JPH0233823A - Electron emission element - Google Patents

Electron emission element

Info

Publication number
JPH0233823A
JPH0233823A JP63182303A JP18230388A JPH0233823A JP H0233823 A JPH0233823 A JP H0233823A JP 63182303 A JP63182303 A JP 63182303A JP 18230388 A JP18230388 A JP 18230388A JP H0233823 A JPH0233823 A JP H0233823A
Authority
JP
Japan
Prior art keywords
layer
electron
electron emission
work function
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63182303A
Other languages
Japanese (ja)
Inventor
Akira Kaneko
彰 金子
Kaoru Tomii
冨井 薫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP63182303A priority Critical patent/JPH0233823A/en
Publication of JPH0233823A publication Critical patent/JPH0233823A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cold Cathode And The Manufacture (AREA)

Abstract

PURPOSE:To substantially increase electron emission efficiency by providing a low work function material at a portion corresponding to the electron emission surface of a conductive material, forming an insulator layer via the coverage of the layer of the aforesaid material and providing a metal material layer on the insulator layer. CONSTITUTION:An aluminum thin film is formed as a conductive material 1 to the predetermined thickness on a substrate 6 comprising glass via a vacuum deposition process. Thereafter, the predetermined thickness of Ba, YB6 or the like is formed as a low work function material layer 2 of 120mum diameter on the conductive material 1 at a position corresponding, for example, to the electron emission surface 5 of 100mum diameter. Thereafter. Al2O3 or SiO2 or the like is formed to the predetermined thickness as an insulator layer 3 and Au or Al as a metal layer 4 is formed thereon via a cluster ion beam deposition process. In this case, voltage is applied between the conductive material 1 of an electron emission element and the metal layer 4 so that the metal layer 4 will be charged positively, and it is thereby possible to obtain a large amount of emitted electrons via the application of low voltage.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、電子顕微鏡、電子ビーム露光装置、CRT等
、各種電子ビーム応用装置の電子発生源として利用でき
る電子放出素子に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an electron-emitting device that can be used as an electron source for various electron beam application devices such as an electron microscope, an electron beam exposure device, and a CRT.

従来の技術 電子ビーム装置、例えば電子顕微鏡やCRT等における
電子発生源として、従来熱陰極からの熱電子放出が用い
られていた。しかし、この様な熱陰極を用いた電子放出
は加熱手段が必要であったり、加熱によるエネルギーロ
スがある等の問題があった。そこで、加熱によらない電
子放出素子の研究、いわゆる冷陰極に関する研究が行わ
れ、いくつかの型の電子放出素子が提案されてきた。
BACKGROUND OF THE INVENTION Conventionally, thermionic emission from a hot cathode has been used as an electron source in electron beam devices such as electron microscopes and CRTs. However, electron emission using such a hot cathode has problems such as requiring a heating means and causing energy loss due to heating. Therefore, research has been conducted on electron-emitting devices that do not rely on heating, that is, so-called cold cathodes, and several types of electron-emitting devices have been proposed.

たとえば、PN接合に逆バイアス電圧を印加し、電子な
だれ降伏現象を起こさせて素子外へ電子を放出させるも
のや、電界集中の生じ易い形状の金属に対し電圧を印加
して局所的に高密度な電界を発生させ、金属から素子外
へ電子を放出させる電界効果型のものや、金属−絶縁体
層−金属層の構成で、この2つの金属の間に電圧を印加
することにより、トンネル効果で絶縁体層を通過してき
た電子を金属層から素子外へ放出させるMIM型のもの
等の電子放出素子が提案されてきた。
For example, a reverse bias voltage is applied to a PN junction to cause an electron avalanche breakdown phenomenon and electrons are emitted outside the device, or a voltage is applied to a metal shape that tends to cause electric field concentration to locally increase the density. A field-effect type that generates an electric field to emit electrons from the metal to the outside of the element, or a metal-insulator layer-metal layer structure, which creates a tunnel effect by applying a voltage between the two metals. Electron-emitting devices such as MIM type devices have been proposed in which electrons that have passed through an insulator layer are emitted from a metal layer to the outside of the device.

上記冷陰極のうちMIM型電子電子放出素子して、第3
図を用いてもう少し詳しく説明する。
Among the cold cathodes, the third one is an MIM type electron-emitting device.
This will be explained in more detail using figures.

