JPH0233974A - Manufacture of pressure converter - Google Patents

Manufacture of pressure converter

Info

Publication number
JPH0233974A
JPH0233974A JP18401888A JP18401888A JPH0233974A JP H0233974 A JPH0233974 A JP H0233974A JP 18401888 A JP18401888 A JP 18401888A JP 18401888 A JP18401888 A JP 18401888A JP H0233974 A JPH0233974 A JP H0233974A
Authority
JP
Japan
Prior art keywords
layer
thickness
substrate
film
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18401888A
Other languages
Japanese (ja)
Inventor
Atsushi Tominaga
淳 富永
Masao Yoshizawa
吉澤 正夫
Kiyoshi Ishibashi
清志 石橋
Takashi Nakajima
貴志 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP18401888A priority Critical patent/JPH0233974A/en
Publication of JPH0233974A publication Critical patent/JPH0233974A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Fluid Pressure (AREA)
  • Pressure Sensors (AREA)

Abstract

PURPOSE:To form a pressure converter for maintaining linearity in resistance change due to pressure variation by determining the thickness of a diaphragm layer by the thickness of a semiconductor layer on a pattern layer, and uniformly forming the pattern layer and the semiconductor layer in thickness. CONSTITUTION:An epitaxial layer 12 is formed in uniform thickness on a substrate 1. A diffused resistance layer 6 is formed on the layer 12, and the surface of the layer 12 not provided with the layer 6 is covered with a protective film 8. An etching mask layer 13 having an opening is formed on a region corresponding to an insulating film 11 on the rear face of the substrate 1. The substrate 1 under the opening of the layer 13 is removed to expose the rear face of the film 11. The film 11 and the layer 13 are removed to form a pressure converter having a thin part 2 to become a diaphragm layer at its center and a thick part 3 at the periphery. The thickness of the part 2 is determined by the thickness of the layer 12. Thus, the converter in which the linearity of the resistance change can be maintained by the pressure variation is formed.

Description

【発明の詳細な説明】 〔産業上の利用分野] この発明は半導体基板にひずみ抵抗素子が設ける。[Detailed description of the invention] [Industrial application field] In this invention, a strain resistance element is provided on a semiconductor substrate.

〔従来の技術〕[Conventional technology]

第2図は従来の圧力変換素子を示す所面図である。同図
に示すように、3i単結晶塁板1の中央に起歪ダイヤフ
ラムとなる肉薄部2を有してJ″3つ、3i単結晶塁板
1外周部の肉厚部3の裏面を台4上に接着剤5により固
着している。3i単結晶基板1の肉薄部2の上層部には
、ひずみ抵抗素子として機能する複数の拡散抵抗層6を
形成している。
FIG. 2 is a top view showing a conventional pressure transducer element. As shown in the figure, the 3i single-crystal base plate 1 has a thin wall portion 2 serving as a strain diaphragm in the center, and the back surface of the thick wall portion 3 on the outer periphery of the 3i single-crystal base plate 1 has three J'' parts. 4 with an adhesive 5. On the upper layer of the thin portion 2 of the 3i single crystal substrate 1, a plurality of diffused resistance layers 6 which function as strain resistance elements are formed.

なお、7は拡散抵抗層6と電気的に接続される△1等の
金属配線層、8はS i O2膜からなる保護膜、9は
金属配線層に接続された結線である。
Note that 7 is a metal wiring layer such as Δ1 which is electrically connected to the diffused resistance layer 6, 8 is a protective film made of a SiO2 film, and 9 is a connection connected to the metal wiring layer.

このような圧力変換素子は以下のようにして、製造され
る。まず、厚さ300〜4. O04mの3i単結晶基
板1の中央部を選択的に深く化学的エツチング処理する
ことで膜厚が4511 m程度の肉薄部2を形成する。
Such a pressure transducer element is manufactured as follows. First, the thickness is 300~4. By selectively and deeply chemically etching the central part of the O04m 3i single crystal substrate 1, a thin part 2 having a film thickness of about 4511 m is formed.

この時の化学エツチング処理としては、HF、HNO3
等の強酸系あるい(五KOI−4,Na 0f−1等の
強アルカリ系薬品による工ッヂングが行われている。ぞ
して、肉薄部2上層部に拡散技術によりSi単結晶基板
1と逆導電型の拡散抵抗層6を形成する。その後、既知
の方法で金属配線層7.保護膜8.結線9を形成する。
At this time, chemical etching treatment includes HF, HNO3
Processing is performed using strong acid-based chemicals such as (5KOI-4, Na 0f-1, etc.).Then, the upper layer of the thin part 2 is processed with a Si single-crystal substrate 1 using a diffusion technique. A diffusion resistance layer 6 of opposite conductivity type is formed. Thereafter, a metal wiring layer 7, a protective film 8, and a connection 9 are formed by a known method.

