JPH02310504A - Optical branching circuit - Google Patents

Optical branching circuit

Info

Publication number
JPH02310504A
JPH02310504A JP13310889A JP13310889A JPH02310504A JP H02310504 A JPH02310504 A JP H02310504A JP 13310889 A JP13310889 A JP 13310889A JP 13310889 A JP13310889 A JP 13310889A JP H02310504 A JPH02310504 A JP H02310504A
Authority
JP
Japan
Prior art keywords
optical waveguide
optical
waveguide
optical branching
incident light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13310889A
Other languages
Japanese (ja)
Other versions
JP2903543B2 (en
Inventor
Toshiya Miyagawa
俊哉 宮川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP1133108A priority Critical patent/JP2903543B2/en
Publication of JPH02310504A publication Critical patent/JPH02310504A/en
Application granted granted Critical
Publication of JP2903543B2 publication Critical patent/JP2903543B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Optical Integrated Circuits (AREA)

Abstract

PURPOSE:To obtain a stable optical branching ratio with a small size and low loss by forming an incident light waveguide to the impurity concn. lower than the impurity concn. in exit light waveguides. CONSTITUTION:The impurity concn. of the incident light waveguide 2 is lowered and is thereby weakened in the intensity to confine light so that the incident light attains a stationary state at the distance shorter than in the case of forming the incident light waveguide to the same impurity concn. as the impurity concn. of the exit light waveguides 4, 5. Namely, the intensities to confine light of the incident light waveguide 2 and exit light waveguides 4, 5 of the optical branching circuit are independently optimized. The stable optical branching is obtd. even if the incident light waveguide 2 is shortened; in addition, the waveguide of a low loss is obtd. even if the length of the exit light waveguides 4, 5 is shortened by reducing the radius of curvature of the bending. The small-sized optical branching circuit of the low loss is thus obtd.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は光分岐回路、特に導波型光分岐回路に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to an optical branch circuit, and particularly to a waveguide type optical branch circuit.

〔従来の技術〕[Conventional technology]

基板上に形成した光導波路により各種機能を実現する光
集積回路において、光分岐回路は最も基本的な光回路素
子の一つであり、光信号の分配、マツハツエン°ダー型
変調器、分岐型光スイッチ等に用いられる。
Optical branch circuits are one of the most basic optical circuit elements in optical integrated circuits that realize various functions using optical waveguides formed on a substrate. Used for switches, etc.

以下Ti拡散LiNb0.光導波路を用いた対称2分岐
回路を例にとって従来例を説明する。第3図はこの光分
岐回路を示す斜視図である。LiNbO3基板1上にT
iを拡散することにより屈折率を増加させ単一モード光
導波路を形成する。
Below, Ti-diffused LiNb0. A conventional example will be explained by taking a symmetrical two-branch circuit using an optical waveguide as an example. FIG. 3 is a perspective view showing this optical branch circuit. T on LiNbO3 substrate 1
By diffusing i, the refractive index is increased and a single mode optical waveguide is formed.

入射光は光フアイバ直接結合あるいはレンズ結合により
光導波路端面6より入射光導波路2に入射される。入射
光導波路2を伝幡した光は2分岐部3で2つの光に分け
られ、それぞれ出射光導波路4.5を伝幡する。
The incident light enters the incident optical waveguide 2 from the optical waveguide end face 6 by direct optical fiber coupling or lens coupling. The light propagated through the input optical waveguide 2 is split into two beams at the two-branch section 3, and each beam is transmitted through the output optical waveguide 4.5.

