JPH0231736A - In vivo equivalent current dipole tracking apparatus - Google Patents

In vivo equivalent current dipole tracking apparatus

Info

Publication number
JPH0231736A
JPH0231736A JP63182163A JP18216388A JPH0231736A JP H0231736 A JPH0231736 A JP H0231736A JP 63182163 A JP63182163 A JP 63182163A JP 18216388 A JP18216388 A JP 18216388A JP H0231736 A JPH0231736 A JP H0231736A
Authority
JP
Japan
Prior art keywords
measuring
potential
current dipole
calculating
helmet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63182163A
Other languages
Japanese (ja)
Other versions
JPH078275B2 (en
Inventor
Toshimitsu Musha
利光 武者
Jinpei Nakamura
中村 仁平
Hiromoto Watanabe
渡辺 博元
Masahiro Adachi
正博 足立
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chuo Electronics Co Ltd
CHUO DENSHI KK
Original Assignee
Chuo Electronics Co Ltd
CHUO DENSHI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chuo Electronics Co Ltd, CHUO DENSHI KK filed Critical Chuo Electronics Co Ltd
Priority to JP63182163A priority Critical patent/JPH078275B2/en
Publication of JPH0231736A publication Critical patent/JPH0231736A/en
Publication of JPH078275B2 publication Critical patent/JPH078275B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

PURPOSE:To simplify handling, to measure the shape of the head (cranium) within a short time and to also accurately measure the potential distribution on the scalp by providing a biomedical electrode to the leading end part of the measuring rod of a displacement sensor and integrating a head shape measuring means and a potential measuring means. CONSTITUTION:100 displacement sensors 2 #1-#100 are mounted to a measuring reference surface (helmet) 1 in a lattice form, and a distance measuring/potential measuring means 2 and a distance/voltage converting means 23 are realized by the constitution of the displacement sensors 2 #1-#100 and a reference voltage power supply 3. When the helmet applied to the head of an examinee and the cranium are fixed, the measuring rod 41 of each of the displacement sensors 2 becomes a state pushed up by the scalp. A terminal 1 is provided to each sensor main body 43 and, when constant voltage is applied to the terminal 1 from the reference voltage power supply, the voltage V23 between terminals 2-3 is obtained as the voltage value proportional to (a). For example, with respect to 32 displacement sensors 2 among 100 ones #1-#100, a terminal 4 is further provided to each of the sensor main body 43 to be connected to each measuring rod 41 by an electric wire. Since the leading end of the measuring rod 41 being a conductor is brought into contact with the scalp when the helmet is applied to the examinee, said measuring rod becomes a potential measuring electrode simultaneously.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、脳疾患の臨床診断や脳神経系の機能の解明に
用いる生体内等価電流双極子追跡装置に係り、特に生体
の神経活動を電流双極子に置換し、この置換によって体
表上に投影される電位分布から逆に電流双極子の発生源
に関する情報を得るようにした等価電流双極子追跡装置
に関する。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to an in-vivo equivalent current dipole tracking device used for clinical diagnosis of brain diseases and elucidation of functions of the cranial nervous system. The present invention relates to an equivalent current dipole tracking device that replaces a dipole with a dipole and obtains information regarding the source of the current dipole from the potential distribution projected on the body surface by this replacement.

〔従来の技術〕[Conventional technology]

