JPH02310387A - Single-electrode electrolytic cell and method for electrolysis using the cell - Google Patents

Single-electrode electrolytic cell and method for electrolysis using the cell

Info

Publication number
JPH02310387A
JPH02310387A JP1128534A JP12853489A JPH02310387A JP H02310387 A JPH02310387 A JP H02310387A JP 1128534 A JP1128534 A JP 1128534A JP 12853489 A JP12853489 A JP 12853489A JP H02310387 A JPH02310387 A JP H02310387A
Authority
JP
Japan
Prior art keywords
cathode
chamber
electrode
electrolytic cell
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1128534A
Other languages
Japanese (ja)
Inventor
Yoshiyuki Makita
蒔田 善之
Hiromi Kubo
久保 博海
Shigeki Takekoshi
竹腰 滋喜
Yuji Kawakami
川上 祐二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KAMIOKA KOGYO KK
Original Assignee
KAMIOKA KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KAMIOKA KOGYO KK filed Critical KAMIOKA KOGYO KK
Priority to JP1128534A priority Critical patent/JPH02310387A/en
Publication of JPH02310387A publication Critical patent/JPH02310387A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To deposit and recover the metal in an electrolyte on a cathode with excellent electrolysis efficiency in good yield at the time of electrolyzing the metal ion- contg. electrolyte by using the single-electrode electrolytic cell which is separated into the cathode chamber and anode chamber with a diaphragm having a passage port and has a fibrous cathode. CONSTITUTION:The electrolytic cell 21 is separated into the anode chamber 24 and the cathode chamber 25 by the diaphragm 23 having may passage ports 22, a fibrous- carbon cathode 28 carrying the noble metal catalyst of Pd, Ru, Pt, etc., is packed in the cathode chamber and connected to a cathode current collector 27, and a plate, rod or meshy insoluble anode 26 is arranged in the anode chamber. The electrolyte 30 contg. metal ion is supplied to the cathode chamber 25 from a storage chamber 29 through a supply pipe 31, a DC current is applied between the cathode and anode to deposit the metal on the cathode 28, and the exhausted electrolyte is introduced into the anode chamber 24 through the passage port 22 of the diaphragm 23 and discharged in to an exhausted electrolyte tank 33 through an overflow pipe 32. The polarity of both electrodes is reversed, an eluent such as aq. HCl is circulated to elute the metal depositing on the cathode, and a soln. having an extremely high content of metal is recovered from the cathode chamber 25.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、廃液処理、金属回収、不純物分解又は除去、
水電解等の各種電解反応、特に前記金属回収に有効に使
用できる単極式電解槽及び該電解槽を使用する電解方法
に関する。
Detailed Description of the Invention (Industrial Application Field) The present invention is applicable to waste liquid treatment, metal recovery, impurity decomposition or removal,
The present invention relates to a monopolar electrolytic cell that can be effectively used for various electrolytic reactions such as water electrolysis, particularly for recovering the metals mentioned above, and an electrolytic method using the electrolytic cell.

(従来技術とその問題点) 従来から水電解による酸素及び水素の発生等の通常の電
解反応をはじめとして、めっき廃液の処理及び該廃液か
らの貴金属等の回収のように広汎に電解が使用されてい
る。例えば廃液処理を電解以外の方法で行う場合は、該
廃液が一般に粘度が高く取り扱い難い廃有機物を含有す
るため、通常の処理操作を行い難く前記廃有機物を分解
できずそのまま廃棄することが多くなっている。しかし
ながら、電解を使用して該廃液処理を行う場合には、該
廃液を電解槽に導くのみで電極表面で前記有機物の分解
が生じて、無害なガスや水等に分解することができる。
(Prior art and its problems) Electrolysis has been used extensively in the past, including ordinary electrolytic reactions such as the generation of oxygen and hydrogen through water electrolysis, as well as the treatment of plating waste liquid and the recovery of precious metals, etc. from the waste liquid. ing. For example, when waste liquid treatment is performed by a method other than electrolysis, the waste liquid generally contains waste organic matter that is highly viscous and difficult to handle, making it difficult to perform normal treatment operations and often resulting in the waste organic matter being unable to be decomposed and being disposed of as is. ing. However, when the waste liquid is treated using electrolysis, the organic matter is decomposed on the electrode surface simply by introducing the waste liquid into an electrolytic cell, and can be decomposed into harmless gases, water, and the like.

