装置。 6 多孔質部材が、粉末治金法により製造された
焼結材料であることを特徴とする特許請求の範囲
第5項に記載の製造装置。
[Claims] 1. In the production of food containing fine air bubbles,
The liquid food raw material that flows continuously in one direction in the pipe is supplied with gas at a constant ratio or a fixed periodic amount through a porous member with a pore diameter of 1 μm to 100 μm. 1. A method for continuously producing a food product containing fine air bubbles, which comprises continuously blowing into the liquid food material to disperse microair bubbles in the liquid food material. 2. The manufacturing method according to claim 1, wherein the direction of gas blowing from the porous member is substantially perpendicular to the flow direction of the liquid food raw material. 3. The manufacturing method according to claim 1 or 2, characterized in that the liquid food material in which microscopic air bubbles are dispersed is continuously stirred. 4. The manufacturing method according to any one of claims 1 to 3, wherein the porous member is manufactured by a powder metallurgy method. 5 In an apparatus for manufacturing food containing fine air bubbles, a cylindrical hole with a diameter of 1 μm or more is placed coaxially with the pipe in which the liquid food flows continuously in one direction.
A 100 μm porous member is arranged, either the internal space of the porous member or the space between the porous member and the tube is closed, and one end of the gas blowing conduit is communicated with the closed part. An apparatus for producing a food product containing fine bubbles, characterized in that the space other than the closed part is used as a flow path for the liquid food material into which gas is blown. 6. The manufacturing apparatus according to claim 5, wherein the porous member is a sintered material manufactured by a powder metallurgy method.
JP57159664A 1982-09-16 1982-09-16 Method and apparatus for continuous preparation of food containing fine bubble Granted JPS5951748A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57159664A JPS5951748A (en) 1982-09-16 1982-09-16 Method and apparatus for continuous preparation of food containing fine bubble

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57159664A JPS5951748A (en) 1982-09-16 1982-09-16 Method and apparatus for continuous preparation of food containing fine bubble

Publications (2)

Publication Number Publication Date
JPS5951748A JPS5951748A (en) 1984-03-26
JPH0234594B2 true JPH0234594B2 (en) 1990-08-03

Family

ID=15698637

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57159664A Granted JPS5951748A (en) 1982-09-16 1982-09-16 Method and apparatus for continuous preparation of food containing fine bubble

Country Status (1)

Country Link
JP (1) JPS5951748A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1043565A (en) * 1996-08-06 1998-02-17 Kubota Corp Agitator

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60133833A (en) * 1983-12-20 1985-07-17 Snow Brand Milk Prod Co Ltd Production unit for whipped cream
JPH1033108A (en) * 1996-07-23 1998-02-10 Kankyo Kagaku Kogyo Kk Bubble-entrained dough for cake, its production and apparatus therefor
JP3949079B2 (en) * 2003-05-01 2007-07-25 ソントン食品工業株式会社 Aerobic flour paste and method for producing the same
JP4586131B2 (en) * 2005-01-14 2010-11-24 宮崎県 Whipping cream manufacturing method and manufacturing apparatus
JP4658763B2 (en) * 2005-10-04 2011-03-23 実 藤本 Method for producing soft ice cream material and soft ice cream
PL2298080T3 (en) * 2009-08-28 2014-08-29 Kraft Foods R & D Inc Method and apparatus for making aerated food product
JP2011235207A (en) * 2010-05-06 2011-11-24 Toyo Seikan Kaisha Ltd Method of producing mixed bubbles, method of replacing gas in container using the mixed bubbles, and apparatus for producing mixed bubbles
JP5717084B2 (en) * 2010-08-23 2015-05-13 株式会社明治 In-line continuous measurement method and measuring apparatus for overrun of food and drink, and method for producing food and drink using the measurement method
JP5588272B2 (en) * 2010-08-25 2014-09-10 株式会社イズミフードマシナリ Production system for foam-containing solid fat food and method for producing foam-containing solid fat food
JP6392907B2 (en) 2016-04-14 2018-09-19 株式会社新菱 Gas-containing substrate and method for producing the same
WO2017179621A1 (en) * 2016-04-14 2017-10-19 株式会社新菱 Gas-containing base material and manufacturing method therefor
JP7271263B2 (en) * 2019-03-29 2023-05-11 森永乳業株式会社 Method for producing food containing air bubbles, method for producing food package containing air bubbles, and method for producing food package containing frozen air bubbles

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS577237A (en) * 1980-06-12 1982-01-14 Fuji Oil Co Ltd Dispersing mixer for continuous whipper

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60105Y2 (en) * 1979-02-26 1985-01-05 三菱レイヨン株式会社 air diffuser
JPS5935574Y2 (en) * 1979-12-29 1984-10-01 昭夫 中野 bubble generator

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS577237A (en) * 1980-06-12 1982-01-14 Fuji Oil Co Ltd Dispersing mixer for continuous whipper

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1043565A (en) * 1996-08-06 1998-02-17 Kubota Corp Agitator

Also Published As

Publication number Publication date
JPS5951748A (en) 1984-03-26

Similar Documents

Publication Publication Date Title
JPH0234594B2 (en)
US4272558A (en) Method and apparatus for producing a cellular product
US4647212A (en) Continuous, static mixing apparatus
Joscelyne et al. Membrane emulsification—a literature review
US4675194A (en) Sonic process for converting proteinaceous raw materials in situ into semi-solid food products
US2295740A (en) Apparatus for foaming liquids
JP6671093B2 (en) Method and apparatus for producing dairy products, especially milk foam
MX2011000904A (en) Apparatus and method for mixing liquids by producing shear, turbulence and/or cavitation.
TW200528392A (en) Method of forming monodisperse bubble
CN110604206A (en) Machine and method for making food products
NZ587349A (en) Method and apparatus for making aerated food product and product obtainable thereby
KR101312305B1 (en) Fermented milk and process for producing the same
GB2036534A (en) Sterilising and/or homogenising fluid products
JP7218016B2 (en) Fine bubble forming device
MX2013002729A (en) Stabilized foam.
EP0452140A1 (en) Method for producing emulsions, low-fat spread and oil-in-water-in-oil type spread
EP0157594A2 (en) A process for aerating an emulsion
GB1589306A (en) Method and apparatus for mixing polyurethane foam
GB676457A (en) A method of producing fat products such as margarine and butter
JPH07329057A (en) Method for regulating cell population in urethane foam
CN106113368B (en) A kind of Multifunctional high pressure mixing head
CN108905843A (en) A kind of pipeline tune acid device and method in beverage production
US2809172A (en) Method of continuously producing latex foam
JP2623346B2 (en) Continuous production method and apparatus for whipped food
JP3780902B2 (en) Manufacturing method of beverage with positive pressure can and beverage manufacturing apparatus with positive pressure can