JPH023306B2 - - Google Patents

Info

Publication number
JPH023306B2
JPH023306B2 JP57012832A JP1283282A JPH023306B2 JP H023306 B2 JPH023306 B2 JP H023306B2 JP 57012832 A JP57012832 A JP 57012832A JP 1283282 A JP1283282 A JP 1283282A JP H023306 B2 JPH023306 B2 JP H023306B2
Authority
JP
Japan
Prior art keywords
material layer
oxidation
oxide film
mask
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57012832A
Other languages
Japanese (ja)
Other versions
JPS58131761A (en
Inventor
Hiroshi Nozawa
Junichi Matsunaga
Hisahiro Matsukawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP57012832A priority Critical patent/JPS58131761A/en
Publication of JPS58131761A publication Critical patent/JPS58131761A/en
Publication of JPH023306B2 publication Critical patent/JPH023306B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/092Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors
    • H01L27/0927Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors comprising a P-well only in the substrate

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Element Separation (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は半導体装置の製造方法に関し、特に絶
縁物による素子分離技術を改良した相補型MOS
半導体装置の製造方法に係る。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a method for manufacturing a semiconductor device, and in particular to a complementary MOS that improves element isolation technology using an insulator.
It relates to a method of manufacturing a semiconductor device.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

半導体集積回路における分離技術に関しては高
集積化、製造プロセスの容易化を図るものとして
一般に分離領域を選択酸化技術によつて形成した
酸化膜を使用するものが知られている。この方式
によれば、能動領域の周囲が酸化膜によつて取り
囲まれているため、ベース拡散等においてセルフ
アラインメントが可能で従来のようなマスク合せ
のための不要な部分が省略でき高集積化が可能と
なり、また側面が深い酸化膜により構成されたこ
とによつて接合容量は桁違いに減少する。しかし
ながら、この方式ではシリコン基板中に熱酸化膜
を選択的に埋没させる構造のため、シリコン基板
に大きな歪が生じ、素子の電気的特性を劣化さ
せ、耐酸化性マスクの構造、構成、膜厚及び選択
酸化条件、時にはシリコン基板そのものの材料自
身の選択に著しい制限を与えている。これは、例
えば文献IEDM“High Pressure Oxidation for
Isolation of High Speed Bipolar Devices”
1979年PP340〜343に記載されている。
Regarding isolation technology in semiconductor integrated circuits, it is generally known to use an oxide film formed by selective oxidation technology as an isolation region in order to achieve high integration and ease of manufacturing process. According to this method, since the active region is surrounded by an oxide film, self-alignment is possible in base diffusion, etc., and unnecessary parts for mask alignment can be omitted, allowing for high integration. In addition, since the side surfaces are made of a deep oxide film, the junction capacitance is reduced by an order of magnitude. However, since this method has a structure in which the thermal oxide film is selectively buried in the silicon substrate, large strains occur in the silicon substrate, deteriorating the electrical characteristics of the device, and reducing the structure, composition, and film thickness of the oxidation-resistant mask. Also, selective oxidation conditions, and sometimes the selection of the material of the silicon substrate itself, are severely restricted. This can be seen, for example, in the literature IEDM “High Pressure Oxidation for
Isolation of High Speed Bipolar Devices”
Described in 1979 PP340-343.

また、窒化シリコン膜をマスクとして熱酸化を
行なうと、“ホワイトリボン”と称するシリコン
ナイトライド膜が窒化シリコン膜の下のSi基板中
に形成され、これが素子の耐圧不良の原因とな
る。更に、耐酸化性マスクとして窒化シリコン膜
と酸化膜からなる2重層のものを使用するため、
1μmに近いバーズビークが窒化シリコン膜下に喰
い込み、その結果2μm以下の素子間分離膜の形成
が困難であつた。これは、例えば文献Birds
Beak Configuration and Elimination of Gate
Oxide Thinnig Produced during Selection
Oxidation”1980年P216〜222J,E,C,Sに記
載されている。
Furthermore, when thermal oxidation is performed using a silicon nitride film as a mask, a silicon nitride film called a "white ribbon" is formed in the Si substrate under the silicon nitride film, which causes a breakdown voltage failure of the device. Furthermore, since a double layer consisting of a silicon nitride film and an oxide film is used as an oxidation-resistant mask,
Bird's beaks close to 1 μm dug into the silicon nitride film, and as a result, it was difficult to form an interelement isolation film of 2 μm or less. This is for example the literature Birds
Beak Configuration and Elimination of Gate
Oxide Thinnig Produced during Selection
Oxidation” 1980, P216-222J, E, C, S.