このように電解反応は一般の有機及び無機反応に比較し
て利点が多いため工業的に広く利用されているが、電解
による目的物質製造コストの大部分を占める電力コスト
を低減するために従来から種々の技術が提案されている
As described above, electrolytic reactions have many advantages compared to general organic and inorganic reactions, and are therefore widely used industrially. Various techniques have been proposed.

その−例として、電極として多孔質電極を使用方法があ
り、該方法によると、電極の表面積が大きくなり広い面
積で電解液と接触して電解反応速度が上昇することが知
られている。しかし例えば多孔質の炭素板を電極として
使用して電解を行うと、実際に電極反応が生ずるのは対
極側に面した平面部分のみで電解に寄与する面積の増加
には結びついていない。
For example, there is a method of using a porous electrode as an electrode, and it is known that this method increases the surface area of the electrode and contacts the electrolytic solution over a wide area, thereby increasing the rate of electrolytic reaction. However, when electrolysis is carried out using, for example, a porous carbon plate as an electrode, the electrode reaction actually occurs only on the flat surface facing the counter electrode, and the area contributing to electrolysis does not increase.

更に若干量の不純物金属を含有する金属溶液から該不純
物金属を除去して精製を行うには、従来は試薬を添加し
て前記不純物金属を沈澱させて除去するようにしている
が、該精製に使用する試薬コストが高価になり、より効
率的で経済的な精製方法が要請され、該要請に応える方
法として電解技術が提案され、該電解においても上述の
通り電力コストの低減が要請されている。この電解によ
り前記金属溶液中の貴金属等は陰極に電析されて回収さ
れるが、実際に回収金属を他の用途に使用する場合には
該金属を再度溶解して溶液状態で使用される。従って金
属の状態でなく金属イオンの溶液として回収することが
できれば、より広汎な用途に容易に適用することができ
る。
Furthermore, in order to perform purification by removing impurity metals from a metal solution containing a small amount of impurity metals, conventionally, a reagent is added to precipitate and remove the impurity metals. As the cost of the reagents used increases, a more efficient and economical purification method is required, and electrolysis technology has been proposed as a method to meet this demand, and as mentioned above, there is also a need to reduce electricity costs in electrolysis. . Through this electrolysis, the precious metals and the like in the metal solution are electrodeposited on the cathode and recovered, but when the recovered metals are actually used for other purposes, they are redissolved and used in a solution state. Therefore, if it can be recovered as a solution of metal ions rather than in a metal state, it can be easily applied to a wider range of uses.

更に各種電解操作では、作業性を向上させるために取り
扱う電解液の種類を減少させることが望ましい。
Furthermore, in various electrolysis operations, it is desirable to reduce the types of electrolytes to be handled in order to improve workability.

(発明の目的) 本発明は、電解反応に寄与する電極表面の表面積を増加
させた電極を使用して効率良く電解反応を生じさせるこ
とができ、しかも使用する電解液の種類を減少させるこ
とを可能にする単極式電解槽及び該電解槽を使用する電
解方法を提供することを目的とする。
(Objective of the Invention) The present invention makes it possible to efficiently generate an electrolytic reaction by using an electrode with an increased surface area of the electrode surface that contributes to the electrolytic reaction, and to reduce the number of types of electrolyte used. An object of the present invention is to provide a monopolar electrolytic cell and an electrolytic method using the electrolytic cell.

