JPH0233864A - Heat-electricity cosupply power generating system - Google Patents

Heat-electricity cosupply power generating system

Info

Publication number
JPH0233864A
JPH0233864A JP63182807A JP18280788A JPH0233864A JP H0233864 A JPH0233864 A JP H0233864A JP 63182807 A JP63182807 A JP 63182807A JP 18280788 A JP18280788 A JP 18280788A JP H0233864 A JPH0233864 A JP H0233864A
Authority
JP
Japan
Prior art keywords
fuel
power generation
heat
electricity
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63182807A
Other languages
Japanese (ja)
Other versions
JP2648620B2 (en
Inventor
Shigeyoshi Kobayashi
成嘉 小林
Hidekazu Fujimura
秀和 藤村
Shoji Ito
昌治 伊藤
Kazuhito Koyama
一仁 小山
Narihisa Sugita
杉田 成久
Nobuhiro Seiki
信宏 清木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP63182807A priority Critical patent/JP2648620B2/en
Publication of JPH0233864A publication Critical patent/JPH0233864A/en
Application granted granted Critical
Publication of JP2648620B2 publication Critical patent/JP2648620B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04014Heat exchange using gaseous fluids; Heat exchange by combustion of reactants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To reduce heat loss from fuel and to facilitate load control of a power generating unit by giving chemical energy to reformed fuel by heat exchange with unreformed fuel to be supplied to a fuel heat exchanger, and supplying it to the power generating unit. CONSTITUTION:Fuel 6 used for power generation is supplied to a fuel heat exchanger 3 and performs heat exchange with fuel 8 whose temperature is raised in a heat treatment unit 1 so as to have temperature near that of the fuel 8 which is not yet supplied to the fuel heat exchanger 3, then supplied to a catalyst layer 2 in the heat treatment unit 1. Fuel 7 come out from the heat exchanger 3 receives energy from a heat source 39 in the catalyst layer 2 and flows out from the treatment unit 1. Fuel 9 whose temperature is decreased to nearly normal temperature is supplied to a power generating unit 4 with almost no loss of energy from the heat source even if the heat source 39 and the power generating unit 4 are far apart each other. The fuel 9 having chemical energy is introduced into a heat exchanger 5 for heat exchange with an exhaust gas 11 before supplying to the power generating unit 4. Heat efficiency of the whole system is thereby increased.

Description

【発明の詳細な説明】 〔産業上の利用分野] 本発明は、発電用燃料を熱源からの熱により改質し、こ
の改質した発電用燃料で発電し、それにより得られた熱
及び電気を併給する熱・電気併給システムに係り、特に
効率の向上、運転制御性に好適な熱・電気併給発電シス
テムに関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention involves reforming power generation fuel with heat from a heat source, generating electricity with the reformed power generation fuel, and generating heat and electricity obtained thereby. The present invention relates to a combined heat and electricity generation system that co-supplies electricity, and particularly to a combined heat and electricity generation system that is suitable for improving efficiency and controlling operation.

〔従来の技術〕[Conventional technology]

従来、熱・電気を併給する発電システムとしては、特開
昭53−29534号に記載のように、発電用燃料を改
質する触媒層を有する燃料処理装置と発電装置として燃
料電池、′及び蒸気タービンと熱交換器などから構成さ
れ、燃料処理装置で改質された燃料は熱、化学エネルギ
の両方を発電装置である燃料電池へ供給し、また燃料処
理装置で処理後に残った熱は熱交換器により発電及び熱
供給用の蒸気タービン系へ輸送されるようになっていた
Conventionally, as a power generation system that co-supplies heat and electricity, as described in Japanese Patent Application Laid-Open No. 53-29534, a fuel processing device having a catalyst layer for reforming the fuel for power generation, a fuel cell as a power generation device, a fuel cell, and a steam generator are used. Consisting of a turbine, a heat exchanger, etc., the fuel reformed in the fuel processing device supplies both heat and chemical energy to the fuel cell, which is a power generation device, and the remaining heat after processing in the fuel processing device is used for heat exchange. It was designed to be transported to a steam turbine system for power generation and heat supply.

[発明が解決しようとする課題〕 上記従来技術は燃料処理装置から発電装置へ処理された
発電用燃料を直接供給するため、燃料である媒体の温度
が高いため、発電装置までの配管で大きな熱損失が発生
し、また、発電装置の負荷に応じて発電用燃料流量を変
える場合には燃料処理装置への燃料流量を制御しなけれ
ばならないが、その際の燃料処理装置の応答性、及び燃
料処理装置の温度変化による熱応力発生、また、発電装
置への燃料温度が高いことから発電装置が複数になった
場合にも流量、圧力調整器が設けられず燃料配分が適切
になされないなどの問題があった。
[Problems to be Solved by the Invention] In the above-mentioned conventional technology, the treated fuel for power generation is directly supplied from the fuel processing device to the power generation device, so the temperature of the medium that is the fuel is high, so a large amount of heat is generated in the piping to the power generation device. If a loss occurs and the flow rate of fuel for power generation is changed depending on the load of the power generation device, the flow rate of fuel to the fuel processing device must be controlled, but the responsiveness of the fuel processing device and the Thermal stress occurs due to temperature changes in the processing equipment, and due to the high fuel temperature for the power generation equipment, even when there are multiple power generation equipment, there are problems such as flow rate and pressure regulators not being installed and fuel distribution not being done properly. There was a problem.

本発明の目的は燃料処理装置から発電装置までの燃料か
らの熱損失の少ない、発電装置の負荷制御の容易な、し
かも燃料処理装置の信鯨性の高い運転が可能であり、発
電装置が複数の場合にも燃料配合が適切に行える熱・電
気併給発電システムを提供することにある。
The purpose of the present invention is to reduce the heat loss from the fuel from the fuel processing device to the power generating device, to easily control the load on the power generating device, and to enable highly reliable operation of the fuel processing device. It is an object of the present invention to provide a combined heat and electricity power generation system that can appropriately mix fuel even in the case of.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、発電によって生じた熱・電気を併給する熱・
電気併給システムにおいて、熱源へ発電用燃料を供給し
、その燃料を触媒を介して前記熱源から供給される熱に
より化学反応させて改質させることにより化学エネルギ
及び熱が付与された発電用燃料を取り出す手段、前記改
質後の発電用燃料を熱交換器へ供給し、該熱交換器で該
熱交換器に引き続き供給される改質前の発電用燃料との
熱交換により前記改質後の発電用燃料に付与された熱を
除去する手段、前記熱が除去されたあとの化学エネルギ
が付与された発電用燃料を発電装置へ送る手段を設けた
熱・電気併給発電システムである。
The present invention provides heat and electricity that co-supplies heat and electricity generated by power generation.
In an electricity cogeneration system, power generation fuel is supplied to a heat source, and the fuel is chemically reacted and reformed by the heat supplied from the heat source through a catalyst, thereby producing power generation fuel to which chemical energy and heat have been added. a means for taking out the reformed fuel for power generation; supplying the reformed fuel for power generation to a heat exchanger; This is a combined heat and electricity power generation system that includes means for removing heat imparted to power generation fuel, and means for sending the power generation fuel to which chemical energy has been removed after the heat has been removed, to a power generation device.