従来から、生体の神経活動により、体表面上に現われる
電位を測定する装置としては脳波計、筋電計、誘発電位
加算装置等が使用されている。近時、生体の神経活動に
伴って体表面上に発生する電位を計測し、生体内の活動
部位を推定する等価双極子法が提案されている。この方
法は例えば、悩の各活動部位の細胞が刺激されると起電
力を発生して、脳皮上に電位分布を生ずる。この様な電
位分布から各部位を電気的な双極子で対応させ、この5
双極子の位置とベクトル成分を上述の電位分布から演算
して活動している脳細胞の位置を推定することにより脳
の活動状態を追跡する様にしたものである。この様な双
極子を推定する等価双極子法に於ては、双極子が発生す
る電位分布を繰り返し演算する関係から、あまり複雑な
頭蓋モデルを使うことは計算量の点から現実的でなく、
最初は被験者の頭を球又は同心球で置き換えるというも
のが大部分であった。しかし、球状でない頭蓋を球状モ
デルで近似する方法は電位計算に誤差を伴うばかりでな
く推定された等価双極子の位置が脳内のどこに対応して
いるかが判然としなかった。
2. Description of the Related Art Conventionally, electroencephalographs, electromyographs, evoked potential addition devices, and the like have been used as devices for measuring potentials appearing on the body surface due to neural activity of living organisms. Recently, an equivalent dipole method has been proposed that measures the potential generated on the body surface due to neural activity in the living body and estimates the active site within the living body. In this method, for example, when cells in each active area of the brain are stimulated, an electromotive force is generated, resulting in a potential distribution on the brain skin. From this potential distribution, each part is associated with an electrical dipole, and these 5
The active state of the brain is tracked by calculating the dipole position and vector component from the above-mentioned potential distribution and estimating the position of active brain cells. In the equivalent dipole method for estimating such dipoles, it is impractical to use a very complicated cranial model due to the amount of calculation required, as the potential distribution generated by the dipole is repeatedly calculated.
At first, most of the experiments involved replacing the subject's head with a sphere or concentric spheres. However, the method of approximating a non-spherical skull with a spherical model not only resulted in errors in potential calculations, but also made it unclear where in the brain the estimated equivalent dipole position corresponded.

最近、この頭蓋形状を考慮するアルゴリズムが開発され
、またコンピュータの発達により高速計算が可能となり
、ソフト面でもコンピュータのグラフインク技術が進歩
したこともあり、等価双極子をかなり正確に推定できる
新技術が確立されたく例えば特願昭62−285728
号、特願昭63−86463号の明細書及び図面を参照
)。
Recently, an algorithm that takes this cranial shape into account has been developed, and the development of computers has made it possible to perform high-speed calculations.In terms of software, computer graph ink technology has also advanced, and a new technology that allows for fairly accurate estimation of the equivalent dipole has been developed. For example, Japanese Patent Application No. 62-285728
No. 63-86463).

この場合、電位分布を測定するための電極は、被験者の
頭部(頭蓋)寸法を測りなから1電極ずつ装着し、電極
位置の情報はキーボード等の入力装置から電位計算を行
わせるコンピュータに入力している。
In this case, the electrodes for measuring the potential distribution are attached one by one after measuring the head (cranial) dimensions of the subject, and the information on the electrode positions is entered into a computer that calculates the potential from an input device such as a keyboard. are doing.

また、頭部(頭蓋)形状を知る手段としては、xb’x
CT(コンピュータ・トモグラフ)やMRI(核磁気共
鳴コンピュータ・トモグラフ)などから得られる画像情
報を元にしている。
Also, as a means of knowing the shape of the head (cranium), xb'x
It is based on image information obtained from CT (computed tomography), MRI (nuclear magnetic resonance computer tomography), etc.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

電極の装置を人間の手により行った場合、頭皮上の電極
の位置とコンピュータに入力される電極位置情報とを正
確に一致させることは困難であり、その結果、起電力源
の位置を正確に算出するときに誤差を生じてしまう。
When the electrode device is installed manually, it is difficult to accurately match the position of the electrode on the scalp with the electrode position information input into the computer, and as a result, it is difficult to accurately determine the position of the electromotive force source. An error will occur when calculating.

また、XvACTやMRIは脳内の構造的異常について
の情報を得るものであり、単に頭蓋形状を測定する為だ
けに使用することを考えると、測定時間を要し、コスト
的にもメリットがない。
In addition, XvACT and MRI obtain information about structural abnormalities in the brain, and considering that they are used only to measure the shape of the skull, they take time to measure and have no cost advantage. .