光分岐回路の過剰損失は2分岐の分岐角θ3に比例して
増加するためできるだけ小さな角度とする。さらに分岐
部分でのモード変換による過剰損失を低減するための手
段として分岐部分なテーバ構造としたり(Masami
tsu Haruna et al:“Electro
optical  Branching  Waveg
uide  5w1tches  and  thei
r  Application  to  1x40p
ticalSwitching Networks″:
JournaI  of Lightwave Tec
hnology、vol、LT−1,NO,1,P22
3’83)、モード結合型分岐とする(清野他; 「モ
ード結合型Y分岐導波路」 ;昭和61年度電子通信学
会光電波部門全国大会、講演番号250)などの報告が
ある。これらの方法により過剰損失0.3 d B程度
の光分岐が得られている。
Since the excess loss of the optical branching circuit increases in proportion to the branching angle θ3 of the two branches, the angle is made as small as possible. Furthermore, as a means to reduce excessive loss due to mode conversion at the branch section, a Taber structure is used at the branch section (Masami et al.
Tsu Haruna et al: “Electro
optical branching wave
uide 5w1tches and thei
r Application to 1x40p
ticalSwitching Networks”:
JournaI of Lightwave Tec
hnology, vol, LT-1, NO, 1, P22
3'83), and mode-coupled branching (Seino et al.; ``Mode-coupled Y-branch waveguide''; 1986 Institute of Electronics and Communication Engineers National Conference of Photo-Radio Division, Lecture No. 250). Optical branching with an excess loss of about 0.3 dB has been obtained by these methods.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の光分岐回路では分岐部分の過剰損失低減に重点が
置かれている。しかし光分岐回路では損失増加のため分
岐角θ3を大きくとれないので出射光導波路間の間隔を
広げるための曲がり光導波路が実用上必要不可欠である
。このため分岐部分は低損失であっても、回路を小型化
するために曲がり導波路の曲率半径を小さくし放射損失
が増加してしまうこともありうる。よって光分岐回路の
損失は分岐部のモード変換損失と曲がり光導波路の放射
損失の和として考えるべきである。よって光分岐回路ト
ータルの損失を低減する場合、曲がり部分と損失低減は
重要な問題となる。そして出射光導波路の曲がり部分で
は曲がりの曲率半径を大きくする、あるいは光導波路の
屈折率増加量を大きくすることにより光導波路内での光
閉じ込めを強くする等の方法により放射損失を低減でき
ることが知られている。
In conventional optical branch circuits, emphasis is placed on reducing excess loss in the branch portion. However, in the optical branching circuit, the branching angle θ3 cannot be set large due to the increase in loss, so curved optical waveguides for widening the spacing between the output optical waveguides are practically indispensable. For this reason, even if the branch portion has low loss, the radius of curvature of the curved waveguide may be reduced in order to miniaturize the circuit, resulting in an increase in radiation loss. Therefore, the loss of an optical branch circuit should be considered as the sum of the mode conversion loss of the branch and the radiation loss of the curved optical waveguide. Therefore, when reducing the total loss of the optical branch circuit, bending portions and loss reduction become important issues. It is also known that radiation loss can be reduced by increasing the radius of curvature of the bend in the output optical waveguide, or by increasing the amount of increase in the refractive index of the optical waveguide to strengthen optical confinement within the optical waveguide. It is being

従来の光分岐回路を小型化するために曲がり導波路の曲
率半径を小さくした場合、曲がり部分での放射損失を低
減するために光導波路の光閉じ込め強さを大きくしなけ
ればならない。しかしこの場合、従来の光分岐回路では
入射光導波路も光閉じ込めの強さが大きくなり、入射端
面から入射した光が光導波路内で定常状態になるのに要
する距離は長くなる。もし入射光の伝播モードが定常状
態になる前に分岐するならば、分岐比が光の入射状態に
依存して変動するため安定な光分岐回路が得られない。
When the radius of curvature of a curved waveguide is reduced in order to downsize a conventional optical branch circuit, the optical confinement strength of the optical waveguide must be increased to reduce radiation loss at the curved portion. However, in this case, in the conventional optical branching circuit, the intensity of light confinement in the incident optical waveguide also becomes large, and the distance required for the light incident from the incident end face to reach a steady state within the optical waveguide becomes long. If the propagation mode of the incident light branches before reaching a steady state, a stable optical branching circuit cannot be obtained because the branching ratio varies depending on the incident state of the light.

従って分岐°比を安定化するためには入射光導波路を十
分に長くとらなくてはならないことになる。つまり曲が
り部の長さを短縮するためには入射光導波路を長くしな
ければならないという矛盾が生じてしまう。
Therefore, in order to stabilize the branching ratio, the input optical waveguide must be sufficiently long. In other words, a contradiction arises in that in order to shorten the length of the curved portion, the input optical waveguide must be lengthened.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の光分岐回路は、基板に不純物を導入して形成し
た光導波路が、少なくとも1つの入射光導波路と、少な
くとも2つ以上に分かれる分岐部と、=枝部に接続した
曲がり部を含む少なくとも2つ以上の出射光導波路とか
ら少くともなり、前記入射光導波路の前記不純物濃度を
前記出射光導波路における前記不純物濃度よりも低濃度
としたことを特徴とする構成になっている。
In the optical branch circuit of the present invention, the optical waveguide formed by introducing impurities into a substrate includes at least one incident optical waveguide, at least a branch part that is divided into two or more parts, and a bent part connected to the branch part. There are at least two or more output optical waveguides, and the impurity concentration in the input optical waveguide is lower than the impurity concentration in the output optical waveguide.