更に、本発明は、熱源へ発電用燃料を供給し、その燃料
を触媒を介した前記熱源から供給される熱により化学反
応させて改質させることにより化学エネルギ及び熱が付
与された発電用燃料を取り出す手段、前記改質後の発電
用燃料を熱交換器へ供給し、核熱交換器で該熱交換器に
引き続き供給される改質前の発電用燃料との熱交換によ
り前記改質後の発電用燃料に付与された熱を除去する手
段、前記熱が除去されたあとの化学エネルギが付与され
た発電用燃料を発電装置へ送る手段、送られた前記発電
用燃料により発電装置で発電する手段、前記発電装置に
より発電された電気及び同時に発生した熱を供給する手
段を設けた熱・電気併給発電システムである。
Furthermore, the present invention provides a power generation fuel to which chemical energy and heat are imparted by supplying power generation fuel to a heat source and reforming the fuel through a chemical reaction using heat supplied from the heat source via a catalyst. means for taking out the reformed fuel for power generation, supplying the reformed fuel for power generation to a heat exchanger, and exchanging heat with the fuel for power generation before reforming that is subsequently supplied to the heat exchanger in the nuclear heat exchanger to remove the reformed fuel for power generation; a means for removing heat imparted to the power generation fuel, a means for sending the power generation fuel to which chemical energy has been added after the heat has been removed to the power generation device, and a means for generating power in the power generation device using the sent power generation fuel. This is a combined heat and electricity power generation system provided with a means for supplying electricity generated by the power generating device and a means for supplying heat generated simultaneously.

上記発電用燃料としては、天然ガス、メタン等が、上記
熱源としては製鉄所から排出される排熱、ゴミ処理場か
ら排出される排熱等がそれぞれ挙げられる。更に、化学
エネルギから付与された発電用燃料とは発電用燃料を触
媒を介して熱源の熱により化学反応させることにより得
られる成分変化した物質を含む発電用燃料を意味し、例
えば、発電用燃料であるメタンと水とを次式の通り触媒
の存在下に加熱反応させて得られるH2ガス及びeoz
ガスを含む発電用燃料がこれに相当する。なお、上記触
媒としてはNi触媒等が挙げられる。
Examples of the fuel for power generation include natural gas, methane, etc., and examples of the heat source include exhaust heat discharged from a steel mill, exhaust heat discharged from a garbage processing plant, and the like. Furthermore, power generation fuel provided from chemical energy refers to power generation fuel containing substances whose composition has changed, obtained by chemically reacting power generation fuel with heat from a heat source via a catalyst. For example, power generation fuel H2 gas and eoz obtained by heating and reacting methane and water in the presence of a catalyst according to the following formula
This corresponds to fuels for power generation that contain gas. Note that the above-mentioned catalyst includes a Ni catalyst and the like.

熱 本発明の熱・電気併給システムは、熱源から取り出した
化学エネルギを付与した改質後の発電用燃料の圧力を圧
力調整弁またはポンプにより、熱源に供給された改質前
の発電用燃料の圧力とは変化させて発電装置へ送る手段
を設けることができる。また、このシステムは熱源から
取り出された化学エネルギを付与した改質後の発電用燃
料を一時的に貯蔵するための貯蔵タンクを燃料用熱交換
器と発電装置の間に設けることができ、更にこの貯蔵タ
ンクからの化学エネルギを付与した改質後の発電用燃料
を発電装置へ送るに当たって、その流量を変化させる流
量コントローラを設けることができる。そして、この流
量コントローラにより改質後の発電用燃料の流量を調整
することによって、発電装置の出力を任意に制御するこ
とができる。更に、このシステムは、熱源から取り出し
た化学エネルギが付与された発電用燃料から環境に有害
な成分を除去し、浄化するためのガス分離装置を燃料用
熱交換器と発電装置の間に設けることができる。
Heat The combined heat and electricity system of the present invention uses a pressure regulating valve or pump to adjust the pressure of the reformed power generation fuel to which chemical energy has been extracted from the heat source to that of the unreformed power generation fuel supplied to the heat source. A means for changing the pressure and sending it to the power generator can be provided. In addition, this system can provide a storage tank between the fuel heat exchanger and the power generation equipment to temporarily store the reformed power generation fuel to which chemical energy has been extracted from the heat source. A flow rate controller can be provided to change the flow rate of the reformed power generation fuel imparted with chemical energy from the storage tank when it is sent to the power generation device. By adjusting the flow rate of the reformed fuel for power generation using this flow rate controller, the output of the power generation device can be arbitrarily controlled. Furthermore, this system is provided with a gas separation device between the fuel heat exchanger and the power generation device to remove and purify environmentally harmful components from the power generation fuel to which chemical energy has been extracted from the heat source. I can do it.

本発明の熱・電気併給発電システムに用いる燃料処理装
置は、凸凹部を設けた複数対のプレートのそれぞれの凹
部に触媒槽を設けるとともに各プレートの触媒槽の側を
相互に所要の間隔をおいて対向させて設置することによ
り発電用燃料の反応空間を形成し、前記反応空間に発電
用燃料を通過させるようにするとともに前記各対のプレ
ートの触媒槽の側と反対の側を所要の間隔をおいて対向
せしめることにより熱媒体通過空間を形成し前記空間に
熱媒体を通過させるようにした構造から成る。このよう
な構造とすることにより、プレートの凸部が熱膨張差に
よる変形が小さくすることができ、触媒層プレートの寿
命を長くすることができる。
In the fuel processing device used in the combined heat and electricity power generation system of the present invention, a catalyst tank is provided in each recess of a plurality of pairs of plates provided with uneven parts, and the catalyst tank side of each plate is spaced apart from each other by a required distance. A reaction space for the power generation fuel is formed by installing the plates facing each other, and the power generation fuel is allowed to pass through the reaction space, and the sides of each pair of plates opposite to the catalyst tank are spaced apart from each other by a required distance. It has a structure in which a heat medium passage space is formed by making the heat medium pass through the space and the heat medium is allowed to pass through the space. With such a structure, the deformation of the convex portion of the plate due to the difference in thermal expansion can be reduced, and the life of the catalyst layer plate can be extended.