本発明では、上記の問題点を解消し、被験者に肉体的に
も精神的にも苦痛を与えないで、しかも短時間に電極を
自動装着し、同時に頭部(頭M)形状の情報と正確なる
電極位置情報及び頭皮上の電位分布が得られるデータ収
集部を備えた生体内等価電流双極子追跡装置を提供する
ことを目的としたものである。
The present invention solves the above problems, automatically attaches electrodes in a short time without causing physical or mental pain to the subject, and at the same time provides accurate information on the shape of the head (head M). The object of the present invention is to provide an in-vivo equivalent current dipole tracking device equipped with a data acquisition unit that can obtain electrode position information and potential distribution on the scalp.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の装置のデータ収集部の原理的な構成と機能を第
2図に示す。以下第2図に従って説明する。
FIG. 2 shows the basic configuration and functions of the data collection section of the device of the present invention. This will be explained below according to FIG.

測定基準面21は平均的な人の頭蓋より例えば20〜3
0fl大きな形状をしたヘルメットのようなもので、被
験者にこのヘルメットをかぶらせ、この面を測定の基準
面とする。距離測定兼電位測定手段22は、被験者にヘ
ルメットをかぶらせたときに、被験者の頭皮と測定基準
面21との距離を、測定基準面の格子上の例えば100
点について測定し、同時にその点における頭皮上の電位
を測定できる手段である。距離測定兼電位測定手段22
の出力Aは距離を示す情報であり、距離−電圧変換手段
23にて電圧値に変換される。距離−電圧変換手段23
の出力Bはアナログ値なので、A/D変換手段(#1)
24によりディジタル値に変換され、出力Cは計算手段
25に人力される。計算手段25にはあらかじめ測定基
準面21の形状を示す情報と測定点の正確なる測定基準
面上の位置の情報が入力されており、これら情報とA/
D変換手段24の出力Cすなわち各測定点における測定
基準面と頭皮上との距離情報から計算手段25にて計算
し頭部(頭蓋)形状を求めるわけである。 得られる頭
部形状データは記憶手段26に記憶される。
The measurement reference plane 21 is, for example, 20 to 3
0flIt is like a helmet with a large shape.The test subject puts on this helmet, and this surface is used as the reference surface for measurement. The distance measuring and potential measuring means 22 measures the distance between the subject's scalp and the measurement reference plane 21 by measuring, for example, 100 mm on the grid of the measurement reference plane when the subject wears a helmet.
It is a means that can measure a point and at the same time measure the potential on the scalp at that point. Distance measurement and potential measurement means 22
The output A is information indicating the distance, and is converted into a voltage value by the distance-voltage conversion means 23. Distance-voltage conversion means 23
Since output B is an analog value, A/D conversion means (#1)
24 into a digital value, and the output C is manually input to calculation means 25. Information indicating the shape of the measurement reference plane 21 and information on the exact position of the measurement point on the measurement reference plane are input into the calculation means 25 in advance, and these information and A/
The calculation means 25 calculates the head (cranial) shape from the output C of the D conversion means 24, that is, the distance information between the measurement reference plane and the scalp at each measurement point. The obtained head shape data is stored in the storage means 26.

一方、距離測定兼電位測定手段22の出力りは距離測定
点における頭皮上の電位を示すものであり電位増幅手段
27により増幅され、出力EとしてA/D変換手段(#
2)28に入力される。A/D変換手段(#2)2Bの
出力Fは計算手段25に入力されている。この情報を正
確なる位置情報(先に示した頭部形状を算出する時に得
られる。)を伴った頭皮上の電位情報として計算手段2
5は取り込むわけである。得られた電位測定データは記
憶手段26に記憶される。
On the other hand, the output of the distance measurement and potential measurement means 22 indicates the potential on the scalp at the distance measurement point, and is amplified by the potential amplification means 27, and output E as the A/D conversion means (#
2) Input to 28. The output F of the A/D conversion means (#2) 2B is input to the calculation means 25. The calculation means 2 uses this information as potential information on the scalp along with accurate position information (obtained when calculating the head shape shown above).
5 is taken in. The obtained potential measurement data is stored in the storage means 26.