MIM型の電子放出素子は、第3図に示すように、金属
21上に薄い絶縁体層22を介して薄い金属23が積層
形成された構造を有している。そして、電源24によっ
て金属23の仕事関数φより大きな電圧を金属21およ
び金属23に印加することによって、絶縁体層22をト
ンネルした電子のうち真空準位より大きなエネルギーを
有するもが金属23表面から放出電子26として放出さ
れろ。そして、高い電子放出効率を得ろためには、絶縁
体層22を絶縁破壊を生じない範囲で、また金属23を
電流が十分流れる範囲で、各々できる限り薄く形成する
ことが望ましい。
As shown in FIG. 3, the MIM type electron-emitting device has a structure in which a thin metal 23 is laminated on a metal 21 with a thin insulating layer 22 interposed therebetween. By applying a voltage greater than the work function φ of the metal 23 to the metal 21 and the metal 23 by the power source 24, electrons having energy greater than the vacuum level among the electrons tunneled through the insulating layer 22 are removed from the surface of the metal 23. be emitted as emitted electrons 26. In order to obtain high electron emission efficiency, it is desirable to form the insulating layer 22 as thin as possible within a range that does not cause dielectric breakdown, and within a range that allows sufficient current to flow through the metal 23.

このMIM型電子放出素子は、従来テレビシコン学会電
子装置研究委員会資料「トンネルカソードを用いた陰極
線管J(1988年4月30日)で提示されている第4
図のような構成のものや、特開昭62−272421号
公報に記載されている第6図のような構成のものがある
。即ち、第4図は、ガラスの基板30上にAlの金属層
31を形成し、その上に絶縁体層32としてAl2O3
,絶縁体層33としてSiOを形成し、さらにその上に
Auの金属層34を形成した構成であり、金属層34と
金属層31の間に電源3eによって図のように電圧を印
加することにより、金属層34の電子放出部35より電
子を放出させろものである。また、第5図は、導電性材
料41の上に絶縁体層43を形成し、その上に金属層4
4を設け、さらに電子放出部45に対応した導電性材料
41の絶縁体層43との界面に微小突起部42を設けた
構成であり、第4図の場合と同様、金属層44と導電性
材料41との間に電圧を印加すると、微小突起部42に
強い電界が生じ、電子は微小突起部42かも絶縁体層4
3をトンネルして金属層44の電子放出部45から放出
されるものである。
This MIM type electron-emitting device has been previously proposed in the 4th article presented in the Electronic Device Research Committee of the Television Technology Society, “Cathode Ray Tube Using Tunnel Cathode J (April 30, 1988).
There is a structure as shown in the figure, and a structure as shown in FIG. 6 described in Japanese Patent Application Laid-Open No. 62-272421. That is, in FIG. 4, an Al metal layer 31 is formed on a glass substrate 30, and an Al2O3 insulator layer 32 is formed thereon.
, SiO is formed as the insulator layer 33, and a metal layer 34 of Au is further formed on it. , electrons are emitted from the electron emitting portion 35 of the metal layer 34. Further, in FIG. 5, an insulator layer 43 is formed on a conductive material 41, and a metal layer 4 is formed on it.
4 is provided, and a minute protrusion 42 is further provided at the interface between the conductive material 41 and the insulating layer 43 corresponding to the electron emitting part 45, and as in the case of FIG. When a voltage is applied between the material 41 and the microprotrusions 42, a strong electric field is generated in the microprotrusions 42, and electrons are transferred to the microprotrusions 42 and the insulator layer 4.
3 and is emitted from the electron emitting portion 45 of the metal layer 44.