〔作用〕[Effect]

本発明では出射光導波路の屈折率を増加させる不純物の
濃度を高くすることにより導波光を先導波路内に強く閉
じ込め、曲がり放射損失を低減させることができる、ま
た光分岐回路の入射光導波路の不純物濃度を低くするこ
とにより光の閉じ込め強さを弱くし出射光導波路と同一
の不純物濃度とした場合に比べより短距離で入射光が定
常状態になるようにする。つまり本発明によれば光分岐
回路の入射光導波路と出射光導波路との光閉じ込め強さ
を独立に最適化している。
In the present invention, by increasing the concentration of impurities that increase the refractive index of the output optical waveguide, it is possible to strongly confine the guided light within the leading waveguide and reduce bending radiation loss. By lowering the concentration, the light confinement strength is weakened, and the incident light is brought into a steady state over a shorter distance than when the impurity concentration is the same as that of the output optical waveguide. That is, according to the present invention, the optical confinement strength of the input optical waveguide and the output optical waveguide of the optical branching circuit is independently optimized.

よって本発明により入射光導波路を短縮化しても安定な
分岐比が得られ、かつ曲がりの曲率半径を小さくするこ
とにより出射光導波路の長さを短縮しても低損失な導波
路構造が可能となり、低損失で小型な光分岐回路を実現
することができる。
Therefore, according to the present invention, a stable branching ratio can be obtained even if the input optical waveguide is shortened, and by reducing the radius of curvature of the bend, a waveguide structure with low loss can be achieved even if the length of the output optical waveguide is shortened. , it is possible to realize a small optical branch circuit with low loss.

〔実施例〕〔Example〕

次に本発明の実施例について図面を参照して説明する。 Next, embodiments of the present invention will be described with reference to the drawings.

第1図は本発明の第1の実施例を示す斜視図である。FIG. 1 is a perspective view showing a first embodiment of the present invention.

2−カッ) L i N b 03基板1上に以下の条
件でTiを拡散することにより光導波路を形成する。
2-C) An optical waveguide is formed by diffusing Ti on the L i N b 03 substrate 1 under the following conditions.

分岐前の入射光導波路2の拡散前のTi膜厚をd、=5
00人とし、分岐後の出射光導波路4,5の拡散前のT
i膜厚をd、=800人とする。両光導波路幅W=8μ
mとし、1050℃・8時間空気雰囲気中で拡散を行う
。分岐前の入射光導波路2のTi膜厚d1は光の閉じ込
め強さが1次モードカットオフよりも十分に弱くなるよ
う設定されている。また分岐後の出射光導波路4,5の
Ti膜厚d2は1次モードカットオフ近傍の閉じ込め強
さとなるように設定さ九ている。上記の条件によって作
製された光分岐回路において入射光導波路2では拡散さ
れたTi濃度が低く光の閉じ込めか弱くなる。このため
入射光導波路2に入った光の伝播モード分布が最短距離
で定常状態になり安定な分岐比が得られる。また分岐後
の出射光導波路4,5ではTi濃度が高く導波光の光閉
じ込めが強いため曲がり部分での放射損失を低減するこ
とができる。
The Ti film thickness before diffusion of the incident optical waveguide 2 before branching is d, = 5
00 people, and T before diffusion of the output optical waveguides 4 and 5 after branching.
Let the film thickness of i be d, = 800 people. Both optical waveguide width W=8μ
m, and diffusion is performed in an air atmosphere at 1050° C. for 8 hours. The Ti film thickness d1 of the incident optical waveguide 2 before branching is set so that the light confinement strength is sufficiently weaker than the first-order mode cutoff. Further, the Ti film thickness d2 of the output optical waveguides 4 and 5 after branching is set so as to have a confinement strength near the first-order mode cutoff. In the optical branching circuit manufactured under the above conditions, the diffused Ti concentration in the incident optical waveguide 2 is low, and light confinement is weak. Therefore, the propagation mode distribution of the light that has entered the incident optical waveguide 2 becomes a steady state at the shortest distance, and a stable branching ratio can be obtained. Further, the output optical waveguides 4 and 5 after branching have a high Ti concentration and strong optical confinement of the guided light, so that radiation loss at the bent portion can be reduced.