この様に構成されたデータ収集部で得られた頭部形状デ
ータと正確な位置(電極の位置)情報を伴った頭皮電位
測定データは外部記憶装置(例えばフロッピーディスク
)を介して、生体内等価電流双極子追跡装置の本体部(
追跡・表示部)へ送られる。
The head shape data and scalp potential measurement data with accurate position (electrode position) information obtained by the data collection unit configured in this way are stored in the in-vivo equivalent via an external storage device (e.g. floppy disk). Main body of current dipole tracking device (
tracking/display department).

本体部は、生体内の任意の位置に電流双極子を仮定し、
電流双極子によって作られる複数の電極に夫々対応する
電位を演算する演算手段と、前記電位測定手段の実測値
と上記演算手段の計算値との間の二乗誤差を演算する二
乗誤差演算手段と、二乗誤差演算手段から得た二乗誤差
値を最小にする電流双極子の位置とベクトル成分を求め
て等価電流双極子とする等価電流双極子設定手段と、上
記電位測定手段の実測値と上記等価電流双極子設定手段
から残差を求めて所定値以上の近(以度を演算する近似
度演算手段とを有して構成されている。なお、この本体
部の構成と機能についての詳細は、例えば前記の特願昭
63−86463号の明細書と図面を参照されたい。
The main body assumes a current dipole at an arbitrary position in the living body,
a calculation means for calculating potentials corresponding to each of the plurality of electrodes created by the current dipole; a square error calculation means for calculating a square error between an actual measurement value of the potential measurement means and a calculated value of the calculation means; an equivalent current dipole setting means for determining the position and vector component of a current dipole that minimizes the square error value obtained from the square error calculation means to obtain an equivalent current dipole; and an actual measurement value of the potential measuring means and the equivalent current. It is configured to include a degree of approximation calculating means for determining the residual error from the dipole setting means and calculating the degree of approximation equal to or greater than a predetermined value.For details regarding the configuration and functions of this main body, see, for example. Please refer to the specification and drawings of the above-mentioned Japanese Patent Application No. 63-86463.

〔作 用〕[For production]

脳内活動による起電力源の位置を頭皮電位分布から測定
する場合において、十分に正確な頭蓋形状の測定がMR
Iなどの大規模装置を使用せずに被験者にヘルメットを
かぶせるだけでおこなえ、同時に電極を自動装着し、正
確なる電極位置情報及び頭皮上の電位分布を得ることが
でき、しかも短時間(例えば測定時間20m5)でおこ
なえる。
When measuring the position of the electromotive force source caused by brain activity from the scalp potential distribution, sufficiently accurate measurement of the cranial shape is possible using MR.
It can be carried out by simply putting a helmet on the subject without using large-scale equipment such as I, and at the same time the electrodes are automatically attached, allowing accurate electrode position information and potential distribution on the scalp to be obtained, and in a short period of time (for example, measurement It can be done in 20m5).

〔実施例〕〔Example〕

本発明の一実施例について第1図に示したブロック図を
用いて説明する。
An embodiment of the present invention will be described using the block diagram shown in FIG.

測定基準面1 (ヘルメット)には、格子上(第3図参
照のこと)に#1〜#100までの100個の変位セン
サ2が取付けられている。変位センサ2(#1〜#・1
00)と基準電圧電源3の構成により第2図の距離測定
兼電位測定手段22と距離−電圧変換手段23とを実現
している。
On the measurement reference surface 1 (helmet), 100 displacement sensors 2, numbered #1 to #100, are attached on a grid (see FIG. 3). Displacement sensor 2 (#1 to #・1
00) and the configuration of the reference voltage power source 3, the distance measuring/potential measuring means 22 and the distance-voltage converting means 23 shown in FIG. 2 are realized.

変位センサ単体は第4図(a)に示すように、通常、測
定棒41はバネ42により一番引き出された状態になっ
ている(例えばaは50mm)。ヘルメットを被験者の
頭にかぶせ、何らかの方法でヘルメットと頭蓋を固定す
ると、第4図(C)に示すように測定棒41は頭皮によ
り押し上げられた状態になる。
As shown in FIG. 4(a), the displacement sensor alone is normally in a state where the measuring rod 41 is pulled out to the maximum by the spring 42 (for example, a is 50 mm). When the helmet is placed on the subject's head and the helmet and skull are fixed in some way, the measuring rod 41 is pushed up by the scalp as shown in FIG. 4(C).