上記欠点を解消するために本出願人は半導体基
板上に被酸化性材料層を形成し、この材料層上に
直接窒化シリコンからなる耐酸化性マスクを選択
的に形成した後、該マスクを用いて材料層を選択
酸化し、ひきつづき、マスク除去、その下の残存
材料層の少なくとも一部除去を行なうことによつ
て、選択酸化時、半導体基板への熱影響による欠
陥発生を防止し、かつ同選択酸化時のバーズビー
クの発生を抑制すると共に材料層上へのオキシナ
イトライド膜の生成を防止でき、ひいては電気特
性が良好で、変換差の小さい微細素子に適した半
導体装置の製造方法を既に提案した。
In order to eliminate the above-mentioned drawbacks, the applicant formed an oxidizable material layer on a semiconductor substrate, selectively formed an oxidation-resistant mask made of silicon nitride directly on this material layer, and then used the mask. By selectively oxidizing the material layer, followed by removing the mask and removing at least a portion of the remaining material layer underneath, defects can be prevented from occurring due to thermal effects on the semiconductor substrate during selective oxidation, and the same can be achieved. We have already proposed a manufacturing method for semiconductor devices that can suppress the occurrence of bird's beaks during selective oxidation and prevent the formation of oxynitride films on material layers, which in turn has good electrical properties and is suitable for microscopic elements with small conversion differences. did.

しかしながら、窒化シリコンからなる耐酸化マ
スクの厚さにはウエーハのそり発生等による上限
があるため被酸化性材料を通してチヤネルストツ
パ用イオン注入を行う必要のある上記方法を相補
型MOS LSIの製造方法に適用する場合、注入イ
オンが窒化シリコンからなる耐酸化マスクをつき
ぬけて被酸化性材料にまで打ち込まれ、その後の
熱酸化中に基板にまで達し基板表面濃度が変化す
るという問題が発生する。
However, since there is an upper limit to the thickness of the oxidation-resistant mask made of silicon nitride due to wafer warpage, etc., the above method, which requires ion implantation for channel stopper through oxidizable material, is applied to the manufacturing method of complementary MOS LSI. In this case, a problem arises in that the implanted ions penetrate the oxidation-resistant mask made of silicon nitride and are implanted into the oxidizable material, reaching the substrate during subsequent thermal oxidation and changing the substrate surface concentration.

〔発明の目的〕[Purpose of the invention]

本発明は上記事情に鑑みなされたもので、既に
提案した方法と同様な効果を有すると共に、耐酸
化性材料層のパターンが存在する基板への不純物
の侵入、これによる基板表面濃度の変化を防止し
た相補型MOS半導体装置等の半導体装置の製造
方法を提供しようとするものである。
The present invention has been developed in view of the above circumstances, and has the same effect as the previously proposed method, and also prevents impurities from entering a substrate on which a pattern of an oxidation-resistant material layer exists and changes in the substrate surface concentration caused by this. The present invention aims to provide a method for manufacturing a semiconductor device such as a complementary MOS semiconductor device.

〔発明の概要〕[Summary of the invention]

本発明は半導体基板上に被酸化性材料層を形成
する工程と、この材料層上に耐酸化性材料層と不
純物ドーピングマスク材料層からなる二層構造の
パターンを選択的に形成する工程と、このパター
ンをマスクとして半導体基板に不純物をイオン注
入する工程と、前記不純物ドープマスク材料層を
除去した後、耐酸化性材料層のパターンをマスク
として前記被酸化性材料層を少なくとも一部酸化
して酸化膜を形成する工程と、前記半導体基板が
露出するように前記耐酸化性材料層とその下の残
存被酸化性材料層を少なくとも一部除去する工程
とを具備したことを特徴とするものである。
The present invention includes a step of forming an oxidizable material layer on a semiconductor substrate, a step of selectively forming a two-layer structure pattern consisting of an oxidation-resistant material layer and an impurity doping mask material layer on this material layer, A step of ion-implanting impurities into the semiconductor substrate using this pattern as a mask, and after removing the impurity-doped mask material layer, oxidizing at least a portion of the oxidizable material layer using the pattern of the oxidation-resistant material layer as a mask. The method is characterized by comprising a step of forming an oxide film, and a step of removing at least a portion of the oxidation-resistant material layer and the remaining oxidizable material layer thereunder so that the semiconductor substrate is exposed. be.

本発明における被酸化性材料層は選択酸化によ
り素子間分離膜としての酸化膜を形成するために
利用される。かかる材料としては、例えば多結晶
シリコン並びにリン、砒素、ボロンなどの不純物
が高濃度ドープされた多結晶シリコン、或いはモ
リブデンシリサイド、タングステンシリサイド、
タンタルシリサイドなどの金属珪化物等を挙げる
ことができる。なお、材料層を半導体基板上に形
成するにあたつては、酸化膜を介して材料層を形
成してもよい。このように基板と材料層の間に酸
化膜を介在させることにより、特に材料層として
高濃度不純物ドープ多結晶シリコン層を用いた場
合、選択酸化時に該多結晶シリコン層中の不純物
が基板中に拡散するのを該酸化膜により阻止でき
る利点を有する。また、材料層として不純物ドー
プ多結晶シリコン層を用い、この残存多結晶シリ
コン層をエツチングするに際しても、前記酸化膜
が基板に対するエツチングストツパとして作用す
る。
The oxidizable material layer in the present invention is used to form an oxide film as an element isolation film by selective oxidation. Examples of such materials include polycrystalline silicon, polycrystalline silicon heavily doped with impurities such as phosphorus, arsenic, and boron, molybdenum silicide, tungsten silicide,
Examples include metal silicides such as tantalum silicide. Note that when forming the material layer on the semiconductor substrate, the material layer may be formed via an oxide film. By interposing the oxide film between the substrate and the material layer in this way, especially when a highly impurity-doped polycrystalline silicon layer is used as the material layer, impurities in the polycrystalline silicon layer can be absorbed into the substrate during selective oxidation. This oxide film has the advantage of preventing diffusion. Furthermore, when an impurity-doped polycrystalline silicon layer is used as the material layer and the remaining polycrystalline silicon layer is etched, the oxide film acts as an etching stopper for the substrate.