次に、中央部に流体等の通気孔を有する台4上に3i単
結晶基板1の肉厚部3を接着剤5により固るすることで
圧力変換素子が製造される。
Next, the pressure transducer element is manufactured by hardening the thick portion 3 of the 3i single crystal substrate 1 with an adhesive 5 on a table 4 having a ventilation hole for fluid, etc. in the center.

このようにして製造された圧力変換素子では、ダイヤフ
ラム層である肉薄部2に気体、液体等の圧力Pが加わる
と、肉薄部2の歪みに応じて、拡散抵抗層6の抵抗値が
変化する。
In the pressure conversion element manufactured in this way, when pressure P of gas, liquid, etc. is applied to the thin wall portion 2, which is the diaphragm layer, the resistance value of the diffusion resistance layer 6 changes depending on the strain of the thin wall portion 2. .

上記した抵抗値変化は、複数の拡散抵抗層6によりハー
フブリッジ、フルブリッジ等を結線9を介1ノで形成す
ることで、極めて微弱な抵抗値変化であっても検出可能
である。
By forming a half bridge, a full bridge, etc. with a plurality of diffused resistance layers 6 through a connection 9, even an extremely weak change in resistance value can be detected.

一方、圧力変化による抵抗変化率(感度)が大きい稈、
その検出が容易であり感度を高めるにはダイヤフラムの
膜厚を薄くする必要がある。例えば直径2mff1で、
膜厚45μmまで薄クシた肉薄部2の拡散抵抗層6にお
いて、フル圧力1に9/cm3までの圧力を測定する場
合、1に’J/cm3で約2%の抵抗値変化となる。
On the other hand, culms with a large resistance change rate (sensitivity) due to pressure changes,
To facilitate detection and increase sensitivity, it is necessary to reduce the thickness of the diaphragm. For example, with a diameter of 2mff1,
When measuring a pressure of up to 9/cm3 at full pressure in the diffused resistance layer 6 of the thin part 2 which has a film thickness of 45 μm, the resistance value changes by about 2% for 1 to 9 J/cm3.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、このように肉薄部2の膜厚を簿くすると
膜厚の均一性は劣化するため、圧力変化に対する抵抗変
化の線形竹が悪化づるという問題点があった。このよう
な線形性の悪化は±1%程度であれば補償可能であるが
、それ以上の悪化は補償不能どなる。従って、線形竹を
麗持し、かつ感度を高めるには薄膜化した肉薄部2の膜
厚を均一に形成することが不可欠どなる。
However, if the film thickness of the thin portion 2 is reduced in this manner, the uniformity of the film thickness deteriorates, and there is a problem that the linearity of resistance change with respect to pressure change worsens. Such a deterioration in linearity can be compensated for by about ±1%, but if it worsens beyond that, it cannot be compensated. Therefore, it is essential to form the thinned portion 2 with a uniform thickness in order to preserve the linear bamboo and increase its sensitivity.

しかしながら、300〜400μm程度の膜厚の比較的
厚いSi単結晶基板1から、膜厚が45μm程度の薄い
肉薄部2の膜厚を均一に形成Jることは機械研磨は勿論
、化学的エツヂング処即によっても、不可能であるとい
う問題点があった。
However, it is difficult to uniformly form a thin part 2 with a thickness of about 45 μm from a relatively thick Si single crystal substrate 1 with a thickness of about 300 to 400 μm, not only by mechanical polishing but also by chemical etching. However, there was a problem in that it was impossible.

この発明は上記のような問題点を解決づるためになされ
たもので、高感度でかつ圧力変化に対Jる抵抗変化の線
形性を維持できるダイヤフラム層を有する圧力変換素子
の¥J造方法を得ることを目的とする。
This invention was made in order to solve the above-mentioned problems, and provides a method for manufacturing a pressure transducer element having a diaphragm layer that is highly sensitive and capable of maintaining linearity of resistance change with respect to pressure change. The purpose is to obtain.