また、発電装置へ処理後の発電用燃料を供給するに当た
っては、該燃料は発電装置から送られる排気ガスと予め
熱交換した後発電装置に供給される。そして、この熱交
換のための熱交換器はその隔壁の少なくとも1部が多孔
質体で構成されたものが用いられる。即ち、この発電装
置用交換器は、少なくとも1部が多孔質体で構成された
複数の熱交換器隔壁を所要の間隔をおいて並置すること
により化学エネルギが付与された発電用燃料と排気ガス
が相互に混合するようにした構造から成る。
Furthermore, when supplying the treated fuel for power generation to the power generation device, the fuel is supplied to the power generation device after exchanging heat with the exhaust gas sent from the power generation device in advance. The heat exchanger used for this heat exchange has at least a portion of its partition walls made of a porous material. That is, this exchanger for a power generation device has a plurality of heat exchanger partition walls, at least a portion of which is made of a porous material, which are arranged side by side at a required interval to exchange fuel for power generation and exhaust gas to which chemical energy has been imparted. It consists of a structure in which the elements are mixed with each other.

〔作 用゛〕[For production]

燃料処理装置内で熱源から触媒層により熱と化学エネル
ギの形で付与された改質後の発電用燃料を熱交換器に供
給し、該熱交換器で引き続き処理装置へ入って(る改質
前の発電用燃料へ前記付与された熱エネルギを戻すこと
により、実質的に常温に近い化学エネルギだけが付与さ
れた発電用燃料が得られる。このエネルギが付与された
常温燃料により、熱源である燃料処理装置と発電装置と
の距離が離れていても、はとんど熱損失の無い燃料輸送
が可能となる。また、燃料処理装置で付与されたエネル
ギが常温に近いことから容易に貯蔵することができるた
め、発電装置の負荷に応じて柔軟に燃料流量を変化させ
ることができ、負荷応答性の優れた発電と燃料処理装置
を一定条件で運転でき、燃料処理装置の信頼性向上、コ
スト低減が可能となる。さらに、発電装置へ供給される
燃料温度が常温に近いことから、燃料流量、圧力の調整
器に安価なものが使用でき、複数の発電装置から構成さ
れるシステムにおいてもコストパフォーマンスが良く、
信頼性の高い熱・電気併給発電を行なうことができる。
In the fuel processing equipment, the reformed fuel for power generation, which is given in the form of heat and chemical energy by the catalyst layer from the heat source, is supplied to the heat exchanger, where it continues to enter the processing equipment (reforming). By returning the imparted thermal energy to the previous power generation fuel, a power generation fuel to which only chemical energy substantially close to room temperature has been imparted can be obtained.The room temperature fuel to which this energy has been imparted is used as a heat source. Even if the fuel processing equipment and power generation equipment are far apart, fuel can be transported with almost no heat loss.Also, since the energy imparted by the fuel processing equipment is close to room temperature, it can be easily stored. As a result, the fuel flow rate can be flexibly changed according to the load on the power generation equipment, allowing power generation with excellent load response and the fuel processing equipment to be operated under constant conditions, improving the reliability of the fuel processing equipment and reducing costs. In addition, since the temperature of the fuel supplied to the power generation equipment is close to room temperature, inexpensive fuel flow rate and pressure regulators can be used, reducing costs even in systems consisting of multiple power generation equipment. Performance is good;
Highly reliable combined heat and electricity generation can be performed.

〔実施例〕〔Example〕

次に、本発明を実施例により説明する。 Next, the present invention will be explained by examples.

実施例1 第1図は本発明の一実施例を示す発電システムである。Example 1 FIG. 1 shows a power generation system showing one embodiment of the present invention.

発電用燃料6は燃料用熱交換器3に入り、燃料処理装置
lで温度上昇した処理済燃料8との間で熱交換し、燃料
用熱交換器3へ入る前の処理済燃料温度に近い温度で処
理装置の触媒層2へ流入する。触媒N2の中では熱源3
9からエネルギを受は熱交換器を出た燃料7は熱と化学
エネルギの形で燃料内に蓄積し、処理装置1を流出する
。この処理済燃料8は、先に述べた熱交換器内3で燃料
6に熱源39から吸収した熱の形で蓄積したエネルギを
与え、熱交換器出口では熱交換器へ入る前の燃料とほぼ
同じ温度までその温度が低下し、熱#39から受は取っ
た化学エネルギの分だけが加えられた発電用燃料9とな
る。はとんど常温となった熱源39からのエネルギを受
けとった発電用燃料9は熱源39と発電装置4とがどん
なに離れていても、その熱源から受けとったエネルギを
ほとんど)置去することなく発電装置へ供給することが
できる。発電装置に入る前に化学エネルギが付与された
発電用燃料9は発電装置の酸化剤ガス10と化学エネル
ギが付与された発電用燃料9との反応熱の一部を持った
排気ガス11と有効に熱交換するため熱交換器5に導入
され、システム全体の熱効率向上が図られる。熱交換器
5を出た排気ガス11の熱はシステム外で利用すること
ができる。
The power generation fuel 6 enters the fuel heat exchanger 3 and exchanges heat with the treated fuel 8 whose temperature has increased in the fuel processing device 1, so that the temperature of the treated fuel is close to that before entering the fuel heat exchanger 3. The temperature flows into the catalyst layer 2 of the treatment device. Heat source 3 in catalyst N2
The fuel 7 leaving the heat exchanger receives energy from the heat exchanger 9 and exits the processing device 1 with accumulation in the fuel in the form of heat and chemical energy. This treated fuel 8 imparts stored energy in the form of heat absorbed from the heat source 39 to the fuel 6 in the previously mentioned heat exchanger 3, and at the exit of the heat exchanger it is approximately equal to the fuel before entering the heat exchanger. The temperature decreases to the same temperature, and the power generation fuel 9 is added with only the amount of chemical energy received from the heat #39. The power generation fuel 9 that receives the energy from the heat source 39, which is almost at room temperature, generates electricity without leaving behind almost any of the energy received from the heat source, no matter how far the heat source 39 and the power generation device 4 are. can be supplied to the device. The power generation fuel 9 to which chemical energy has been added before entering the power generation device is effective with the exhaust gas 11 which has part of the reaction heat between the oxidant gas 10 of the power generation device and the power generation fuel 9 to which chemical energy has been added. It is introduced into the heat exchanger 5 to exchange heat with the heat exchanger 5, thereby improving the thermal efficiency of the entire system. The heat of the exhaust gas 11 leaving the heat exchanger 5 can be used outside the system.