本発明においてはパターンの一部を構成する窒
化シリコンからなる耐酸化性材料層を被酸化性材
料層上に直接形成することを特長とし、かかる状
態において選択酸化を行なうことによつて、耐酸
化性マスク下に酸化膜が喰い込み、いわゆるバー
ズビークを著しく抑制できると共に、マスク下の
材料層表面の一部にオキシナイトライド膜が生成
されるのを防止できる。なお、オキシナイトライ
ド膜が生成されないことによる効果は以下の如く
である。即ち、選択酸化により材料層の露出部付
近に厚い酸化膜を形成し、マスクを除去した後、
残存材料層を除去するが、この除去にあたつては
形成すべき素子間分離膜がオーバーハング構造と
なるのを避けるために反応性スパツタイオンエツ
チングにより除去する。しかし、このエツチング
時に残存した帯状のオキシナイトライド膜がエツ
チングマスクとして作用し、厚い酸化膜に沿つて
材料層が残る。こうした状態で残つた被酸化性材
料層を熱酸化して酸化膜に変換すると、素子間分
離膜の面積が広くなる。つまり寸法変換差が大き
くなり、素子の微細化の妨げとなる。したがつ
て、選択酸化時に、耐酸化性材料層下の被酸化性
材料層表面の一部にオキシナイトライド膜が生じ
ないことは、素子の微細化の点から極めて有益で
ある。
The present invention is characterized in that an oxidation-resistant material layer made of silicon nitride that constitutes a part of the pattern is formed directly on the oxidizable material layer, and by performing selective oxidation in such a state, the oxidation-resistant material layer is formed directly on the oxidizable material layer. The oxide film digs under the mask, so-called bird's beak can be significantly suppressed, and the formation of an oxynitride film on a part of the surface of the material layer under the mask can be prevented. The effects of not producing an oxynitride film are as follows. That is, after forming a thick oxide film near the exposed part of the material layer by selective oxidation and removing the mask,
The remaining material layer is removed by reactive sputter ion etching to avoid forming an overhang structure in the element isolation film to be formed. However, the band-shaped oxynitride film remaining during this etching acts as an etching mask, and a material layer remains along the thick oxide film. When the oxidizable material layer remaining in this state is thermally oxidized and converted into an oxide film, the area of the element isolation film becomes larger. In other words, the difference in dimensional conversion becomes large, which hinders the miniaturization of elements. Therefore, during selective oxidation, it is extremely beneficial from the viewpoint of device miniaturization that an oxynitride film is not formed on a part of the surface of the oxidizable material layer under the oxidation-resistant material layer.

また、窒化シリコンからなる耐酸化性材料層上
にCVD SiO2からなる不純物ドーピングマスク材
料層を積層して二層構造のパターンを被酸化性材
料層に形成することによりチヤネルストツパ形成
用イオン注入時にマスクの下に半導体表面に誤つ
てチヤネルストツパが形成されることを防止でき
る。特に相補型MOS ICにおけるようにp―ウエ
ル領域上のチヤネルストツパ形成とn型基板上の
チヤネルストツパ形成を別々に行う必要のある構
造のものでは上述の耐酸化性材料のパターンのみ
を形成するための例えばゴム系レジストをそのま
ま使えずそのパターン形成後一たん除去し、改め
てチヤネルストツパ形成用のレジストマスクパタ
ーンを形成せねばならない。しかし、こうした方
法では1回目と2回目のパターン形成の合わせず
れにより耐酸化性材料のパターンに対してチヤネ
ルストツパを自己整合的に形成することは困難と
なる。これに対し、本発明のようにイオン注入マ
スクとして不純物ドープマスク材料層を耐酸化性
材料層上に被覆してパターンを形成することによ
り、チヤネルストツパを耐酸化性材料層のパター
ンに対して自己整合的に形成でき、その結果相補
型MOS ICの製造方法にまで用途を広げることが
できる。なお、チヤネルストツパ形成のイオン注
入を行つた後、選択酸化する前にCVD SiO2から
なる不純物ドープマスク材料層を除去しなければ
ならない。その理由は選択酸化後、耐酸化材料層
のパターンで覆われない領域ポリシリコン等の被
酸化性材料は二酸化シリコンに変化するので
CVD SiO2のみを選択的に除去することは不可能
なためである。
In addition, by stacking an impurity doping mask material layer made of CVD SiO 2 on an oxidation-resistant material layer made of silicon nitride to form a two-layer structure pattern on the oxidizable material layer, a mask can be used during ion implantation for channel stopper formation. It is possible to prevent a channel stopper from being erroneously formed on the semiconductor surface under the semiconductor surface. Particularly in complementary MOS ICs, where the channel stopper formation on the p-well region and the channel stopper formation on the n-type substrate need to be performed separately, for example, for forming only the pattern of the above-mentioned oxidation-resistant material. The rubber resist cannot be used as is, and after the pattern is formed, it must be removed and a resist mask pattern for forming the channel stopper must be formed again. However, in such a method, it is difficult to form a channel stopper in a self-aligned manner with respect to the pattern of the oxidation-resistant material due to misalignment between the first and second pattern formations. In contrast, as in the present invention, by coating an impurity-doped mask material layer as an ion implantation mask on an oxidation-resistant material layer to form a pattern, the channel stopper is self-aligned with the pattern of the oxidation-resistant material layer. As a result, the application can be expanded to include methods for manufacturing complementary MOS ICs. Note that after performing ion implantation to form a channel stopper, the impurity-doped mask material layer made of CVD SiO 2 must be removed before selective oxidation. The reason is that after selective oxidation, oxidizable materials such as polysilicon in areas not covered by the pattern of the oxidation-resistant material layer turn into silicon dioxide.
This is because it is impossible to selectively remove only CVD SiO 2 .