発明が解決しようとする課題 しかし、従来提案されていたMIM型電子放出素子は、
トンネル電子を供給するための金属として使用できるも
のが安定性の面から限られ、その仕事関数も4〜6eV
程度となるため、ショットキー効果を起こさせ、金属面
から電子を通り抜けさせるために必要な印加電圧は、そ
の仕事関数の大きさに応じて高くする必要がある。その
ため、電子放出面に対応する金属表面に微小突起部を設
けて電界を集中するようにし、トンネル電子の供給量を
増やすようにしても、使用している金属の仕事関数が大
きいため、トンネル電子の供給量にも限界があり、それ
に応じた電子放出lにも限界があった。また、電子放出
に必要な印加電圧も高くなるという問題があった。
Problems to be Solved by the Invention However, the MIM type electron-emitting devices that have been proposed in the past,
Metals that can be used to supply tunnel electrons are limited due to stability, and their work function is 4 to 6 eV.
Therefore, the applied voltage required to cause the Schottky effect and cause electrons to pass through the metal surface needs to be increased in accordance with the size of the work function. Therefore, even if we try to increase the supply of tunnel electrons by providing minute protrusions on the metal surface corresponding to the electron emitting surface to concentrate the electric field, the tunnel electrons There was a limit to the supply amount, and there was also a corresponding limit to the amount of electron emission. Further, there was a problem in that the applied voltage necessary for electron emission also increased.

また、表面金属の仕事関数も4〜6eV程度と高いため
、真空中への電子放出効率が低くなるという問題もあっ
た。
Furthermore, since the work function of the surface metal is as high as about 4 to 6 eV, there is also the problem that the electron emission efficiency into vacuum is low.

課題を解決するための手段 上記課題を解決するための本発明の技術的手段は、第1
に、導電性材料と、上記導電性材料上の電子放出面に対
応する部分に低仕事関数材料層を設け、さらにこの低仕
事関数材料層を被覆して絶縁体層を設け、さらに、この
絶縁体層の上に金属材料層を設けた構成にするものであ
る。
Means for Solving the Problems The technical means of the present invention for solving the above problems are as follows:
A conductive material and a low work function material layer are provided on a portion of the conductive material corresponding to the electron emitting surface, and an insulating layer is provided covering the low work function material layer, and further, an insulating layer is provided covering the low work function material layer. The structure is such that a metal material layer is provided on the body layer.

また、第2に、上記第1に示した構成に加えて、金属材
料層の電子放出面に対応した部分の上に低仕事関数材料
層を被覆した構成にするものである。
Second, in addition to the configuration shown in the first aspect, a low work function material layer is coated on a portion of the metal material layer corresponding to the electron emitting surface.

作用 本発明は上記構成により、MIM型電子放出素子におけ
るトンネル電子を供給する金属に対応する仕事関数の大
きさを、実質的に、新たに設けた低仕事関数材料層のそ
れに置き換え、より低い印加電圧によって、トンネル電
子の供給を可能とし、その結果電子放出素子としてより
多くの電子放出を可能とするものである。また、表面金
属層の上に低仕事関数材料層を形成することにより、電
子放出効率をさらに高めることを可能とするものである
Effect: With the above configuration, the present invention substantially replaces the work function corresponding to the metal that supplies tunnel electrons in the MIM type electron-emitting device with that of the newly provided low work function material layer, thereby lowering the applied voltage. It is possible to supply tunneling electrons depending on the voltage, and as a result, it is possible to emit more electrons as an electron-emitting device. Further, by forming a low work function material layer on the surface metal layer, it is possible to further improve electron emission efficiency.

実施例 以下本発明の実施例について図面を用いて詳細に説明す
る。第1図は本発明の第1実施例における電子放出素子
の概略断面図であり、1は導電性材料、2は低仕事関数
材料層、3は絶縁体層、4は金属層、6は電子放出部、
6は基板を示す。まず本発明の構成について説明する。
EXAMPLES Hereinafter, examples of the present invention will be described in detail with reference to the drawings. FIG. 1 is a schematic cross-sectional view of an electron-emitting device according to a first embodiment of the present invention, in which 1 is a conductive material, 2 is a low work function material layer, 3 is an insulator layer, 4 is a metal layer, and 6 is an electron-emitting device. emission part,
6 indicates a substrate. First, the configuration of the present invention will be explained.