実施例2 第2図は本発明の他゛の一実施例であり、燃料処理装置
1の触媒層2を出た処理済燃料8が熱交換器3で発電用
燃料6と熱交換した後、熱源39から受は取った化学エ
ネルギ分だけを加えられた燃料9が圧力調整器16によ
り燃料処理装置1とは異った圧力に制御されて発電装置
4に供給される。このようなシステムとすることにより
、熱源39から熱を受けとる燃料処理装置1と発電装置
4とは別々に設計された圧力仕様の装置であっても、熱
・電気併給発電システムとして効率の良い運転条件で発
電することができる。
Embodiment 2 FIG. 2 shows another embodiment of the present invention. After the treated fuel 8 leaving the catalyst layer 2 of the fuel processing device 1 exchanges heat with the power generation fuel 6 in the heat exchanger 3, The fuel 9 to which an amount of chemical energy received from the heat source 39 has been added is controlled by the pressure regulator 16 to a pressure different from that of the fuel processing device 1, and is supplied to the power generation device 4. By adopting such a system, even if the fuel processing device 1 and the power generation device 4, which receive heat from the heat source 39, are separately designed devices with pressure specifications, they can be operated efficiently as a combined heat and electricity power generation system. It is possible to generate electricity under certain conditions.

実施例3 第3図は本発明の他の実施例であり、熱交換器3を出た
化学エネルギが付与された発電用燃料9が発電装置4へ
輸送される系統と平行に該燃料9を貯蔵するタンク17
が設けられ、このタンク17への流入流出量制御は、流
入量コントローラ18、流出量コントローラ19により
行なわれる。このようなシステムにすることにより、発
電装置4の負荷が変化する場合にも、燃料処理装置1の
熱源39、発電用燃料6の流量を変化させることな(、
貯蔵タンク17への化学エネルギが付与された発電用燃
料9の流入量、流出量だけで対応させることができ、負
荷応答性の良い発電が可能となる。
Embodiment 3 FIG. 3 shows another embodiment of the present invention, in which the fuel 9 for power generation to which chemical energy has been imparted after leaving the heat exchanger 3 is transported in parallel to the system in which the fuel 9 is transported to the power generation device 4. Storage tank 17
An inflow/outflow amount to the tank 17 is controlled by an inflow controller 18 and an outflow controller 19. By adopting such a system, even when the load on the power generation device 4 changes, the heat source 39 of the fuel processing device 1 and the flow rate of the power generation fuel 6 do not change (
This can be done by simply changing the amount of inflow and outflow of the power generation fuel 9 imparted with chemical energy into the storage tank 17, making it possible to generate power with good load responsiveness.

実施例4 第4図は本発明の他の実施例であり、燃料処理装置1と
発電装置4との間に化学エネルギが付与された発電用燃
料9を貯蔵するタンク17を設け、圧力調整器16を介
して該燃料9をタンク17へ貯蔵し、このタンク17と
発電装置4との間に流量コントローラ19が設けられて
いる。このようなシステムにすることにより、1つの燃
料供給系に対して発電装置4が複数になった場合にも、
各発電装置の負荷変化を、それぞれの発電装置4に干渉
を与えることなく応答性良く制御することができる。
Embodiment 4 FIG. 4 shows another embodiment of the present invention, in which a tank 17 for storing power generation fuel 9 to which chemical energy has been added is provided between the fuel processing device 1 and the power generation device 4, and a pressure regulator is installed. The fuel 9 is stored in a tank 17 via a fuel tank 16 , and a flow rate controller 19 is provided between the tank 17 and the power generation device 4 . By adopting such a system, even when there are multiple power generation devices 4 for one fuel supply system,
Load changes of each power generation device can be controlled with good responsiveness without interfering with each power generation device 4.

この場合にも燃料処理システムは一定の運転条件で燃料
に化学エネルギとしてのエネルギを付与することができ
、システム全体の制御は非常に容易となる。
In this case as well, the fuel processing system can provide energy in the form of chemical energy to the fuel under certain operating conditions, making control of the entire system very easy.

実施例5 第5図は本発明の他の実施例であり、燃料処理装置1と
発電装置4との間にガス分離装置20が設けである。燃
料処理装置1で処理された燃料は熱源39からのエネル
ギを成分変化の形で受は取るが、この成分変化で、発電
装置4、あるいは発電後の排気ガスとして環境的に好ま
しくない成分が発生する場合、この分離装置によりその
成分を分離除去ガス21として、発電装置には供給しな
いようにすることができ、発電装置の性能、寿命向上と
環境への排気物公害が低減できる。また、分離除去ガス
21は純度の高い化学物質であり、化学品の材料として
利用することができるのは当然である。
Embodiment 5 FIG. 5 shows another embodiment of the present invention, in which a gas separation device 20 is provided between the fuel processing device 1 and the power generation device 4. The fuel processed by the fuel processing device 1 receives energy from the heat source 39 in the form of a change in composition, but this change in composition generates environmentally unfavorable components in the power generation device 4 or in the exhaust gas after power generation. In this case, the component can be separated and removed as gas 21 by this separation device and not supplied to the power generation device, thereby improving the performance and life of the power generation device and reducing exhaust pollution to the environment. Moreover, the separated and removed gas 21 is a highly pure chemical substance, and it is natural that it can be used as a material for chemical products.