(問題点を解決するための手段) 本発明は、第1に隔膜で陽極室及び陰極室に区画された
単極式電解槽において、集電体に接続された繊維状炭素
を少なくとも一方の極室で電極として使用することを特
徴とする単極式電解槽であり、第2に該単極式電解槽を
使用して溶液中の金属を繊維状炭素陰極上に電析させ、
かつ該電析金属を電極の極性を逆にして電解することに
より溶出液中に溶解して回収するようにした電解方法で
あり、第3に前記第1の発明の電解槽の繊維状炭素が陰
極となるように通電しながら電解液を両極室を順に通過
させて所定の電解反応を行わせる電解方法である。
(Means for Solving the Problems) The present invention firstly provides a monopolar electrolytic cell that is divided into an anode chamber and a cathode chamber by a diaphragm, in which fibrous carbon connected to a current collector is connected to at least one electrode. A monopolar electrolytic cell characterized in that it is used as an electrode in a chamber, and a second step is to use the monopolar electrolytic cell to electrodeposit a metal in a solution onto a fibrous carbon cathode,
and an electrolytic method in which the electrodeposited metal is electrolyzed with the polarity of the electrode reversed to dissolve it in the eluate and recover it, and thirdly, the fibrous carbon in the electrolytic cell of the first invention is This is an electrolysis method in which a predetermined electrolytic reaction is carried out by sequentially passing an electrolytic solution through both electrode chambers while energizing the cathode.

以下本発明の詳細な説明する。The present invention will be explained in detail below.

本発明に係わる単極式電解槽は、廃液処理、触媒廃液等
からの金属回収、溶液中の不純物除去、シアン等の分解
、水電解等の電解反応に使用することができるが、陽極
液と陰極液の混合が生ずるため電解生成物が溶液状態で
得られる食塩電解や有機電解には不向きである。
The monopolar electrolytic cell according to the present invention can be used for waste liquid treatment, metal recovery from catalyst waste liquid, etc., impurity removal from solutions, decomposition of cyanide, etc., and electrolytic reactions such as water electrolysis. Since mixing of the catholyte occurs, it is not suitable for salt electrolysis or organic electrolysis where the electrolyzed product is obtained in a solution state.

本発明は、少なくとも一方の電極特に陰極として集電体
に接続された繊維状炭素電極を使用する。
The invention uses a fibrous carbon electrode connected to a current collector as at least one electrode, particularly the cathode.

前述した通り、多孔質炭素板等の通常の多孔質体を電極
として電解を行うと、電極自体は高表面積を有しても電
極として有効に機能する部分は対極に対向する面のみで
実際には電解面積の増加には繋がらない。
As mentioned above, when electrolysis is carried out using a normal porous material such as a porous carbon plate as an electrode, even though the electrode itself has a high surface area, the only part that effectively functions as an electrode is the one facing the counter electrode. does not lead to an increase in the electrolytic area.

これに対し繊維状炭素電極を使用する本発明に係わる電
解槽では、理由は明確ではないが、繊維状炭素電極の各
繊維のそれぞれのほぼ全面が電極反応を行い、その有効
電極面積の増加量は多大なものとなる。該効果は、繊維
状炭素の長さが十分に長く電極内における電位勾配がな
く該電極のどの部分でも電位が等しいため、電解反応が
前記電極のどの部分でも生じ該電極のほぼ全面が電極と
して機能するためと推測することができる。
On the other hand, in the electrolytic cell according to the present invention using a fibrous carbon electrode, although the reason is not clear, almost the entire surface of each fiber of the fibrous carbon electrode undergoes an electrode reaction, resulting in an increase in the effective electrode area. becomes enormous. This effect is due to the fact that the length of the fibrous carbon is long enough so that there is no potential gradient within the electrode and the potential is the same in every part of the electrode, so electrolytic reactions occur in any part of the electrode and almost the entire surface of the electrode acts as an electrode. It can be assumed that this is because it functions.