センサ本体43には端子があり第4図(b)の電気的等
価回路が示すとうり、測定棒の長さaに比例し、端子■
妃■間の抵抗値が変化するので、端子■に基準電圧電源
から一定電圧を供給すれば、端子0〜0間の電圧V21
はaに比例した電圧値が得られる。
The sensor main body 43 has a terminal, and as shown in the electrical equivalent circuit of FIG. 4(b), the terminal ■
Since the resistance value between terminals V21 and V21 changes, if a constant voltage is supplied to terminal V21 from the reference voltage power supply, the voltage between terminals V21 and V21 changes.
A voltage value proportional to a is obtained.

変位センサ2の#1〜#100のうち、例えば32個は
第4図(d)に示すように、センサ本体43にさらに端
子■があり、測定棒41に電線等で結線されている。こ
こで測定棒41は導体であり、被験者にヘルメットをか
ぶせたとき、測定棒41の先端が頭皮に接触するので、
同時に電位測定電極となる。なお、測定棒を絶縁体で作
り、内部に導体を通して埋め込み型の測定電極を設ける
ようにしてもよい。
For example, 32 out of #1 to #100 of the displacement sensors 2 have a terminal (2) on the sensor body 43 and are connected to the measuring rod 41 with an electric wire or the like, as shown in FIG. 4(d). Here, the measuring rod 41 is a conductor, and when the subject puts on the helmet, the tip of the measuring rod 41 comes into contact with the scalp.
At the same time, it becomes a potential measuring electrode. Note that the measuring rod may be made of an insulator, and a conductor may be passed through the rod to provide an embedded measuring electrode.

端子■の出力は増幅器4にて増幅され、マルチプレクサ
5、A/D変換器6を介してパーソナルコンピュータ1
0の入力ポート11に送られる。
The output of the terminal ■ is amplified by the amplifier 4 and sent to the personal computer 1 via the multiplexer 5 and the A/D converter 6.
0 input port 11.

端子■に得られたセンサ出力はマルチプレクサ7、A/
D変換器6を介してパーソナルコンピュータ100入カ
ボート11に送られる。なお、マルチプレクサ5と7の
選択した信号をディジタル信号に変換するのに一つのA
/D変換器6で兼用させて行っているので、切換器8を
設けているが、A/D変換器を二つ設けて独立に信号の
変換処理を行うように構成し、変喚器を省くようにして
もよい。
The sensor output obtained at terminal ■ is sent to multiplexer 7, A/
It is sent to the input port 11 of the personal computer 100 via the D converter 6. Note that one A is used to convert the signals selected by multiplexers 5 and 7 into digital signals.
Since the A/D converter 6 is used for both functions, a switch 8 is provided, but two A/D converters are provided and configured to perform signal conversion processing independently, and the converter is It may be omitted.

パーソナルコンピュータ10は、制御手段及び演算手段
用にCPU13.ROM14.RAM15゜キーボード
16と、入力ボート11.出力ボート12を備え、さら
に外部記憶装置17として例えばフロッピーディスクが
接続されている。
The personal computer 10 includes a CPU 13. for control means and calculation means. ROM14. RAM 15° keyboard 16, input board 11. It is provided with an output port 12, and is further connected with, for example, a floppy disk as an external storage device 17.

ここまで述べてきた各構成要素により、生体内等価電流
双極子追跡装置のデータ収集部が構成されている。なお
、説明が後になってしまったが、マルチプレクサ5は、
パーソナルコンピュータ10の出力ボート12より出力
される選択信号S、により、32個の電位測定電極のう
ちのどの増幅器出力をA/D変換器6のアナログ入力に
接続するかを決定する役割をはたす。
Each of the components described so far constitutes the data collection section of the in-vivo equivalent current dipole tracking device. Although the explanation was delayed, the multiplexer 5 is
The selection signal S output from the output port 12 of the personal computer 10 serves to determine which amplifier output of the 32 potential measuring electrodes is connected to the analog input of the A/D converter 6.