実施例6 第6図は本発明における燃料処理装置の触媒層2の構造
を示す。第7図及び第8図はこの燃料処理装置の触媒層
の製造工程を示す。触媒層プレート40はステンレス薄
板をギヤ成形、あるいはプレスなどにより凸凹部を設け
(第7図)、この成形されたプレート40の片側の凹部
に金属接合層を介して触媒42を触媒溶射用スプレーガ
ン46により溶射する。その際、触媒の溶射を触媒層プ
レート40の凹部だけに作成するため、触媒溶射用スプ
レーガン46に移動する触媒層プレート40の凹部に同
期するスレー信号48を与える(第8図)。このように
触媒層プレート40の凹部だけに触媒層を設けることに
より、触媒層プレート40の凸部が熱膨張のバネ作用を
持つことができ、触媒層の温度が高温になっても触媒層
とプレートとの熱膨張差による変形が小さくでき、触媒
層の剥離を防止し、高性能、長寿命の触媒層プレー)4
0を得ることができる。また、熱源媒体39は触媒層プ
レート、10の凹部により伝熱が促進され、触媒層への
伝熱量が多くなるという効果も同時に得られる。
Example 6 FIG. 6 shows the structure of the catalyst layer 2 of the fuel processing device according to the present invention. FIGS. 7 and 8 show the manufacturing process of the catalyst layer of this fuel processing device. The catalyst layer plate 40 is made of a thin stainless steel plate with concave and convex portions formed by gear forming or pressing (Fig. 7), and a catalyst 42 is applied to the concave portion on one side of the formed plate 40 via a metal bonding layer using a spray gun for catalyst thermal spraying. 46. At this time, in order to spray the catalyst only on the concave portions of the catalyst layer plate 40, a slay signal 48 is applied to the spray gun 46 for catalyst thermal spraying in synchronization with the moving concave portions of the catalyst layer plate 40 (FIG. 8). By providing the catalyst layer only in the concave portions of the catalyst layer plate 40 in this way, the convex portions of the catalyst layer plate 40 can have a spring action due to thermal expansion, so that even if the temperature of the catalyst layer becomes high, the catalyst layer remains unchanged. Catalyst layer plate that reduces deformation due to the difference in thermal expansion with the plate, prevents peeling of the catalyst layer, and provides high performance and long life.
You can get 0. Further, heat transfer of the heat source medium 39 is promoted by the recessed portions of the catalyst layer plate 10, and the effect of increasing the amount of heat transferred to the catalyst layer can also be obtained at the same time.

実施例7 第9図は本発明における発電装置4へ処理済燃料9が供
給される前に発電装置4へ供給された発電装置用酸化剤
ガス10の排気ガス11との熱交換器隔壁の構造を示す
。第9図では発電装置を燃料電池30とした場合であり
、熱交換器5の熱交換器隔壁33の一部は多孔質壁で構
成されている。燃料電池30を出た酸化剤ガス10の排
気ガス10′ 中には酸化剤ガスが残っており、その一
部が熱交換器隔壁33の多孔質部34を通して化学エネ
ルギが加えられた発電用燃料9と直接反応し、その反応
熱と熱交換した熱とにより該燃料9の温度が燃料電池の
作動温度条件に達することができる。特に、燃料電池が
コールド状態から立上がる時には、発電装置用酸化剤ガ
ス10はほとんど消費されずに燃料電池30外へ排出さ
れるため、熱交換器5内の温度の低い該酸化剤ガス10
の濃度は高く、それだけ熱交換器内での燃料との反応量
が増え、それだけ燃料温度の上昇も高くなるため、短時
間で電池運転温度に達することができる。したがって、
外部から熱を加えることなく自動的に燃料温度を運転温
度に立上げることができ、しかも発電が始まれば、燃料
電池30から排出される排気ガス10′ の酸化剤ガス
濃度は低下し、それにともない熱交換器内での燃料との
直接反応量は少なくなるため燃料ガス温度の上昇も小さ
く、運転温度を常に一定に保つことが可能となる。
Embodiment 7 FIG. 9 shows the structure of a heat exchanger partition wall between the oxidant gas 10 for a power generation device and the exhaust gas 11 supplied to the power generation device 4 before the treated fuel 9 is supplied to the power generation device 4 in the present invention. shows. FIG. 9 shows a case where the power generation device is a fuel cell 30, and a part of the heat exchanger partition wall 33 of the heat exchanger 5 is made of a porous wall. Oxidizing gas remains in the exhaust gas 10' of the oxidizing gas 10 that has exited the fuel cell 30, and part of it is used as power generation fuel to which chemical energy has been added through the porous portion 34 of the heat exchanger partition 33. The temperature of the fuel 9 can reach the operating temperature condition of the fuel cell by the reaction heat and the heat exchanged. In particular, when the fuel cell starts up from a cold state, the oxidizing gas 10 for the power generation device is hardly consumed and is discharged outside the fuel cell 30, so the oxidizing gas 10 at a low temperature inside the heat exchanger 5
The higher the concentration, the more the amount of reaction with the fuel in the heat exchanger increases, and the rise in fuel temperature increases accordingly, allowing the cell operating temperature to be reached in a short time. therefore,
The fuel temperature can be automatically raised to the operating temperature without applying heat from the outside, and once power generation starts, the oxidant gas concentration in the exhaust gas 10' discharged from the fuel cell 30 decreases, and accordingly. Since the amount of direct reaction with fuel within the heat exchanger is reduced, the rise in fuel gas temperature is also small, making it possible to always maintain a constant operating temperature.

実施例8 第10図は本発明による発電システムの使用方法を示し
、複数の燃料処理装置1により処理されて化学エネルギ
が付与された発電用燃料9は圧力調整器16により圧力
調整された後、共通配管37により複数の貯蔵タンク1
7へ開閉弁36を介して貯蔵され、図示されていないが
発電負荷と燃料処理量とのバランスにより燃料供給の制
御を行なうコンビュータによりその開閉弁36を開閉す
ることにより貯蔵タンク17から発電装置4へ燃料を供
給し、各発電装置への燃料流量は流量、圧力調整器38
により行われる。このような燃料供給システムによる発
電システムの使用法により、各燃料処理装置の発熱量変
化があっても発電装置側へ安定した燃料を供給できると
ともに、発電側の負荷が急激に変化した場合にも応答性
良く燃料を供給することができ、燃料処理装置側の負荷
と発電装置側の負荷とのアンバランスをうまく制御する
ことにより、常に最適な条件で各装置を運転することが
できる。
Embodiment 8 FIG. 10 shows a method of using the power generation system according to the present invention, in which the power generation fuel 9, which has been treated by a plurality of fuel processing devices 1 and given chemical energy, is pressure-regulated by a pressure regulator 16, and then A plurality of storage tanks 1 are connected by a common pipe 37.
Although not shown, the fuel is stored in the power generation device 4 from the storage tank 17 via the on-off valve 36 by opening and closing the on-off valve 36 by a computer that controls the fuel supply based on the balance between the power generation load and the amount of fuel processed. The fuel flow rate to each power generation device is controlled by a flow rate and pressure regulator 38.
This is done by By using the power generation system using such a fuel supply system, it is possible to stably supply fuel to the power generation equipment even when the calorific value of each fuel processing device changes, and even when the load on the power generation side changes suddenly. By supplying fuel with good response and skillfully controlling the imbalance between the load on the fuel processing device side and the load on the power generating device side, each device can be operated under optimal conditions at all times.