このようにTi濃度を変えることにより分岐への入射光
導波路と出社光導波路の光閉じ込め強さを最適化するこ
とができる。よって入射光導波路を短縮化しても安定な
分岐比が得られ、かつ出射光導波路の曲がりの曲率半径
を従来より小さくしても損失増加の無い先導波路構造が
可能となる。
By changing the Ti concentration in this way, it is possible to optimize the optical confinement strength of the optical waveguide entering the branch and the optical waveguide exiting the branch. Therefore, even if the input optical waveguide is shortened, a stable branching ratio can be obtained, and even if the radius of curvature of the output optical waveguide is made smaller than before, it is possible to create a leading waveguide structure with no increase in loss.

これにより従来と同等の損失でより小型化な、あるいは
同等のサイズでより低損失な光分岐回路が実現できる。
This makes it possible to realize a smaller optical branch circuit with the same loss as the conventional one, or an optical branch circuit with the same size and lower loss.

第2図は本発明の第2の実施例を示す斜視図である。FIG. 2 is a perspective view showing a second embodiment of the invention.

本実施例では入射光導波路2のTi膜厚をd、、出射光
導波路4,5のTi膜厚をd2と、第1のQ 実施例と同じに分岐部3のTi膜厚をdlからd2まで
テーパ状に変化させる。Ti膜厚テーバを100〜20
0人/mmにすれば光導波路の屈折率変化によるモード
変換損失はほとんど発生せず(近藤他;、°屈折率差を
つけたLiNb○、方向性結合型スイッチ′ ;第31
回応用物理学関係連合講演会予稿集p 11 g)、よ
り低損失な光分岐回路を実現できる。
In this example, the Ti film thickness of the input optical waveguide 2 is d, the Ti film thickness of the output optical waveguides 4 and 5 is d2, and the Ti film thickness of the branch part 3 is changed from dl to d2 as in the first example. Change in a tapered shape until. Ti film thickness Taber 100~20
If it is set to 0 people/mm, almost no mode conversion loss will occur due to changes in the refractive index of the optical waveguide (Kondo et al., LiNb with a difference in refractive index, directional coupling type switch'; No. 31
Proceedings of the Joint Conference on Regenerative Physics, p. 11 g), it is possible to realize an optical branch circuit with lower loss.

以上Ti拡散L i N b Os光導波路の場合を例
によって説明したが他の石英系ガラス、半導体等の導波
路材料による不純物拡散型光導波路を用いて形成した光
分岐回路に本発明を適用した場合でも同様の効果を得ら
れる。
The case of a Ti-diffused L i N b Os optical waveguide has been described above as an example, but the present invention can also be applied to optical branch circuits formed using impurity-diffused optical waveguides made of other waveguide materials such as silica-based glass and semiconductors. The same effect can be obtained in any case.

また光分岐回路をカスケードに多段接続する場合も本発
明を適用して、出射光導波路の不純物濃度を高くし、次
段の光分岐回路の入射光導波路の不純物濃度を低くする
ことにより分岐への入射光導波路と出射光導波路の光閉
じ込め強さを最適化することができる。よって入射光導
波路を短縮化しても安定な分岐比が得られ、かつ出射光
導波路の曲がりの曲率半径を従来より小さくしても損失
増加の無い光導波路構造が可能となる。
The present invention can also be applied when optical branching circuits are connected in multiple stages in cascade, by increasing the impurity concentration of the output optical waveguide and lowering the impurity concentration of the input optical waveguide of the next stage optical branching circuit. The optical confinement strength of the input optical waveguide and the output optical waveguide can be optimized. Therefore, even if the input optical waveguide is shortened, a stable branching ratio can be obtained, and even if the radius of curvature of the output optical waveguide is made smaller than that of the conventional optical waveguide, an optical waveguide structure with no increase in loss can be achieved.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば光分岐回路の入射光
導波路及び、出射光導波路の不純物濃度を変えることに
より光閉じ込め強さを独立に制御し、入射光導波路の分
岐比を安定化すると同時に出射光導波路では損失を低減
するという従来の光分岐回路では不可能であった効果が
得られる。これにより従来より大幅に小型・低損失で安
定な光分岐比が得られる光分岐回路を実現することがで
きる。
As explained above, according to the present invention, the optical confinement strength is independently controlled by changing the impurity concentration of the input optical waveguide and the output optical waveguide of the optical branching circuit, and the branching ratio of the input optical waveguide is stabilized. The output optical waveguide can achieve an effect of reducing loss, which was not possible with conventional optical branching circuits. This makes it possible to realize an optical branching circuit that is much smaller, has lower loss, and provides a more stable optical branching ratio than conventional circuits.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1の実施例を示す斜視図である。第
2図は本発明の第2の実施例を示す斜視図である。第3
図は従来の光分岐回路を示す斜視図である。 l・・・・・・L i ’N b O3基板、2・・・
・・・入射光導波路、3・・・・・・分岐部、4・・・
・・・出射光導波路、6・・・・・・光導波路端面。 代理人 弁理士  内 原   音 4出吋光#人Iか 第1 図 橘2図
FIG. 1 is a perspective view showing a first embodiment of the present invention. FIG. 2 is a perspective view showing a second embodiment of the invention. Third
The figure is a perspective view showing a conventional optical branch circuit. l...L i 'N b O3 substrate, 2...
...Incidence optical waveguide, 3... Branch part, 4...
. . . Output optical waveguide, 6 . . . Optical waveguide end surface. Agent Patent Attorney Uchihara Oto 4 Deku Hikari #Person I or 1 Figure Tachibana 2