本発明における残存被酸化性材料層の除去手段
としては、酸化膜端部下がオーバーハング構造と
なるのを避けるために、基板に対して略垂直に残
存材料層をエツチングし得る反応性スパツタイオ
ンエツチング法、イオンビームエツチング法など
の異方法エツチング法を採用することが望まし
い。
As a means for removing the remaining oxidizable material layer in the present invention, in order to avoid an overhang structure under the edge of the oxide film, reactive sputtering ion is used which can etch the remaining material layer approximately perpendicularly to the substrate. It is desirable to employ a different etching method such as an etching method or an ion beam etching method.

〔発明の実施例〕[Embodiments of the invention]

実施例 〔〕 まず、n型の単結晶シリコン基板1にボ
ロンをドーズ量8.5×1012/cm2の条件でイオン
注入し、1190℃で30時間活性化(ドライブイ
ン)して深さ約10μm、表面濃度約8×1015
cm2のp―ウエル2を選択的に形成した。つづい
て、熱酸化処理を施して基板1及びp―ウエル
2上に厚さ1000Åの熱酸化膜3を成長させた
後、熱酸化膜3上に多結晶シリコンを気相成長
させ被酸化材料層としての厚さ4000Åの多結晶
シリコン層4を堆積した(第1図図示)。
Example [First, boron ions are implanted into an n-type single crystal silicon substrate 1 at a dose of 8.5×10 12 /cm 2 , and activated (drive-in) at 1190° C. for 30 hours to a depth of approximately 10 μm. , surface concentration approximately 8×10 15 /
A cm 2 p-well 2 was selectively formed. Next, a thermal oxide film 3 with a thickness of 1000 Å is grown on the substrate 1 and the p-well 2 by thermal oxidation treatment, and then polycrystalline silicon is grown in a vapor phase on the thermal oxide film 3 to form a layer of material to be oxidized. A polycrystalline silicon layer 4 with a thickness of 4000 Å was deposited (as shown in FIG. 1).

〔〕 次いで、多結晶シリコン層4上に直接厚
さ2000Åの窒化シリコン層及び厚さ5000Åの
SiO2層を気相成長法により順次堆積した後、
反応性スパツタイオンエツチングを用いたフオ
トエツチングプロセスによりパターニングして
基板1の素子領域予定部(pチヤネルMOSト
ランジスタ領域予定部)及びp―ウエル2の素
子領域予定部(nチヤネルMOSトランジスタ
領域予定部)に対応する多結晶シリコン層4上
部分に窒化シリコン層51,52,SiO2層61
2からなる積層パターン71,72を夫々形成
した。つづいてpチヤネルMOSトランジスタ
領域予定部上にレジストパターン8を形成した
後これら積層パターン71,72及びレジストパ
ターン8をマスクとしてボロンを加速電圧
180keV、ドーズ量4×1018/cm2の条件でイオ
ン注入し、活性化してp+型のチヤネルストツ
パ9…を形成した(第2図図示)。
[] Next, a silicon nitride layer with a thickness of 2000 Å and a silicon nitride layer with a thickness of 5000 Å are directly deposited on the polycrystalline silicon layer 4.
After sequentially depositing two SiO layers by vapor phase epitaxy,
It is patterned by a photo-etching process using reactive sputter ion etching to form a planned device region of the substrate 1 (planned p-channel MOS transistor region) and a planned device region of the p-well 2 (planned n-channel MOS transistor region). ), silicon nitride layers 5 1 , 5 2 , SiO 2 layers 6 1 ,
Laminated patterns 7 1 and 7 2 consisting of 6 2 layers were respectively formed. Subsequently, after forming a resist pattern 8 on the planned p-channel MOS transistor region, using these laminated patterns 7 1 , 7 2 and the resist pattern 8 as masks, boron is applied to
Ions were implanted under the conditions of 180 keV and a dose of 4×10 18 /cm 2 and activated to form p + type channel stoppers 9 (as shown in FIG. 2).