〔発明の効果〕〔Effect of the invention〕

本発明によれば熱源からのエネルギを、燃料処理装置の
触媒により燃料を改質することにより化学エネルギと熱
エネルギの形で燃料に付加し、その改−=j;&・の燃
料を燃料用熱交換器へ供給される改質前の燃41どの熱
交換により化学エネルギ分だけを発電装置へ供給するの
で、発電装置への供給燃料が常温に近(、熱源と発電装
置との距離が離れていてもエネルギの伝達にともなう損
失が発生しない。したがって、効率の高い発電が可能で
あり、また、熱源と発電装置との間に圧力調整器、ある
いは貯蔵タンク、ガス分離装置などを設けることにより
、燃料処理系、発電装置でそれぞれに効率の良い条件で
運転でき、それぞれの負荷変動が相手の装置の運転条件
に影響を与えることな(、しかも簡単な制御により応答
性が良く負荷に追従することができる。さらに、熱源と
発電装置の間にガス分離装置を設けることにより燃料中
の公害物質、あるいは発電装置に有害な物質を予め取り
除くことができ、環境性の良い、長寿命発電が可能とな
る。
According to the present invention, energy from a heat source is added to the fuel in the form of chemical energy and thermal energy by reforming the fuel with a catalyst of a fuel processing device, and the reformed fuel is used for fuel use. Only the chemical energy is supplied to the power generation device through heat exchange between the pre-reformed fuel supplied to the heat exchanger, so the fuel supplied to the power generation device is close to room temperature (and the distance between the heat source and the power generation device is large). There is no loss due to energy transfer even when the heat source is in use.Therefore, highly efficient power generation is possible, and by installing a pressure regulator, storage tank, gas separation device, etc. between the heat source and the power generation equipment , the fuel processing system, and the power generation equipment can each be operated under efficient conditions, and load fluctuations in each device do not affect the operating conditions of the other device (in addition, simple control allows for good responsiveness and follows the load. In addition, by installing a gas separation device between the heat source and the power generation equipment, pollutants in the fuel or substances harmful to the power generation equipment can be removed in advance, enabling environmentally friendly and long-life power generation. becomes.

本発明による燃料処理装置の触媒層の構造によれば、熱
膨張による変形が吸収されるため、触媒の剥離による損
耗がなく、高性能、長寿命な燃料処理ができる。
According to the structure of the catalyst layer of the fuel processing device according to the present invention, deformation due to thermal expansion is absorbed, so that there is no wear and tear due to catalyst peeling, and fuel processing with high performance and long life can be performed.

本発明による発電装置に発電用燃料が入る前の発電装置
用熱交換器において、その隔壁の一部を多孔質体とする
ことにより、燃料温度を燃料と酸化剤ガスとの直接反応
により制御することができ、発電装置を外部からの加熱
なしに常に最適な運転温度に保つことができる。
In the heat exchanger for a power generation device according to the present invention before fuel for power generation enters the power generation device, by making a part of the partition wall a porous body, the temperature of the fuel is controlled by a direct reaction between the fuel and the oxidizing gas. This allows the power generation equipment to be kept at the optimum operating temperature without external heating.

本発明による発電システムの運用方法によれば、燃料処
理システムと発電システムとを分離して運転することが
でき、負荷応答性に優れ、しかも効率の良い熱・電気併
給発電が行なえる。
According to the method of operating a power generation system according to the present invention, the fuel processing system and the power generation system can be operated separately, and efficient co-generation of heat and electricity can be performed with excellent load response.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例であり、第2図から第5図ま
では、それぞれ、本発明の他の実施例を示す。第6図は
燃料処理装置の触媒層プレートの構成を示し、第7図及
び第8図は燃料処理装置の触媒槽プレートの製造工程を
示す。第9図は発電装置用熱交換器の隔壁の構造を示す
。第10図は本発明による発電システムの使用方法を示
す。 1・・・燃料処理装置、2・・・触媒層、3・・・燃料
用熱交換器、4・・・発電装置、5・・・発電装置用熱
交換器、6・・・1’<;料、8・・・処理済燃料、9
・・・化学エネルギのみが付加された発電用燃料、16
・・・圧力調整器、17・・・貯蔵タンク、18・・・
流入量コントローラ、19・・・流出量コントローラ、
20・・・ガス分離装置、40・・・触媒層プレート、
30・・・燃料電池、34・・・多孔質隔壁、36・・
・開閉弁、37・・・共通配管、38・・・流量・圧力
調整器、39・・・熱源又は熱源媒体。
FIG. 1 shows one embodiment of the invention, and FIGS. 2 to 5 each show other embodiments of the invention. FIG. 6 shows the structure of the catalyst layer plate of the fuel processing device, and FIGS. 7 and 8 show the manufacturing process of the catalyst tank plate of the fuel processing device. FIG. 9 shows the structure of a partition wall of a heat exchanger for a power generation device. FIG. 10 shows how to use the power generation system according to the invention. DESCRIPTION OF SYMBOLS 1... Fuel processing device, 2... Catalyst layer, 3... Heat exchanger for fuel, 4... Power generation device, 5... Heat exchanger for power generation device, 6... 1'<; Fuel, 8... Treated fuel, 9
...Fuel for power generation to which only chemical energy is added, 16
...Pressure regulator, 17...Storage tank, 18...
inflow controller, 19... outflow controller,
20... Gas separation device, 40... Catalyst layer plate,
30... Fuel cell, 34... Porous partition wall, 36...
- Opening/closing valve, 37... Common piping, 38... Flow rate/pressure regulator, 39... Heat source or heat source medium.