〔課題を解決するための手段〕[Means to solve the problem]

この発明にかかる圧力変換素子の製造方法は、基板表面
上の所定領域にパターン層を形成する工程と、前記パタ
ーン層を含む前記基板上に半導体層を形成する工程と、
前記パターン層上における前記半導体層上層部に拡散抵
抗層を形成する工程と、萌記基板史面より、選択的にエ
ツチングを行うことで、前記基板における前記パターン
層に対応した領域を除去し、前記パターン層裏面を露出
する工程と、前記パターン層を除去することで、前記パ
ターン層tの前記半導体層をダイヤフラム層として残す
工程とを合んでいる。
A method for manufacturing a pressure conversion element according to the present invention includes the steps of: forming a pattern layer in a predetermined region on a substrate surface; forming a semiconductor layer on the substrate including the pattern layer;
forming a diffusion resistance layer in the upper layer of the semiconductor layer on the pattern layer; and selectively etching from the history of the Moeki substrate to remove a region corresponding to the pattern layer on the substrate; The step of exposing the back surface of the pattern layer and the step of removing the pattern layer to leave the semiconductor layer of the pattern layer t as a diaphragm layer are combined.

〔作用〕[Effect]

この発明においては、ダイヤフラム層の膜厚はパターン
層上に形成された半導体層の膜厚によって決定される。
In this invention, the thickness of the diaphragm layer is determined by the thickness of the semiconductor layer formed on the pattern layer.

〔実施例〕〔Example〕

第1図(a)〜(f)はそれぞれこの発明の一実施例で
ある圧力変換素子の製造方法を示す断面図である。
FIGS. 1(a) to 1(f) are cross-sectional views showing a method of manufacturing a pressure transducer element according to an embodiment of the present invention.

まず、S1単結晶基板1十の所定領域に絶縁膜11を同
図(a)に示すように均一な膜厚で形成する。この絶縁
膜11は起歪ダイヤフラム層のパターン層として機能し
、酸化膜あるいは窒化膜等により形成される。
First, an insulating film 11 is formed in a predetermined region of the S1 single crystal substrate 10 to have a uniform thickness as shown in FIG. This insulating film 11 functions as a pattern layer of the strain diaphragm layer, and is formed of an oxide film, a nitride film, or the like.

次に、絶縁膜11を含む3i単結晶基板1十にエピタキ
シャル成長により絶縁膜11上の膜厚が均一なエピタキ
シャル層12を同図(b)に示すように形成する。
Next, on the 3i single crystal substrate 10 including the insulating film 11, an epitaxial layer 12 having a uniform thickness is formed on the insulating film 11 by epitaxial growth, as shown in FIG. 3(b).

そして、従来と同様の方法で、絶縁膜11上のエビクキ
シャル層12上層部に同図(C)に示すように拡散抵抗
層6を形成し、拡散抵抗層6の設けられていないエピタ
キシトル層12表面を保護膜8で覆う。
Then, as shown in FIG. The surface is covered with a protective film 8.

そして、同図(d)に示すように、抵抗拡散層6と電気
的接続される金属配線層7を既知の方法で形成する。
Then, as shown in FIG. 4(d), a metal wiring layer 7 electrically connected to the resistance diffusion layer 6 is formed by a known method.

その後、Si単結晶基板1衷而に写真製版技術により絶
縁膜11に対応した領域に開口部を有するエツチングマ
スク層13を同図(e)に小すように形成する。
Thereafter, an etching mask layer 13 having an opening in a region corresponding to the insulating film 11 is formed over the Si single crystal substrate by photolithography so as to be small as shown in FIG. 1(e).

そして、3i甲結晶基板1裏面から、エツチングマスク
層13をマスクとして化学エツチング法により、エツチ
ングマスク層13の開口部下のSi単結晶基板1を除去
し、絶縁膜11の裏面を露出させる。このエツチングに
対し絶縁膜11は1ツチング耐性が優れているため、絶
縁膜11はエツチングされない。
Then, by chemical etching using the etching mask layer 13 as a mask, the Si single crystal substrate 1 under the opening of the etching mask layer 13 is removed from the back surface of the 3i A crystal substrate 1 to expose the back surface of the insulating film 11. Since the insulating film 11 has excellent resistance to etching, the insulating film 11 is not etched.

次に、絶縁膜11及びエツチングマスク層13を除去す
ることで、中央にダイヤフラム層となる肉薄部2、その
周辺に肉厚部3を有する圧力変換素子が形成できる。
Next, by removing the insulating film 11 and the etching mask layer 13, a pressure transducer element having a thin part 2 serving as a diaphragm layer at the center and a thick part 3 around the thin part 2 can be formed.