〔〕 次いでフツ化アンモニウム液でSiO2
1,62を除去し、残つたパターン化された窒
化シリコン層51,52を耐酸化性マスクとして
多結晶シリコン層4を選択酸化した。この時、
多結晶シリコン層4の露出部付近が酸化されて
寸法度換差が0.15μmの素子間分離用の厚さ
8000Åの厚い酸化膜10…が形成された(第3
図図示)。また窒化シリコン層51,52下の酸
化されずに残つた多結晶シリコン層41′,4
2′の前記酸化膜10…に沿う表面部分にはオキ
シナイトライド膜が全く生じなかつた。
[] Next, the SiO 2 layers 6 1 and 6 2 were removed using an ammonium fluoride solution, and the polycrystalline silicon layer 4 was selectively oxidized using the remaining patterned silicon nitride layers 5 1 and 5 2 as oxidation-resistant masks. At this time,
The exposed portion of the polycrystalline silicon layer 4 is oxidized to a thickness for isolation between elements with a dimensional difference of 0.15 μm.
A thick oxide film 10 of 8000 Å was formed (third
(Illustrated) Moreover, the polycrystalline silicon layers 4 1 ' , 4 remaining unoxidized under the silicon nitride layers 5 1 , 5 2
No oxynitride film was formed on the surface portion along the oxide film 10 2 '.

〔〕 次いで、窒化シリコン層51,52をCF4
系のドライエツチングにより除去した後、残存
多結晶シリコン層41′,42′をCCl4系の反応性
スパツタイオンエツチングで除去した。この
時、残存多結晶シリコン層41′,42′表面には
オキシナイトライド膜が存在しないため、厚い
酸化膜10…に対してセルフアラインで該多結
晶シリコン層41′,42′が略垂直にエツチング
され、第4図に示す如く厚い酸化膜10…の素
子領域予定部側の側面のオーバーハング部に多
結晶シリコン層4″が残つた。ひきつづき、露
出した熱酸化膜3をフツ化アンモニウム液で除
去して基板1及びp―ウエル2の素子領域を露
出させた(同第4図図示)。
[] Next, the silicon nitride layers 5 1 and 5 2 are coated with CF 4
After removal by dry etching, the remaining polycrystalline silicon layers 4 1 ′ and 4 2 ′ were removed by reactive sputter ion etching using CCl 4 . At this time, since there is no oxynitride film on the surfaces of the remaining polycrystalline silicon layers 4 1 ′, 4 2 ′, the polycrystalline silicon layers 4 1 ′, 4 2 ′ are self-aligned with respect to the thick oxide film 10 . was etched almost vertically, and a polycrystalline silicon layer 4'' remained on the side surface of the thick oxide film 10 on the side where the device area was to be planned, as shown in FIG. 4. Subsequently, the exposed thermal oxide film 3 was etched. The element regions of the substrate 1 and the p-well 2 were exposed by removing with an ammonium fluoride solution (as shown in FIG. 4).

〔〕 次いで、熱酸化処理を施した。この時n
型単結晶シリコン基板1及びp―ウエル2の露
出した素子領域にゲート酸化膜となる厚さ400
Åの酸化膜111,112が成長されると同時
に、オーバーハング部に残つた多結晶シリコン
層4″が酸化膜となり前記厚い酸化膜と共にオ
ーバーハング部のない素子間分離膜12…が形
成された(第5図図示)。
[] Next, thermal oxidation treatment was performed. At this time n
A gate oxide film with a thickness of 400 mm is deposited on the exposed device region of the single-crystal silicon substrate 1 and the p-well 2.
At the same time as the oxide films 11 1 and 11 2 of Å are grown, the polycrystalline silicon layer 4'' remaining in the overhang portion becomes an oxide film, and together with the thick oxide film, an inter-element isolation film 12 without an overhang portion is formed. (as shown in Figure 5).

〔〕 次いで、常法に従つて素子間分離膜12
…で分離された基板1及びp―ウエル2の素子
領域上の酸化膜111,112に夫々多結晶シリ
コンのゲート電極131,132を形成し、同ゲ
ート電極131,132をマスクとして酸化膜1
1,112をエツチングしてゲート酸化膜14
,142を形成し、更にn型の単結晶シリコン
基板1にボロンを選択的にイオン注入し、活性
化してp+型のソース、ドレイン領域151,1
1を形成してpチヤネルMOSトランジスタを
作製し、一方p―ウエル2に砒素を選択的にイ
オン注入し、活性化してn+型のソース、ドレ
イン領域152,162を形成してnチヤネル
MOSトランジスタを作製し、CMOSを造つた
(第6図図示)。
[] Next, the inter-element isolation film 12 is formed according to a conventional method.
Gate electrodes 13 1 and 13 2 of polycrystalline silicon are formed on the oxide films 11 1 and 11 2 on the element regions of the substrate 1 and the p-well 2, which are separated by ... , respectively. Oxide film 1 as a mask
1 1 and 11 2 to form a gate oxide film 14.
1 , 14 2 , and then selectively implant boron ions into the n-type single crystal silicon substrate 1 and activate it to form p + -type source and drain regions 15 1 , 1
6 1 to fabricate a p-channel MOS transistor, while selectively implanting arsenic ions into the p-well 2 and activating it to form n + type source and drain regions 15 2 and 16 2 . channel
A MOS transistor was fabricated and a CMOS was fabricated (as shown in Figure 6).