本発明の電子放出素子はガラスからなる基板6の上に、
導電性材料1として真空蒸着によってAl薄膜を300
0〜40QOλ形成し、その後、φ100μmの電子放
出面6に対応した位置の導電性材料1上にφ120μm
の低仕事関数材料層2として、例えばBaあるいはYB
、等を1o〜50入程度形成した。その後、絶縁体層3
として、例えばAl2O3あるいは5i02等を6Q〜
200人程度形成し、その」二に金属層4として、例え
ばAuあるいは“Alをクラスターイオンビーム蒸着に
よって50〜200λ程度形成したものである。上述の
ように形成した電子放出素子の導電性材料1と金属層4
との間に、金属層4が正となるように電圧を印加したと
ころ、従来8〜10V程度の印加で電子放出が見られた
ものが、6〜8v程度から電子放出が見られるようにな
った。
The electron-emitting device of the present invention is provided on a substrate 6 made of glass.
As the conductive material 1, an Al thin film with a thickness of 300 nm was deposited by vacuum evaporation.
0 to 40 QOλ is formed, and then a φ120 μm film is formed on the conductive material 1 at a position corresponding to the φ100 μm electron emission surface 6.
As the low work function material layer 2, for example, Ba or YB
, etc., about 1 to 50 pieces were formed. After that, insulator layer 3
For example, Al2O3 or 5i02 etc. from 6Q to
The second metal layer 4 is made of Au or Al with a thickness of about 50 to 200 λ by cluster ion beam evaporation.The conductive material 1 of the electron-emitting device formed as described above is and metal layer 4
When a voltage was applied between them so that the metal layer 4 became positive, electron emission was observed at about 6 to 8 V, whereas previously electron emission was observed at about 8 to 10 V. Ta.

次に、第2図を用いて本発明の第2の実施例について説
明する。第2図は本発明の第2実施例における電子放出
素子の概略断面図であり、11は導電性材料、12は低
仕事関数材料層、13は絶縁体層、14は金属層、15
は電子放出面、16は低仕事関数材料層を示す。本発明
の構成は、例えばAl板のような導電性材料11の上で
、電子放出面15に対応した位置に低仕事関数材料層1
2を形成し、その上に低仕事関数材料層12を被覆する
ようにして絶縁体層13を形成し、さらにその上に、金
属層14を形成した。その後、電子放出面16に対応し
て、やや大きめに低仕事関数材料層16を、例えばBa
あるいはCsを蒸着することによって形成し、本発明の
電子放出素子を作製した。これにより、印加電圧が更に
低減でき、かつ電子放出量の増加を図ることができた。
Next, a second embodiment of the present invention will be described using FIG. FIG. 2 is a schematic cross-sectional view of an electron-emitting device according to a second embodiment of the present invention, in which 11 is a conductive material, 12 is a low work function material layer, 13 is an insulating layer, 14 is a metal layer, 15
16 indicates an electron emitting surface, and 16 indicates a low work function material layer. The structure of the present invention is such that a low work function material layer 1 is placed on a conductive material 11 such as an Al plate at a position corresponding to an electron emitting surface 15.
2 was formed, an insulator layer 13 was formed thereon to cover the low work function material layer 12, and a metal layer 14 was further formed thereon. Thereafter, a slightly larger layer of low work function material 16 is formed corresponding to the electron emitting surface 16, for example, with Ba.
Alternatively, the electron-emitting device of the present invention was fabricated by depositing Cs. This made it possible to further reduce the applied voltage and increase the amount of electron emission.

発明の効果 以上のように、本発明は印加電圧が低減でき、かつ従来
と同等の印加電圧においてより多くの電子放出量を得る
ことを可能とし、電子放出効率を大巾に向上した冷陰極
電子放出源を得ることができた。また、低い印加電圧で
電子放出が可能となるため、絶縁体層の絶縁破壊を防止
することができ、寿命を大巾に延ばすことができる。
Effects of the Invention As described above, the present invention makes it possible to reduce the applied voltage and obtain a larger amount of electron emission at the same applied voltage as in the past, and to produce cold cathode electrons with greatly improved electron emission efficiency. We were able to find the source of the emission. Further, since electron emission is possible with a low applied voltage, dielectric breakdown of the insulating layer can be prevented, and the life span can be greatly extended.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1実施例における電子放出素子の概
略断面図、第2図は本発明の第2実施例における電子放
出素子の概略断面図、第3図はM I M型電子放出素
子の一般的構成を示す模式図、第4図および第5図は従
来の電子放出素子の概略断面図である。 1、11.41・・導電性材料、2,12.16・・低
仕事関数材料層、3.13,22,32,33.43・
・・絶縁体層、4.14.31.34.44・・・金属
層。 第1図 第2図 代理人の氏名 弁理士 粟 野 重 孝 はか1名第 図 z5叔工電う ■■■ 第 図 X基板 第 図 41専電′旺材社
FIG. 1 is a schematic cross-sectional view of an electron-emitting device according to a first embodiment of the present invention, FIG. 2 is a schematic cross-sectional view of an electron-emitting device according to a second embodiment of the present invention, and FIG. 3 is a schematic cross-sectional view of an electron-emitting device according to a second embodiment of the present invention. A schematic diagram showing the general structure of the device, and FIGS. 4 and 5 are schematic cross-sectional views of a conventional electron-emitting device. 1, 11.41... Conductive material, 2, 12.16... Low work function material layer, 3.13, 22, 32, 33.43...
...Insulator layer, 4.14.31.34.44...Metal layer. Fig. 1 Fig. 2 Name of agent Patent attorney Shigetaka Awano Haka1 person Fig.