従ってその電流密度は極小となり、これにより電流効率
が飛躍的に向上する。例えば廃液中の貴金属を電解によ
り陰極上に電析させて回収する場合、該貴金属濃度が1
0〜1000mg71程度でありこれを1mg/#以下
にする際に従来の板状炭素陰極を使用するとその電流効
率は1〜10%程度であるのに対し、本発明に係わる繊
維状炭素を電極として使用する単極式電解槽では、10
〜30%程度に上昇する。
Therefore, the current density becomes extremely small, thereby dramatically improving current efficiency. For example, when recovering precious metals in waste liquid by electrolytically depositing them on a cathode, the concentration of the precious metals is 1.
0 to 1000 mg71, and when using a conventional plate-shaped carbon cathode to reduce this to 1 mg/# or less, the current efficiency is about 1 to 10%. In the monopolar electrolytic cell used, 10
It increases to about 30%.

本発明に使用する繊維状炭素は市販のものを使用すれば
よく、板状、フェルト状等の成形したものあるいは綿状
のものをそのまま使用することができる。
The fibrous carbon used in the present invention may be commercially available, and may be molded into a plate shape, felt shape, or the like, or a cotton-like carbon material may be used as is.

該繊維状炭素自体には電解電圧低減機能はないため、電
圧を減少させることにより消費電力の低減を図るために
は、パラジウム、ルテニウム、白金等の貴金属触媒を前
記繊維状炭素上に担持させる必要がある。これにより電
解電圧を低減させて電解反応を促進するとともに、前記
繊維状炭素電極の寿命を延ばすことが可能になる。
Since the fibrous carbon itself does not have an electrolysis voltage reduction function, in order to reduce power consumption by reducing the voltage, it is necessary to support a noble metal catalyst such as palladium, ruthenium, or platinum on the fibrous carbon. There is. This makes it possible to reduce the electrolytic voltage and promote the electrolytic reaction, as well as to extend the life of the fibrous carbon electrode.

該繊維状炭素電極は通常陰極として使用されて単極式電
解槽が構成され、イオン交換膜等の隔膜により前記電解
槽が陽極室と陰極室に区画されるが、前記隔膜には通孔
を形成し該通孔内を電解液が流通するようにする。これ
により陰陽いずれかの極室から電解液を供給すると、該
電解液が前記通孔を通って他方の極室にも流通し該極室
から取り出すことができ、いわゆるワンバス方式による
電解が可能になる。従って両極室それぞれに極液の供給
及び排出あるいは循環用のラインを設置する必要がなく
なる。
The fibrous carbon electrode is usually used as a cathode to construct a monopolar electrolytic cell, and the electrolytic cell is divided into an anode chamber and a cathode chamber by a diaphragm such as an ion exchange membrane. The electrolytic solution is allowed to flow through the through holes. As a result, when electrolyte is supplied from either the positive or negative electrode chamber, the electrolyte flows through the through hole to the other electrode chamber and can be taken out from the electrode chamber, making it possible to conduct electrolysis using the so-called one-bath method. Become. Therefore, there is no need to install a line for supplying and discharging the polar liquid or for circulating it in each of the two electrode chambers.

例えばシアン廃液の分解はシアンイオンの分解だけでな
く該廃液中の貴金属イオンの回収も伴うが、シアン分解
は陽極反応であり一方貴金属の電析は陰極反応である。
For example, the decomposition of cyanide waste liquid involves not only the decomposition of cyanide ions but also the recovery of noble metal ions in the waste liquid; however, cyanide decomposition is an anodic reaction, while electrodeposition of noble metals is a cathodic reaction.