しかして、本発明はn型単結晶シリコン基板1
及びこれに選択的に形成されたp―ウエル2上に
多結晶シリコン層4を形成し、これを選択酸化す
ることにより素子間分離膜12…を形成するた
め、従来の選択酸化法に比べて酸化時間を著しく
短かくでき、ひいては基板1及びp―ウエル2へ
の熱影響を抑制できp―ウエルドライブイン中に
導入された欠陥の核による多数の欠陥発生を少な
くできると共に、予め形成されたp―ウエル2の
不純物の再拡散を著しく少なくできる。また、従
来の選択酸化法の如く基板及びp―ウエルの一部
を直接酸化して素子間分離膜を造るのではなく、
基板1及びp―ウエル2上の、多結晶シリコン層
4の選択酸化により素子間分離膜12…を形成す
るため、基板1及びp―ウエル2への多大なスト
レス発生を防止できる。更に、多結晶シリコン層
4上に直接パターン化した窒化シリコン層51
2を形成した選択酸化においては、オキシナイ
トライド膜が多結晶シリコン層4表面上の一部に
形成されないことは勿論、基板1及びウエル2上
にも全く形成されない。したがつて、選択酸化後
においてもn型単結晶シリコン基板1及びp―ウ
エル2に欠陥発生が極めて少ないため、リーク電
流の発生を抑生した電気特性の良好なCMOSの
高歩留りで製造できる。
Therefore, the present invention provides an n-type single crystal silicon substrate 1.
A polycrystalline silicon layer 4 is formed on the p-well 2 selectively formed thereon, and the inter-element isolation film 12 is formed by selectively oxidizing this, which is faster than the conventional selective oxidation method. It is possible to significantly shorten the oxidation time, thereby suppressing the thermal influence on the substrate 1 and the p-well 2, and reducing the occurrence of many defects due to defect nuclei introduced during the p-well drive-in. Rediffusion of impurities in the p-well 2 can be significantly reduced. In addition, unlike the conventional selective oxidation method, the substrate and part of the p-well are not directly oxidized to create an isolation film between elements.
Since the inter-element isolation films 12 are formed by selective oxidation of the polycrystalline silicon layer 4 on the substrate 1 and the p-well 2, it is possible to prevent generation of great stress on the substrate 1 and the p-well 2. Furthermore, a silicon nitride layer 5 1 patterned directly on the polycrystalline silicon layer 4 ,
In the selective oxidation that formed 5 2 , the oxynitride film is not formed on a part of the surface of the polycrystalline silicon layer 4 , and is not formed on the substrate 1 and the well 2 at all. Therefore, even after selective oxidation, there are very few defects in the n-type single-crystal silicon substrate 1 and the p-well 2, so that CMOS with good electrical characteristics and suppressed leakage current can be manufactured at a high yield.

また、基板1へのボロンのイオン注入に際し、
窒化シリコン層51,52とSiO2層61,62とから
なる積層パターン71,72をマスクとしてイオン
注入するため、基板1への応力発生要因となる窒
化シリコン層51,52を厚くしなくとも、該積層
パターン71,72(素子形成予定部)下の基板1
及びp―ウエル2へのボロンの注入を阻止でき、
素子形成領域の表面濃度の変化、つまり閾値電圧
の変動を防止できる。しかも、積層パターン71
2の上層となるSiO2層61,62は窒化シリコン
層51,52と同一とレジストパターンをマスクと
して形成され、別のレジストパターンを窒化シリ
コン層上に形成することによる該窒化シリコン層
とレジストパターンのマスク合わせずれは生じな
い。このため、チヤネルストツパ9を窒化シリコ
ン層51,52に対してセルフアラインで形成でき
る。
Furthermore, when implanting boron ions into the substrate 1,
Since ions are implanted using the laminated pattern 7 1 , 7 2 consisting of the silicon nitride layers 5 1 , 5 2 and the SiO 2 layers 6 1 , 6 2 as a mask, the silicon nitride layers 5 1 , 7 2 are a cause of stress generation in the substrate 1 . The substrate 1 under the laminated patterns 7 1 , 7 2 (area where elements are to be formed) does not need to be thickened.
and can prevent boron injection into p-well 2,
Changes in the surface concentration of the element formation region, that is, changes in the threshold voltage can be prevented. Moreover, the laminated pattern 7 1 ,
The SiO 2 layers 6 1 and 6 2 which are the upper layers of 7 2 are formed using the same resist pattern as the silicon nitride layers 5 1 and 5 2 as a mask, and the nitridation is performed by forming another resist pattern on the silicon nitride layer. Misalignment of the mask alignment between the silicon layer and the resist pattern does not occur. Therefore, the channel stopper 9 can be formed in self-alignment with respect to the silicon nitride layers 5 1 and 5 2 .