このようにして形成された肉薄部2の膜厚は絶縁膜11
」ニに形成されたエピタキシャル層12の膜厚により決
定される。エピタキシャル層12の膜厚の再現性は良く
、絶縁膜11上に均一な膜厚で形成でき、また、下地で
ある絶縁膜11の膜厚ち均一に形成することができるた
め、肉薄部2の膜厚を薄く均一に形成することができる
。その結果、感度よく、圧力変化に伴う抵抗変化の線形
性が維持できる圧力変換素子を得ることができる。
The thickness of the thin portion 2 formed in this way is the same as that of the insulating film 11.
It is determined by the thickness of the epitaxial layer 12 formed on the second side. The thickness of the epitaxial layer 12 has good reproducibility and can be formed on the insulating film 11 with a uniform thickness, and the thickness of the underlying insulating film 11 can be formed uniformly. It is possible to form a thin and uniform film. As a result, it is possible to obtain a pressure transducer element with good sensitivity and capable of maintaining linearity of resistance change accompanying pressure change.

なお、この実施例では、ダイヤフラム層のパターン層ど
して、酸化膜、窒化膜等の絶縁膜を形成したが、他の材
質であっても、Si単結晶基板1に対するエツチングに
対しエツチング耐性が優れ、均一な膜厚で形成できる材
質であれば、代用可能である。
In this example, an insulating film such as an oxide film or a nitride film is formed as the pattern layer of the diaphragm layer, but even if other materials are used, the etching resistance against the etching of the Si single crystal substrate 1 may be insufficient. Any material that is superior in quality and can be formed with a uniform thickness can be used instead.

また、この実施例では、絶縁膜11を含むS単結晶基板
1上にエピタキシX・ル成長させることで、ダイヤフラ
ム層となるJピタキシャル層12を形成したが、任意の
基板上に絶縁膜11′S−のパターン層を形成し、パタ
ーン層を含む基板−1−に単結晶半導体層が形成できれ
ば、この発明を適用づることができる。
Further, in this embodiment, the J epitaxial layer 12, which becomes the diaphragm layer, was formed by epitaxially growing the S single crystal substrate 1 including the insulating film 11, but the insulating film 11' The present invention can be applied if an S- pattern layer is formed and a single crystal semiconductor layer can be formed on the substrate-1- including the pattern layer.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、この発明によれば、ダイヤフラム
層の膜厚はパターン層2トに形成された半導体層の膜f
7により決定され、パターン層及びパターン層上の半導
体層の膜厚は均一に形成できるため、ダイヤフラム層の
膜厚は薄膜化しても均一に形成できる。
As explained above, according to the present invention, the film thickness of the diaphragm layer is the thickness of the semiconductor layer formed on the pattern layer 2.
7, and the thickness of the pattern layer and the semiconductor layer on the pattern layer can be formed uniformly, so that the thickness of the diaphragm layer can be formed uniformly even if it is made thin.

その結果、感度よく、圧力変化による抵抗変化の線形性
が維持できる圧力変換素子が形成できる効果がある。
As a result, it is possible to form a pressure transducer element with good sensitivity and which can maintain linearity of resistance change due to pressure change.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)〜mはそれぞれこの発明の一実施例である
圧力変換素子の製造方法を示す断面図、第2図は従来の
圧力変換素子の断面図である。 図において、1はS1単結晶基板、2は肉薄部、6は拡
散抵抗層、11は絶縁膜、12はエピタキシャル層、1
3はエツチングマスク層である。 なお、各図中同一符号は同一または相当部分を示づ”。 第1図 代理人   大  岩  増  雄 第 図
FIGS. 1(a) to 1(m) are sectional views showing a method of manufacturing a pressure transducing element according to an embodiment of the present invention, and FIG. 2 is a sectional view of a conventional pressure transducing element. In the figure, 1 is an S1 single crystal substrate, 2 is a thin part, 6 is a diffused resistance layer, 11 is an insulating film, 12 is an epitaxial layer, 1
3 is an etching mask layer. In addition, the same reference numerals in each figure indicate the same or corresponding parts.'' Figure 1 Agent Masuo Oiwa Figure

Claims (1)