マルチプレクサ7は、同じく選択信号S2により、#1
〜#100までの100個の変位センサ2のうち、どの
センサ出力をA/D変換器6のアナログ入力に接続する
かを決定する役割をはたす。
Similarly, the multiplexer 7 selects #1 by the selection signal S2.
It plays the role of determining which sensor output is to be connected to the analog input of the A/D converter 6 among the 100 displacement sensors 2 up to #100.

パーソナルコンピュータ10は、キーボード16より、
あるコードが入力されると、出力ボート12より選択信
号Sl+  S2とA/D変換スタート信号S3を出力
し、第5図に示したフローチャトに従って電位測定を行
ない、第6図に示したフローチャートに従って頭部形状
計測を行う。
The personal computer 10 uses the keyboard 16 to
When a certain code is input, the selection signal Sl+ S2 and the A/D conversion start signal S3 are output from the output boat 12, the potential is measured according to the flowchart shown in FIG. Measure the part shape.

次に装置の本体部(追跡・表示部)の説明をする。Next, the main body (tracking/display section) of the device will be explained.

本体部30は制御手段及び演算手段用にCPU31゜R
OM32.RAM33. とデータ収集部20で得られ
たデータを記憶させた外部記憶装置(例えばフロッピー
ディスク)17を接続する入出力ボート34及び双極子
等の表示用のプリンタ36や表示器(CRT)37等を
接続する出力ボート35を有するコンピュータで構成さ
れている。
The main body 30 has a CPU 31°R for control means and calculation means.
OM32. RAM33. An input/output board 34 is connected to an external storage device (for example, a floppy disk) 17 storing data obtained by the data collection unit 20, and a printer 36 and a display (CRT) 37 for displaying dipoles and the like are connected. It consists of a computer having an output port 35 for

この本体部の動作は第7図のフローチャートで示した通
りである。先ず電源を“オン”して生体内等価電流双極
子追跡装置を第1ステップST、に示す様に初期状態に
設定する。次の第2ステツプs’rzでは各種演算用の
プログラム及び信号処理用のプログラム等を外部記憶装
置17から読み出してコンピュータ内のRAM33に格
納する。この様なプログラムはコンピュータ内の不揮発
性メモリであるROM32内に予め記憶して置けば第2
ステツプS T zは不要となる。
The operation of this main body is as shown in the flowchart of FIG. First, the power is turned on and the in-vivo equivalent current dipole tracking device is set to the initial state as shown in the first step ST. In the next second step s'rz, programs for various calculations, programs for signal processing, etc. are read from the external storage device 17 and stored in the RAM 33 within the computer. If such a program is stored in advance in the ROM 32, which is a non-volatile memory in the computer, the second
Step S T z becomes unnecessary.

次の第3ステップSTi、ではデータ収集部20より収
集された頭部形状および頭皮電位測定データを外部記憶
装置17を介してRAM33に記憶する。
In the next third step STi, the head shape and scalp potential measurement data collected by the data collection unit 20 are stored in the RAM 33 via the external storage device 17.

以下のステップは従前(例えば特願昭62−28572
8号)のものと同一である。
The following steps are the same as before (for example, Japanese Patent Application No. 62-28572)
It is the same as No. 8).