Claims (1)

【特許請求の範囲】 1、発電によって生じた熱・電気を併給する熱・電気併
給発電システムにおいて、熱源へ発電用燃料を供給し、
その燃料を触媒を介して前記熱源から供給される熱によ
り化学反応させて改質させることにより化学エネルギ及
び熱が付与された発電用燃料を取り出す手段、前記改質
後の発電用燃料を燃料用熱交換器に供給し、前記熱交換
器に引き続き供給される改質前の発電用燃料との熱交換
により前記改質後の発電用燃料に付与される熱を除去す
る手段、前記熱が除去されたあとの化学エネルギが付与
された発電用燃料を発電装置へ送る手段を設けたことを
特徴とする熱・電気併給発電システム。 2、発電用燃料を発電装置へ送る手段が、熱源から取り
出した化学エネルギが付与された改質後の発電用燃料の
圧力を圧力調整弁またはポンプにより熱源へ供給された
改質前の発電用燃料の圧力とは変化させて発電装置へ送
る手段であることを特徴とする請求項1記載の熱・電気
併給発電システム。 3、化学エネルギが付与された改質後の発電用燃料を貯
蔵するための貯蔵タンクを燃料用熱交換器と発電装置と
の間に挿設したことを特徴とする請求項1記載の熱・電
気併給発電システム。 4、化学エネルギが付与された改質後の発電用燃料をガ
ス分離装置を通して浄化する手段及びこの浄化した発電
用燃料を発電装置へ送る手段を設けたことを特徴とした
請求項1記載の熱・電気併給発電システム。 5、凸凹部を設けた複数対のプレートのそれぞれの凹部
に触媒層を設けるとともに各プレートの触媒層の側を相
互に所要の間隔をおいて対向させて設置することにより
発電用燃料の反応空間を形成し、前記反応空間に発電用
燃料を通過させるようにするとともに前記各対のプレー
トの触媒層の側と反対の側を所要の間隔をおいて対向せ
しめることにより熱媒体通過空間を形成し前記空間に熱
媒体を通過させるようにした熱・電気併給発電システム
用の燃料処理装置。 6、少なくとも1部が多孔質体で構成された複数の熱交
換器隔壁を所要の間隔をおいて並置することにより化学
エネルギが付与された発電用燃料通過領域と排気ガスの
通過領域とを交互に形成し、前記隔壁の多孔質壁を介し
て化学エネルギが付与された発電用燃料と排気ガスが相
互に混合するようにした熱・電気併給システムにおける
発電装置用熱交換器。 7、発電によって生じた熱・電気を併給する熱・電気併
給発電システムにおいて、熱源へ発電用燃料を供給し、
その燃料を触媒を介して前記熱源から供給される熱によ
り化学反応させて改質させることにより化学エネルギ及
び熱が付与された発電用燃料を取り出す手段、前記改質
後の発電用燃料を燃料用熱交換器へ供給し、該熱交換器
で該熱交換器に引き続き供給される改質前の発電用燃料
との熱交換により前記改質後の発電用燃料に付与される
熱を除去する手段、前記熱が除去されたあとの化学エネ
ルギが付与され発電用燃料を貯蔵タンクに送り出す手段
、貯蔵された前記発電用燃料とその流量を変化させうる
流量コントロールを通じて発電装置に送り出す手段を設
けたことを特徴とする熱・電気併給発電システム。 8、熱源へ発電用燃料を供給し、その燃料を触媒を介し
て前記熱源から供給される熱により化学反応させて改質
させることにより化学エネルギ及び熱が付与された発電
用燃料を取り出す手段、前記改質後の発電用燃料を燃料
用熱交換器へ供給し、該熱交換器で該熱交換器に引き続
き供給される改質前の発電用燃料との熱交換により前記
改質後の発電用燃料付与される熱を除去する手段、前記
熱が除去されたあとの化学エネルギが付与された発電用
燃料を発電装置へ送る手段送られた前記発電用燃料によ
り発電装置で発電する手段、前記発電装置により発電さ
れた電気及び同時に発生した熱を供給する手段を設けた
ことを特徴とする熱・電気併給発電システム。
[Claims] 1. In a combined heat and electricity generation system that co-supplies heat and electricity generated by power generation, supplying fuel for power generation to a heat source,
means for extracting power generation fuel to which chemical energy and heat have been imparted by chemically reacting and reforming the fuel with heat supplied from the heat source via a catalyst; A means for removing heat imparted to the reformed power generation fuel by heat exchange with the power generation fuel before reforming, which is supplied to a heat exchanger and subsequently supplied to the heat exchanger, the heat being removed. A combined heat and electricity power generation system characterized by providing a means for sending power generation fuel to which chemical energy has been added to a power generation device. 2. For power generation before reforming, the means for sending the power generation fuel to the power generation device is the pressure of the reformed power generation fuel to which chemical energy extracted from the heat source is supplied to the heat source by a pressure regulating valve or pump. 2. The combined heat and electricity power generation system according to claim 1, wherein the pressure of the fuel is changed and sent to the power generation device. 3. The heat exchanger according to claim 1, characterized in that a storage tank for storing the reformed fuel for power generation to which chemical energy has been imparted is inserted between the fuel heat exchanger and the power generation device. Electricity co-generation system. 4. The heat generating apparatus according to claim 1, further comprising means for purifying the reformed fuel for power generation to which chemical energy has been imparted through a gas separation device, and means for sending the purified fuel for power generation to the power generation device.・Electricity co-generation system. 5. A reaction space for power generation fuel is created by providing a catalyst layer in each recess of a plurality of pairs of plates provided with uneven portions, and by placing the catalyst layer sides of each plate facing each other at a required distance. A heating medium passing space is formed by allowing power generation fuel to pass through the reaction space and by arranging the catalyst layer side and the opposite side of each pair of plates to face each other at a required interval. A fuel processing device for a combined heat and electricity power generation system, which allows a heat medium to pass through the space. 6. By arranging a plurality of heat exchanger partition walls, at least a portion of which is made of a porous material, at a required interval, a power generation fuel passage area to which chemical energy has been applied and an exhaust gas passage area are alternately provided. A heat exchanger for a power generation device in a combined heat and electricity generation system, wherein the power generation fuel to which chemical energy has been applied and exhaust gas are mixed with each other through the porous wall of the partition wall. 7. In a combined heat and electricity generation system that co-supplies heat and electricity generated by power generation, supplying fuel for power generation to the heat source,
means for extracting power generation fuel to which chemical energy and heat have been imparted by chemically reacting and reforming the fuel with heat supplied from the heat source via a catalyst; Means for removing heat imparted to the reformed fuel for power generation by supplying it to a heat exchanger and exchanging heat with the fuel for power generation before reforming that is subsequently supplied to the heat exchanger. , means for sending out the fuel for power generation to which the chemical energy after the heat has been removed is applied to a storage tank; and means for sending out the stored fuel for power generation and the power generation device through a flow rate control capable of changing its flow rate. A combined heat and electricity generation system featuring: 8. Means for supplying fuel for power generation to a heat source and reforming the fuel through a chemical reaction with the heat supplied from the heat source through a catalyst to extract the fuel for power generation to which chemical energy and heat have been added; The reformed power generation fuel is supplied to a fuel heat exchanger, and the reformed power generation fuel is generated by heat exchange with the unreformed power generation fuel that is subsequently supplied to the heat exchanger. means for removing the heat imparted to the fuel; means for sending the power generation fuel to which chemical energy has been removed after the heat has been removed to the power generation device; means for generating power in the power generation device using the power generation fuel sent; A combined heat and electricity power generation system characterized by providing means for supplying electricity generated by a power generation device and heat generated at the same time.
JP63182807A 1988-07-23 1988-07-23 Cogeneration system Expired - Lifetime JP2648620B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63182807A JP2648620B2 (en) 1988-07-23 1988-07-23 Cogeneration system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63182807A JP2648620B2 (en) 1988-07-23 1988-07-23 Cogeneration system