従ってイオン交換膜等の電解液の浸透し難い隔膜を装着
した電解槽を使用してシアン分解を行うと前記両電極反
応の一方のみが促進され他方の反応が殆ど進行しないた
め、効率が大幅に低下する。これに対し、本発明に係わ
る単極式電解槽では、隔膜に形成した通孔により電解液
が陽極室−陰極室又は陰極室−陽極室と流れるため、前
記両電極反応のそれぞれを効率良く進行させることがで
きる。
Therefore, if cyanogen decomposition is carried out using an electrolytic cell equipped with a diaphragm that is difficult for electrolyte to permeate, such as an ion exchange membrane, only one of the two electrode reactions will be promoted and the other reaction will hardly proceed, resulting in a significant increase in efficiency. descend. In contrast, in the monopolar electrolytic cell according to the present invention, the electrolyte flows from the anode chamber to the cathode chamber or from the cathode chamber to the anode chamber through the holes formed in the diaphragm, so that each of the two electrode reactions can proceed efficiently. can be done.

前記繊維状炭素が耐振として使用されるのは、一旦陰極
として溶液中の金属の電析に使用され該電析金属を溶出
液に溶解して高濃度金属溶液を生成させる際に両電極の
極性を反転させて前記繊維状炭素上の金属を酸化して金
属イオンとして溶出させる場合等である。
The reason why the fibrous carbon is used as a vibration-resistant material is that it is once used as a cathode to deposit a metal in a solution, and when the deposited metal is dissolved in an eluate to generate a highly concentrated metal solution, the polarity of both electrodes is changed. This is the case, for example, when the metal on the fibrous carbon is oxidized and eluted as metal ions by inverting the fibrous carbon.

該電析及び再溶出による溶液中の金属回収(精製あるい
は濃縮)では、当初前記繊維状炭素を収容した極室が陰
極室となるように通電しながらメッキ廃液や触媒再生工
程洗浄液等の金属含有溶液を前記陰極室に供給する。こ
れにより該溶液中の金属イオンが還元されて金属として
前記繊維状炭素自体上に電析する。十分金属が電析した
後に両極室の極性が逆になるよう、つまり前記繊維状炭
素が陽極として機能するよう通電を行いながら溶出液と
して前記電析金属を溶解できる溶液例えば塩酸水溶液や
王水を供給すると、前記電析金属が前記繊維状炭素陽極
上で酸化されて金属イオンとして前記溶出液に溶解し濃
厚な金属溶液を得ることができる。なお前記繊維状炭素
を陽極として使用する際に陽極反応が酸素発生反応であ
ると前記繊維状炭素が酸化され性能劣化が生ずるおそれ
があるが、前述の通り塩酸水溶液や王水を使用すると陽
極反応が塩素発生反応となるため繊維状炭素陽極の劣化
が起こることは殆どない。なお陽極反応として酸素が発
生する場合には該繊維状炭素陽極に二酸化鉛、酸化イリ
ジウム、酸化白金等の補助材料を密着させて前記繊維状
炭素の劣化を防止することが好ましい。
In the metal recovery (purification or concentration) in the solution by electrodeposition and re-elution, electricity is applied so that the electrode chamber containing the fibrous carbon becomes the cathode chamber, while metal-containing liquid such as plating waste liquid or catalyst regeneration process cleaning liquid is removed. A solution is supplied to the cathode chamber. As a result, the metal ions in the solution are reduced and deposited as metal on the fibrous carbon itself. After sufficient metal has been deposited, a solution capable of dissolving the deposited metal, such as an aqueous hydrochloric acid solution or aqua regia, is used as an eluent while applying electricity so that the polarity of the electrode chambers is reversed, that is, the fibrous carbon functions as an anode. When supplied, the electrodeposited metal is oxidized on the fibrous carbon anode and dissolved in the eluate as metal ions to obtain a concentrated metal solution. Note that when using the fibrous carbon as an anode, if the anode reaction is an oxygen-generating reaction, the fibrous carbon may be oxidized and the performance may deteriorate; however, as mentioned above, when an aqueous hydrochloric acid solution or aqua regia is used, the anode reaction Since this is a chlorine generating reaction, there is almost no deterioration of the fibrous carbon anode. In addition, when oxygen is generated as a result of the anode reaction, it is preferable to bring an auxiliary material such as lead dioxide, iridium oxide, platinum oxide or the like into close contact with the fibrous carbon anode to prevent deterioration of the fibrous carbon.