上記実施例の説明では、変位センサや電極の数等を説明
したが、これらの数はあくまでも一例であり、本発明は
これにより限定されるものではなく。種々の変更が可能
である。
In the description of the above embodiments, the number of displacement sensors and electrodes, etc. have been described, but these numbers are merely examples, and the present invention is not limited thereto. Various modifications are possible.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、非常に取扱いが
簡便でしかも短時間で頭部(頭M)形状測定及び正確な
る頭皮上の電位分布の測定が可能となり、確立された新
技術を臨床診断等へ利用できる具体的なシステムを比較
的安価に構成することができる。
As explained above, according to the present invention, it is possible to measure the shape of the head (head M) and accurately measure the electric potential distribution on the scalp with very simple handling and in a short time, and utilizes the established new technology. A concrete system that can be used for clinical diagnosis etc. can be constructed at a relatively low cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の構成と動作を示すブロック図、第2図
は本発明のデータ収集部の原理的な構成と機能の説明図
、第3図は測定ポイントの説明図である。 第4図は変位センサと測定棒の説明図で、同図の(a)
は構造、(b)は電気的等価回路、(c)は動作、(d
)は測定棒と電極の説明図である。第5図は電位測定の
フローチャート、第6図は頭部形状計測のフローチャー
ト、第1図は本発明の装置本体部の動作を示したフロー
チャートである。 1.21・・・・・・測定基準面(ヘルメット)、2・
・・・・・・・・・・・・・・変位センサ、3・・・・
・・・・・・・・・・・基準電圧電源、4・・・・・・
・・・・・・・・・増幅器、5.7・・・・・・・・・
マルチプレクサ、・・・・・・・・・・・・・・・A/
D変換器、O・・・・・・・・・・・・パーソナルコン
ピュータ、7・・・・・・・・・・・・外部記憶装置、
0・・・・・・・・・・・・データ収集部、0・・・・
・・・・・・・・本体部、 1・・・・・・・・・・・・測定棒。
FIG. 1 is a block diagram showing the configuration and operation of the present invention, FIG. 2 is an explanatory diagram of the fundamental configuration and function of the data collection section of the present invention, and FIG. 3 is an explanatory diagram of measurement points. Figure 4 is an explanatory diagram of the displacement sensor and measuring rod, and (a)
is the structure, (b) is the electrical equivalent circuit, (c) is the operation, (d
) is an explanatory diagram of the measuring rod and electrode. FIG. 5 is a flowchart of potential measurement, FIG. 6 is a flowchart of head shape measurement, and FIG. 1 is a flowchart showing the operation of the main body of the apparatus of the present invention. 1.21...Measurement reference surface (helmet), 2.
・・・・・・・・・・・・・・・Displacement sensor, 3...
・・・・・・・・・Reference voltage power supply, 4・・・・・・
・・・・・・・・・Amplifier, 5.7・・・・・・・・・
Multiplexer, ・・・・・・・・・・・・・・・A/
D converter, O...Personal computer, 7...External storage device,
0... Data collection department, 0...
・・・・・・・・・Body part, 1・・・・・・・・・・・・Measuring rod.

Claims (1)

【特許請求の範囲】 1、頭部に装着して測定ポイントと測定基準面を規定す
るヘルメットと、該ヘルメットの所定の測定ポイントに
頭皮面に接触し伸縮自在な測定棒を突出させて設けた変
位センサを用いて構成した頭部形状計測手段と、 生体に装着された複数の電極が検出した電位を測定する
電位測定手段と、 生体内の任意の位置に電流双極子を仮定し、該電流双極
子によって作られる上記複数の電極に夫々対応する電位
を演算する演算手段と、 上記電位測定手段の実測値と、上記演算手段の計算値と
の間の二乗誤差を演算する二乗誤差演算手段と、 上記二乗誤差演算手段から得た二乗誤差値を最小にする
電流双極子の位置とベクトル成分を求めて等価電流双極
子とする等価電流双極子設定手段と、上記電位測定手段
の実測値と上記等価電流双極子設定手段から残差を求め
て所定値以上の近似度を演算する近似度演算手段とを有
することを特徴とする生体内等価電流双極子追跡装置。 2、変位センサの測定棒先端部に生体装着用電極を設け
、頭部形状計測手段と電位測定手段を一体化構成した請
求項1記載の生体内等価電流双極子追跡装置。
[Scope of Claims] 1. A helmet that is worn on the head to define measurement points and measurement reference planes, and a measuring rod that is protruding from the predetermined measurement points of the helmet and that is in contact with the scalp surface. Head shape measuring means configured using a displacement sensor; Potential measuring means for measuring potentials detected by a plurality of electrodes attached to a living body; Assuming a current dipole at an arbitrary position within the living body, Calculating means for calculating potentials corresponding to each of the plurality of electrodes created by the dipole; Square error calculating means for calculating a square error between the actual measurement value of the potential measuring means and the calculated value of the calculating means. , equivalent current dipole setting means for determining the position and vector component of the current dipole that minimizes the squared error value obtained from the squared error calculation means to obtain an equivalent current dipole, and the actual measured value of the potential measuring means and the above. An in-vivo equivalent current dipole tracking device comprising: a degree of approximation calculating means for obtaining a residual from an equivalent current dipole setting means and calculating a degree of approximation of a predetermined value or more. 2. The in-vivo equivalent current dipole tracking device according to claim 1, wherein an electrode for living body attachment is provided at the tip of the measuring rod of the displacement sensor, and the head shape measuring means and the potential measuring means are integrated.
JP63182163A 1988-07-21 1988-07-21 In vivo equivalent current dipole tracker Expired - Lifetime JPH078275B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63182163A JPH078275B2 (en) 1988-07-21 1988-07-21 In vivo equivalent current dipole tracker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63182163A JPH078275B2 (en) 1988-07-21 1988-07-21 In vivo equivalent current dipole tracker