更に多結晶シリコン層4上に直接窒化シリコン
パターン51,52を形成して選択酸化すれば、窒
化シリコンパターン51,52下の多結晶シリコン
層4部分への酸化膜の喰い込み、つまりバーズビ
ークは0.15μmに抑えられること並びに残存多結
晶シリコン層41′,42′表面の一部にオキシナイ
トライド膜が生成せず、厚い酸化膜6…に対して
セルフアラインで残存多結晶シリコン層41′,4
2′を略垂直にエツチングできることにより、寸法
変換差が少なく微細な素子分離膜8…を形成で
き、その結果pチヤネル、nチヤネルMOSトラ
ンジスタ微細化が達成されたCMOSを得ること
ができる。
Furthermore, if silicon nitride patterns 5 1 , 5 2 are directly formed on the polycrystalline silicon layer 4 and selective oxidation is performed, the oxide film digs into the portion of the polycrystalline silicon layer 4 below the silicon nitride patterns 5 1 , 5 2 . In other words, the bird's beak can be suppressed to 0.15 μm, and an oxynitride film is not formed on a part of the surface of the remaining polycrystalline silicon layers 4 1 ′, 4 2 ′, and the remaining polycrystals are self-aligned with respect to the thick oxide film 6 . Silicon layer 4 1 ', 4
2 ' can be etched substantially vertically, it is possible to form fine element isolation films 8 with little difference in dimensional conversion, and as a result, it is possible to obtain a CMOS in which miniaturization of p-channel and n-channel MOS transistors has been achieved.

以上詳述した如く、本発明によれば選択酸化時
において半導体基板及びこれに選択的に形成され
た基板と逆導電型ウエルへ多大な熱影響、ストレ
ス生を招くことなく十分耐圧の高素子間分離膜の
形成並びチヤネルストツパを素子間分離膜に対し
てセルフアラインで形成することを可能とするこ
とにより、基板及びウエル欠陥が極めて少なくリ
ーク電流の発生が抑制された電気特性の良好な
CMOSを高歩留りで製造できる等顕著な効果を
有する。
As described in detail above, according to the present invention, during selective oxidation, the semiconductor substrate and the substrate selectively formed thereon and the reverse conductivity type wells are not affected by heat or stress, and the high-withstand voltage is sufficiently high. By making it possible to form isolation films and channel stoppers in self-alignment with respect to the isolation film, it is possible to achieve good electrical characteristics with extremely few substrate and well defects and suppressed leakage current.
It has remarkable effects such as being able to manufacture CMOS with high yield.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第6図は本発明の実施例における
CMOSの製造工程を示す断面図である。 1…n型単結晶シリコン基板、2…p―ウエ
ル、3…熱酸化膜、4…多結晶シリコン層、4
1′,42′…残存多結晶シリコン層、51,52…窒
化シリコン層、61,62…SiO2層、71,72…積
層パターン、10…厚い酸化膜、12…素子間分
離膜、131,132…ゲート電極、141,142
…ゲート酸化膜、151,152…ソース領域、1
1,162…ドレイン領域。
FIGS. 1 to 6 show examples of the present invention.
FIG. 3 is a cross-sectional view showing the manufacturing process of CMOS. 1... N-type single crystal silicon substrate, 2... P-well, 3... Thermal oxide film, 4... Polycrystalline silicon layer, 4
1 ', 4 2 '...Remaining polycrystalline silicon layer, 5 1 , 5 2 ... Silicon nitride layer, 6 1 , 6 2 ... SiO 2 layer, 7 1 , 7 2 ... Laminated pattern, 10... Thick oxide film, 12... Interelement isolation film, 13 1 , 13 2 ...gate electrode, 14 1 , 14 2
...gate oxide film, 15 1 , 15 2 ...source region, 1
6 1 , 16 2 ... drain region.

Claims (1)