【特許請求の範囲】[Claims] (1)基板表面上の所定領域にパターン層を形成する工
程と、 前記パターン層を含む前記基板上に半導体層を形成する
工程と、 前記パターン層上における前記半導体層上層部に拡散抵
抗層を形成する工程と、 前記基板裏面より、選択的にエッチングを行うことで、
前記基板における前記パターン層に対応した領域を除去
し、前記パターン層裏面を露出する工程と、 前記パターン層を除去することで、前記パターン層上の
前記半導体層をダイヤフラム層として残す工程とを含ん
だ圧力変換素子の製造方法。
(1) forming a patterned layer in a predetermined region on the surface of the substrate; forming a semiconductor layer on the substrate including the patterned layer; and forming a diffused resistance layer on the upper layer of the semiconductor layer on the patterned layer. By performing the forming process and selectively etching from the back surface of the substrate,
a step of removing a region corresponding to the pattern layer on the substrate to expose the back surface of the pattern layer; and a step of removing the pattern layer to leave the semiconductor layer on the pattern layer as a diaphragm layer. A method for manufacturing a pressure conversion element.
JP18401888A 1988-07-22 1988-07-22 Manufacture of pressure converter Pending JPH0233974A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18401888A JPH0233974A (en) 1988-07-22 1988-07-22 Manufacture of pressure converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18401888A JPH0233974A (en) 1988-07-22 1988-07-22 Manufacture of pressure converter

Publications (1)

Publication Number Publication Date
JPH0233974A true JPH0233974A (en) 1990-02-05

Family

ID=16145901

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18401888A Pending JPH0233974A (en) 1988-07-22 1988-07-22 Manufacture of pressure converter

Country Status (1)

Country Link
JP (1) JPH0233974A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5455203A (en) * 1992-02-20 1995-10-03 Seiko Instruments Inc. Method of adjusting the pressure detection value of semiconductor pressure switches
WO2001000523A1 (en) * 1999-06-29 2001-01-04 Regents Of The University Of Minnesota Micro-electromechanical devices and methods of manufacture

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49124991A (en) * 1973-02-12 1974-11-29
JPS59172778A (en) * 1983-03-22 1984-09-29 Nec Corp Manufacture of pressure sensor
JPS62283679A (en) * 1986-06-02 1987-12-09 Fujikura Ltd Manufacture of semiconductor pressure sensor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49124991A (en) * 1973-02-12 1974-11-29
JPS59172778A (en) * 1983-03-22 1984-09-29 Nec Corp Manufacture of pressure sensor
JPS62283679A (en) * 1986-06-02 1987-12-09 Fujikura Ltd Manufacture of semiconductor pressure sensor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5455203A (en) * 1992-02-20 1995-10-03 Seiko Instruments Inc. Method of adjusting the pressure detection value of semiconductor pressure switches
WO2001000523A1 (en) * 1999-06-29 2001-01-04 Regents Of The University Of Minnesota Micro-electromechanical devices and methods of manufacture

Similar Documents

Publication Publication Date Title
JP3506932B2 (en) Semiconductor pressure sensor and method of manufacturing the same
JPS60158675A (en) Diaphragm sensor
US3819431A (en) Method of making transducers employing integral protective coatings and supports
US3994009A (en) Stress sensor diaphragms over recessed substrates
US4204185A (en) Integral transducer assemblies employing thin homogeneous diaphragms
US5165282A (en) Semiconductor pressure sensor
JPH0818068A (en) Manufacture of semiconductor distortion sensor
JPH0233974A (en) Manufacture of pressure converter
JPH05340828A (en) Semiconductor pressure sensor
JPH02271680A (en) Manufacture of mesa in semiconductor structure
JPS6377122A (en) Manufacture of semiconductor device
JP2905902B2 (en) Semiconductor pressure gauge and method of manufacturing the same
JPH06221945A (en) Semiconductor pressure sensor and manufacture thereof
JPH03284871A (en) Semiconductor device and manufacture thereof
JPH02105438A (en) Measurement of film thickness of epitaxial growth layer
JPH0563211A (en) Manufacture of semiconductor device
JPS6037177A (en) Semiconductor pressure sensor
JPH0231470A (en) Manufacture of semiconductor pressure converter
JPS6398156A (en) Manufacture of semiconductor pressure sensor
JPH11214368A (en) Wafer planarizing method and its device
JPS63283171A (en) Manufacture of pressure transducer
JPS62283679A (en) Manufacture of semiconductor pressure sensor
JPH0368175A (en) Semiconductor pressure sensor
JPH06140640A (en) Manufacture of semiconductor pressure sensor
JPS6281773A (en) Manufacture of semiconductor pressure sensor