Publications (2)

Publication Number Publication Date
JPH0231736A true JPH0231736A (en) 1990-02-01
JPH078275B2 JPH078275B2 (en) 1995-02-01

Family

ID=16113454

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63182163A Expired - Lifetime JPH078275B2 (en) 1988-07-21 1988-07-21 In vivo equivalent current dipole tracker

Country Status (1)

Country Link
JP (1) JPH078275B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009118701A1 (en) * 2008-03-27 2009-10-01 Koninklijke Philips Electronics N.V. Method and system for measuring an object of interest
CN104352238A (en) * 2014-11-08 2015-02-18 天津大学 Method of collecting electrical resistance chromatographic chromatographic data of thoracic cavity of human body

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5060025B2 (en) * 2005-05-24 2012-10-31 有限会社ブレインリサーチ アンド デベロップメント EEG dipole analysis device, EEG dipole analysis method, EEG dipole analysis program, and storage medium storing the program

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009118701A1 (en) * 2008-03-27 2009-10-01 Koninklijke Philips Electronics N.V. Method and system for measuring an object of interest
CN104352238A (en) * 2014-11-08 2015-02-18 天津大学 Method of collecting electrical resistance chromatographic chromatographic data of thoracic cavity of human body

Also Published As

Publication number Publication date
JPH078275B2 (en) 1995-02-01

Similar Documents

Publication Publication Date Title
US11013444B2 (en) Method and device for determining and presenting surface charge and dipole densities on cardiac walls
CA2094804C (en) Method and apparatus for imaging electrical activity in a biological system
EP2049013B1 (en) Device for mobile electrocardiogram recording
US20210267465A1 (en) Systems and methods for detecting strokes
EP3821807A1 (en) Method of medical monitoring
JPH0966037A (en) Magnetism of living body measuring instrument
CN109745047B (en) Electrical impedance imaging system based on piezoresistive electrode
KR20200006812A (en) Patch-type biosensor device for measuring multiple bio signals
Kadanec et al. ProCardio 8—System for high resolution ECG mapping
JP2007268034A (en) Method and device for measuring biological signal
JPH0231736A (en) In vivo equivalent current dipole tracking apparatus
KR20200006813A (en) Patch-type biosensor device for measuring electrocardiogram
JP2885341B2 (en) Head shape measuring instrument and potential distribution measuring instrument on scalp integrated with the measuring instrument
JPH0246209B2 (en)
US6052609A (en) Electrophysiological device
JP2626712B2 (en) In vivo equivalent current dipole display
JPH0399630A (en) Equivalent dipole measuring apparatus and equivalent dipole estimating method
JP2804961B2 (en) Equivalent current dipole tracking device in the head
JP2611960B2 (en) Dipole estimation method
JPH02249530A (en) Action current display method
JPH07124133A (en) Magnetic measuring instrument
Tyšler et al. Portable High Resolution Multichannel ECG Measuring Device
Kneppo et al. Flexible Multichannel System for Bioelectrical Fields Analysis
Tyšler et al. A Personal Computer-Based System for Cardiac Electric Field Investigation in the Clinic and in Research
JP2002345770A (en) Method for analyzing organism action current source

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090201

Year of fee payment: 14