電極の極性を反転させず前記繊維状炭素を常に陰極とし
て使用する場合には前記補助材料は不要である。
If the fibrous carbon is always used as a cathode without reversing the polarity of the electrode, the auxiliary material is not necessary.

このタイプの単極式電解槽では、電極を縦方向に配置す
る縦型構造だけでなく、電極を横方向に配置する横型構
造も可能である。
This type of monopolar electrolytic cell can have not only a vertical structure in which the electrodes are arranged vertically, but also a horizontal structure in which the electrodes are arranged horizontally.

更にこの隔膜型電解槽では、前記繊維状炭素電極を電極
室全体に充填することが可能であり、これにより該電極
が前記隔膜に接触していわゆるゼロギャップタイプの電
解が可能になり、電解電圧低減にも寄与することができ
るとともに、より以上の電解面積の増加を図ることがで
きる。なお該充填型電解槽の場合には、前記隔膜の通孔
を電解液の供給口及び取出口から離して設置して電解液
の前記繊維状炭素との接触時間を長くなることが好まし
い。
Furthermore, in this diaphragm-type electrolytic cell, it is possible to fill the entire electrode chamber with the fibrous carbon electrode, which allows the electrode to come into contact with the diaphragm, enabling so-called zero-gap type electrolysis, and increasing the electrolytic voltage. It is possible to contribute to the reduction, and also to increase the electrolytic area even more. In the case of the filled electrolytic cell, it is preferable that the through holes of the diaphragm be placed away from the supply and outlet ports of the electrolytic solution to lengthen the contact time of the electrolytic solution with the fibrous carbon.

次に添付図面に基づいて本発明に係わる単極式電解槽の
好ましい実施例を説明するが、本発明は該電解槽に限定
されるものではない。
Next, preferred embodiments of the monopolar electrolytic cell according to the present invention will be described based on the accompanying drawings, but the present invention is not limited to this electrolytic cell.

第1図は、本発明の単極式電解槽の一実施例を示す縦断
面図である。
FIG. 1 is a longitudinal sectional view showing an embodiment of a monopolar electrolytic cell of the present invention.

1は、上面開口部にガス排出口2を有する蓋体3が嵌合
された円筒状の電解槽本体で、該電解槽本体1の下部に
は漏出液受器4がそれぞれのフランジ部をその間に位置
する円板状の陰極集電体5とともにボルト6により締着
固定されている。前記陰極集電体5上には密着して繊維
状炭素から成るフェルト状円板体7が配置されている。
Reference numeral 1 denotes a cylindrical electrolytic cell body into which a lid 3 having a gas discharge port 2 is fitted in the upper opening, and a leakage liquid receiver 4 is provided at the bottom of the electrolytic cell body 1 with each flange portion between them. It is fastened and fixed with bolts 6 together with a disk-shaped cathode current collector 5 located at . A felt-like disk body 7 made of fibrous carbon is disposed in close contact with the cathode current collector 5 .

前記蓋体3の中央には貫通孔8が穿設され、該貫通孔8
には、有底円筒状で側面下端部の周縁部に複数の通孔9
が形成されかつ前記蓋体3のやや下方に側方を向いて電
解液取出管10が連設され更に上端近傍に斜め上向きに
ガス排出口11が形成された隔膜12が嵌合され、該隔
膜12の下面は前記円板体7に近接している。13は、
前記円筒状隔膜12内のほぼ中央に設置されたグラファ
イト等から成る棒状陽極である。
A through hole 8 is bored in the center of the lid 3, and the through hole 8
It has a cylindrical shape with a bottom and has a plurality of through holes 9 on the periphery of the lower end of the side surface.
A diaphragm 12 is fitted therein, in which an electrolyte outlet pipe 10 is connected to the lid body 3 facing laterally slightly below the lid body 3, and a gas discharge port 11 is formed diagonally upward near the upper end. The lower surface of 12 is close to the disk body 7. 13 is
This is a rod-shaped anode made of graphite or the like and placed approximately in the center of the cylindrical diaphragm 12 .