【特許請求の範囲】 1 半導体基板上に被酸化性材料層を形成する工
程と、この材料層上に耐酸化性材料層と不純物ド
ーピングマスク材料層からなる二層構造のパター
ンを選択的に形成する工程と、このパターンをマ
スクとして半導体基板に不純物をイオン注入する
工程と、前記不純物ドーピングマスク材料層を除
去した後、耐酸化性材料層のパターンをマスクと
して前記被酸化性材料層を少なくとも一部酸化し
て酸化膜を形成する工程と、前記半導体基板の一
部が露出するように前記耐酸化性材料層のパター
ンとその下の残存被酸化性材料層を少なくとも一
部除去する工程とを具備したことを特徴とする半
導体装置の製造方法。 2 半導体基板と被酸化性材料層との間に酸化膜
を介在させることを特徴とする特許請求の範囲第
1項記載の半導体装置の製造方法。 3 耐酸化性材料として窒化シリコンを、不純物
ドーピングマスク材料として気相成長酸化シリコ
ンを、用いることを特徴とする特許請求の範囲第
1項記載の半導体装置の製造方法。 4 被酸化性材料として高不純物濃度多結晶シリ
コンあるいはモリブデンシリサイドあるいはタン
グステンシリサイドを用いることを特徴とする前
記特許請求の範囲第1項記載の半導体装置の製造
方法。 5 露出した残存被酸化材料層の少なくとも一部
を除去するに際し、異方性エツチングを用いて行
なうことを特徴とする特許請求の範囲第1項ない
し第4項いずれか記載の半導体装置の製造方法。 6 選択酸化により形成された酸化膜が素子間分
離膜であることを特徴とする特許請求の範囲第1
項ないし第5項いずれか記載の半導体装置の製造
方法。
[Claims] 1. A step of forming an oxidizable material layer on a semiconductor substrate, and selectively forming a two-layer pattern consisting of an oxidation-resistant material layer and an impurity doping mask material layer on this material layer. a step of ion-implanting an impurity into the semiconductor substrate using this pattern as a mask; and after removing the impurity doping mask material layer, using the pattern of the oxidation-resistant material layer as a mask, at least one of the oxidizable material layers is ion-implanted into the semiconductor substrate; a step of partially oxidizing the semiconductor substrate to form an oxide film; and a step of removing at least a portion of the pattern of the oxidation-resistant material layer and the remaining oxidizable material layer thereunder so that a portion of the semiconductor substrate is exposed. A method for manufacturing a semiconductor device, comprising: 2. The method of manufacturing a semiconductor device according to claim 1, characterized in that an oxide film is interposed between the semiconductor substrate and the oxidizable material layer. 3. The method of manufacturing a semiconductor device according to claim 1, characterized in that silicon nitride is used as the oxidation-resistant material and vapor-phase grown silicon oxide is used as the impurity doping mask material. 4. The method of manufacturing a semiconductor device according to claim 1, characterized in that polycrystalline silicon with high impurity concentration, molybdenum silicide, or tungsten silicide is used as the oxidizable material. 5. A method for manufacturing a semiconductor device according to any one of claims 1 to 4, characterized in that anisotropic etching is used to remove at least a portion of the exposed remaining oxidizable material layer. . 6 Claim 1, characterized in that the oxide film formed by selective oxidation is an isolation film between elements.
5. A method for manufacturing a semiconductor device according to any one of items 5 to 5.
JP57012832A 1982-01-29 1982-01-29 Manufacture of semiconductor device Granted JPS58131761A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57012832A JPS58131761A (en) 1982-01-29 1982-01-29 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57012832A JPS58131761A (en) 1982-01-29 1982-01-29 Manufacture of semiconductor device

Publications (2)

Publication Number Publication Date
JPS58131761A JPS58131761A (en) 1983-08-05
JPH023306B2 true JPH023306B2 (en) 1990-01-23

Family

ID=11816345

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57012832A Granted JPS58131761A (en) 1982-01-29 1982-01-29 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS58131761A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2770576B2 (en) * 1991-01-25 1998-07-02 日本電気株式会社 Method for manufacturing semiconductor device
JPH0518435U (en) * 1991-08-13 1993-03-09 象印マホービン株式会社 Vacuum double container
JP3298780B2 (en) * 1995-08-30 2002-07-08 アルプス電気株式会社 Thermal head and method of manufacturing thermal head

Also Published As

Publication number Publication date
JPS58131761A (en) 1983-08-05

Similar Documents

Publication Publication Date Title
US4459325A (en) Semiconductor device and method for manufacturing the same
US4463493A (en) Method for making mask aligned narrow isolation grooves for a semiconductor device
JPH0691201B2 (en) Method for manufacturing CMOS semiconductor device
JPH0576190B2 (en)
US4808555A (en) Multiple step formation of conductive material layers
JPH0348459A (en) Semiconductor device and manufacture thereof
JP3165118B2 (en) Semiconductor device
JPS61242064A (en) Manufacture of complementary type semiconductor device
US4481705A (en) Process for doping field isolation regions in CMOS integrated circuits
JPH07120705B2 (en) Method for manufacturing semiconductor device having element isolation region
JPH023306B2 (en)
JP2995931B2 (en) Method for manufacturing semiconductor device
JPS628028B2 (en)
US5391509A (en) Method of manufacturing a semiconductor device forming a high concentration impurity region through a CVD insulating film
JP3060948B2 (en) Method for manufacturing semiconductor device
JPS628029B2 (en)
JP3521921B2 (en) Method for manufacturing semiconductor device
JP2890550B2 (en) Method for manufacturing semiconductor device
JPH02189965A (en) Manufacture of semiconductor device
JPS6211789B2 (en)
JPS628026B2 (en)
JPS60226169A (en) Manufacture of semiconductor device
JPH06196553A (en) Semiconductor device
JPH03204968A (en) Semiconductor device and manufacture thereof
JPH0422346B2 (en)