Claims (1)

【特許請求の範囲】[Claims] 基板に不純物を導入して形成した光導波路が少なくとも
1つの入射光導波路と、少なくとも2つ以上に分かれる
分岐部と、前記分岐部に接続した曲がり部を含む少なく
とも2つ以上の出射光導波路とから少くともなり、前記
入射光導波路の前記不純物濃度を前記出射光導波路にお
ける前記不純物濃度よりも低濃度としたことを特徴とす
る光分岐回路。
An optical waveguide formed by introducing impurities into a substrate includes at least one input optical waveguide, a branch part that is divided into at least two parts, and at least two or more output optical waveguides including a bent part connected to the branch part. An optical branching circuit characterized in that at least the impurity concentration in the input optical waveguide is lower than the impurity concentration in the output optical waveguide.
JP1133108A 1989-05-26 1989-05-26 Optical branch circuit Expired - Lifetime JP2903543B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1133108A JP2903543B2 (en) 1989-05-26 1989-05-26 Optical branch circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1133108A JP2903543B2 (en) 1989-05-26 1989-05-26 Optical branch circuit

Publications (2)

Publication Number Publication Date
JPH02310504A true JPH02310504A (en) 1990-12-26
JP2903543B2 JP2903543B2 (en) 1999-06-07

Family

ID=15097002

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1133108A Expired - Lifetime JP2903543B2 (en) 1989-05-26 1989-05-26 Optical branch circuit

Country Status (1)

Country Link
JP (1) JP2903543B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62254018A (en) * 1986-04-26 1987-11-05 Hoya Corp Wave guide type sensor
JPS6377009A (en) * 1986-09-20 1988-04-07 Fujitsu Ltd Y-branch waveguide

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62254018A (en) * 1986-04-26 1987-11-05 Hoya Corp Wave guide type sensor
JPS6377009A (en) * 1986-09-20 1988-04-07 Fujitsu Ltd Y-branch waveguide

Also Published As

Publication number Publication date
JP2903543B2 (en) 1999-06-07

Similar Documents

Publication Publication Date Title
US6980720B2 (en) Mode transformation and loss reduction in silicon waveguide structures utilizing tapered transition regions
US7035509B2 (en) Semiconductor optical waveguide device
JPH0387704A (en) Optical circuit
US4953935A (en) Integrated optic star coupler
JPH05196826A (en) Optical coupler and manufacture thereof
AU686318B2 (en) Integrated optical branching arrangement
JPH05173030A (en) Bending structure of optical waveguide
CA2253563C (en) Optical power divider and fabrication method thereof
JPH02310504A (en) Optical branching circuit
JPH03225301A (en) Optical branching circuit
Chang et al. A novel low-loss wide-angle Y-branch with a diamond-like microprism
JP2002514783A (en) Multimode coupler based on miniaturized interference
CN108693599B (en) Optical waveguide element
US20030095771A1 (en) Planar lightwave circuit with polynominal-curve waveguide
JPH02198401A (en) Optical branching circuit
JPH10160951A (en) Optical multiplexing and demultiplexing circuit
Chan et al. Novel design of low‐loss wide‐angle symmetric Y‐branch waveguides
JPH08292340A (en) Optical branch
Lu et al. Analysis of multimode interference coupler with a width of arbitrary-exponent binomial function
JPS6269204A (en) Branching and coupling device
JPS6262304A (en) Y branched optical waveguide device
JPS6363007A (en) Waveguide type branching circuit
JP2539381B2 (en) Light switch
JPH02126239A (en) Optical switch
JPH0381740A (en) Optical control circuit