Claims (1)

【特許請求の範囲】 1)、導電性材料と、上記導電性材料上の電子放出面に
対応する部分に形成された低仕事関数材料層と、上記低
仕事関数材料層を被覆してなる絶縁体層と、さらに上記
絶縁体層の上に形成された金属層とから構成されている
ことを特徴とする電子放出素子。 2)、請求項1記載の電子放出素子の金属層上の電子放
出面に対応する部分に、さらに低仕事関数材料層を被覆
してなることを特徴とする電子放出素子。
[Claims] 1) A conductive material, a low work function material layer formed on a portion of the conductive material corresponding to the electron emitting surface, and an insulation formed by covering the low work function material layer. 1. An electron-emitting device comprising a body layer and a metal layer formed on the insulator layer. 2) An electron-emitting device characterized in that a portion of the metal layer of the electron-emitting device according to claim 1 corresponding to the electron-emitting surface is further coated with a layer of a low work function material.
JP63182303A 1988-07-21 1988-07-21 Electron emission element Pending JPH0233823A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63182303A JPH0233823A (en) 1988-07-21 1988-07-21 Electron emission element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63182303A JPH0233823A (en) 1988-07-21 1988-07-21 Electron emission element

Publications (1)

Publication Number Publication Date
JPH0233823A true JPH0233823A (en) 1990-02-05

Family

ID=16115932

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63182303A Pending JPH0233823A (en) 1988-07-21 1988-07-21 Electron emission element

Country Status (1)

Country Link
JP (1) JPH0233823A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2690273A1 (en) * 1992-01-07 1993-10-22 Mitsubishi Electric Corp Discharge cathode esp. for plasma display panel - has yttrium or lanthanide hexa:boride layer on aluminium@ layer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2690273A1 (en) * 1992-01-07 1993-10-22 Mitsubishi Electric Corp Discharge cathode esp. for plasma display panel - has yttrium or lanthanide hexa:boride layer on aluminium@ layer

Similar Documents

Publication Publication Date Title
JP3126158B2 (en) Thin film cold cathode
US5663608A (en) Field emission display devices, and field emisssion electron beam source and isolation structure components therefor
US6422907B2 (en) Electrode structures, display devices containing the same, and methods for making the same
JPS60180040A (en) Semiconductor device for generating electron beam
JPH0636680A (en) Electronic element using diamond film electron source
JPS62226530A (en) Semiconductor device for electron beam generation
US3535598A (en) Solid state tunnel cathode emitter having an improved thin film insulating barrier
US2620287A (en) Secondary-electron-emitting surface
US6037606A (en) Construction of and method of manufacturing an MIM or MIS electron source
JPH0233823A (en) Electron emission element
US6777169B2 (en) Method of forming emitter tips for use in a field emission display
JPS62229731A (en) Semiconductor device for electron beam generation
JP3546606B2 (en) Method of manufacturing field emission device
JPH01235124A (en) Field emission type electrode
JPH04167325A (en) Field emission type emitter
JP3405773B2 (en) Micro field emission cathode device and method of manufacturing the same
JPH02306520A (en) Electron emitting element
US3584268A (en) Inverted space charge limited triode
JP3508652B2 (en) Field emission type electron source and method of manufacturing the same
JPH02121227A (en) Electron emission element and manufacture thereof
JP3079086B2 (en) Method for manufacturing field emission electron source
KR920010362B1 (en) Cold cathode
JP2001006523A (en) Electron element
JP3487230B2 (en) Field emission electron source, method of manufacturing the same, and display device
US3599321A (en) Inverted space charge limited triode