Publications (2)

Publication Number Publication Date
JPH0233864A true JPH0233864A (en) 1990-02-05
JP2648620B2 JP2648620B2 (en) 1997-09-03

Family

ID=16124779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63182807A Expired - Lifetime JP2648620B2 (en) 1988-07-23 1988-07-23 Cogeneration system

Country Status (1)

Country Link
JP (1) JP2648620B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006331913A (en) * 2005-05-27 2006-12-07 Seiko Instruments Inc Fuel cell system
JP2015228777A (en) * 2014-06-02 2015-12-17 株式会社Ksf Power stable supply system

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56159069A (en) * 1980-05-14 1981-12-08 Hitachi Ltd Starting of fuel cell for electric power
JPS58133783A (en) * 1982-02-01 1983-08-09 Hitachi Ltd Fuel cell power generating system
JPS60241675A (en) * 1984-05-15 1985-11-30 Mitsubishi Electric Corp Fuel cell power generator
JPS6113576A (en) * 1984-06-28 1986-01-21 Mitsubishi Electric Corp Internal reformed type fuel cell
JPS6123040U (en) * 1984-07-12 1986-02-10 トヨタ自動車株式会社 Combustion air preheating device
JPS61183102A (en) * 1985-02-07 1986-08-15 Toshiba Corp Reforming device
JPS61188866A (en) * 1985-02-18 1986-08-22 Hitachi Ltd Fuel supplying device for fuel cell system
JPS6247968A (en) * 1985-08-28 1987-03-02 Hitachi Ltd Molten carbonate fuel cell capable of internal reformation
JPS62167203A (en) * 1986-01-16 1987-07-23 Hitachi Ltd Fuel reformer
JPS62170171A (en) * 1986-01-22 1987-07-27 Hitachi Ltd Fuel cell system
JPS62264566A (en) * 1986-05-12 1987-11-17 Toshiba Corp Fuel cell power generating system

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56159069A (en) * 1980-05-14 1981-12-08 Hitachi Ltd Starting of fuel cell for electric power
JPS58133783A (en) * 1982-02-01 1983-08-09 Hitachi Ltd Fuel cell power generating system
JPS60241675A (en) * 1984-05-15 1985-11-30 Mitsubishi Electric Corp Fuel cell power generator
JPS6113576A (en) * 1984-06-28 1986-01-21 Mitsubishi Electric Corp Internal reformed type fuel cell
JPS6123040U (en) * 1984-07-12 1986-02-10 トヨタ自動車株式会社 Combustion air preheating device
JPS61183102A (en) * 1985-02-07 1986-08-15 Toshiba Corp Reforming device
JPS61188866A (en) * 1985-02-18 1986-08-22 Hitachi Ltd Fuel supplying device for fuel cell system
JPS6247968A (en) * 1985-08-28 1987-03-02 Hitachi Ltd Molten carbonate fuel cell capable of internal reformation
JPS62167203A (en) * 1986-01-16 1987-07-23 Hitachi Ltd Fuel reformer
JPS62170171A (en) * 1986-01-22 1987-07-27 Hitachi Ltd Fuel cell system
JPS62264566A (en) * 1986-05-12 1987-11-17 Toshiba Corp Fuel cell power generating system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006331913A (en) * 2005-05-27 2006-12-07 Seiko Instruments Inc Fuel cell system
JP2015228777A (en) * 2014-06-02 2015-12-17 株式会社Ksf Power stable supply system

Also Published As

Publication number Publication date
JP2648620B2 (en) 1997-09-03

Similar Documents

Publication Publication Date Title
DE4193026T1 (en) Use of fuel cells in energy generation systems
DE60022182D1 (en) AUTOTHERAMIC STEAM REFORMING SYSTEM WITH INTEGRATED SHIFT BEDS, PREFERENTIAL OXIDATION REACTOR, AUXILIARY REACTOR, AND SYSTEM CONTROLS
CN101088188A (en) Reformer for a fuel cell
CN110635150B (en) Thermal management system and method for combination of multiple fuel cell modules
JP2000501227A (en) Operating method of high-temperature fuel cell equipment and high-temperature fuel cell equipment
CN115172800A (en) Solid oxide fuel cell combined heat and power system
RU2009116940A (en) FUEL ELEMENT SYSTEM
JP6974402B2 (en) Plants that consume reformed gas and methods for reforming raw material gas
JPH0233864A (en) Heat-electricity cosupply power generating system
JPH0249359A (en) Fuel cell power generating system
KR20100030154A (en) Fuel cell system and method to supply air the same
JP3139574B2 (en) Fuel cell generator
JPH11135140A (en) Combined power generating facilities recycling anode exhaust gas
JPH08124587A (en) Fuel cell power generating plant
JPH02281569A (en) Fused carbonate fuel cell power generating plant
JPH07106881B2 (en) Fuel cell reformer device
RU2353023C1 (en) Fuel element- based electric power plant
JPH0815092B2 (en) Fuel cell
JP3582131B2 (en) Molten carbonate fuel cell power generator
JPH07169474A (en) Methanol switching type fuel cell system
JPH06103994A (en) Fuel cell power generating system
JP2001180911A (en) Co transforming unit and power generation system of solid polymer fuel cell
JP2001185178A (en) Co removing unit and solid polymeric fuel cell power generation system
JP2006156015A (en) Fuel cell system and fuel gas supply method
JPH08339815A (en) Fuel cell power generation device