前記電解槽本体1の内壁と前記隔膜12の外壁間にはチ
ョップ状の繊維状炭素14が充填され、該繊維状炭素1
4の上には繊維状炭素から成るフェルト状円板体15が
配置されている。
Chopped fibrous carbon 14 is filled between the inner wall of the electrolytic cell body 1 and the outer wall of the diaphragm 12.
A felt-like disc body 15 made of fibrous carbon is placed on top of the felt disc body 15 .

前記電解槽本体1の右側面上部には、一端がポンプ16
を通して電解液貯留槽17に接続された電解液供給管1
8の他端が貫通し前記円筒体15の上面に近接している
。19は、前記電解液取出管10からの電解液の貯留槽
である。
At the upper right side of the electrolytic cell body 1, one end is provided with a pump 16.
Electrolyte supply pipe 1 connected to electrolyte storage tank 17 through
The other end of 8 passes through and is close to the upper surface of the cylindrical body 15. 19 is a storage tank for the electrolytic solution from the electrolytic solution extraction pipe 10.

このような構成から成る電解槽の電解液貯留槽17内の
電解液、例えばパラジウムや白金等の貴金属を含有する
、化学反応やガソリン燃焼等に使用された廃触媒の再生
洗浄液をポンプ16により前記電解槽本体lの陰極室つ
まり該本体1と隔膜12間の空間に導くと実質的に陰極
として機能する前記円板体7.15及び繊維状炭素14
と接触して前記貴金属が電析し、貴金属濃度が減少した
前記洗浄液は前記隔膜12の通孔9を通って陽極室つま
り円筒状隔膜内に達し、通常の電解反応によるガス発生
を行って前記電解液取出口lOから取り出されて前記貯
留槽19に導かれる。該貯留槽19に導かれた電解液を
再度電解液供給管18から電解槽本体1に循環させるこ
とは可能であるが、該電解液が塩素イオンを含有する場
合には陰極上に電析した金属の再溶出につながるため好
ましくない。
The electrolyte in the electrolyte storage tank 17 of the electrolyzer having such a configuration, for example, the regenerated cleaning liquid of the waste catalyst used in chemical reactions, gasoline combustion, etc., which contains precious metals such as palladium and platinum, is pumped into the electrolyte by the pump 16. The disk body 7.15 and the fibrous carbon 14 substantially function as a cathode when introduced into the cathode chamber of the electrolytic cell body 1, that is, the space between the body 1 and the diaphragm 12.
The cleaning liquid, in which the noble metal is electrodeposited and the concentration of the noble metal is reduced, passes through the through hole 9 of the diaphragm 12 and reaches the anode chamber, that is, the cylindrical diaphragm, where gas is generated by a normal electrolytic reaction and the cleaning liquid has a reduced noble metal concentration. The electrolyte is taken out from the electrolyte outlet lO and guided to the storage tank 19. Although it is possible to circulate the electrolytic solution introduced into the storage tank 19 from the electrolytic solution supply pipe 18 to the electrolytic cell main body 1 again, if the electrolytic solution contains chlorine ions, it is possible to cause the electrolytic solution to be electrolytically deposited on the cathode. This is undesirable because it leads to metal re-elution.

このように金属を繊維状炭素陰極上に電析させた後、不
純物を含まない溶出液例えば塩酸水溶液や王水を前記電
解液供給管18から供給しかつ両極の極性が反転するよ
うつまり前記繊維状炭素が陽極として機能するよう通電
すると、前記繊維状炭素上に電析した金属が前記溶出液
中に金属イオンとして溶解して前記通電9を通って前記
隔膜12内部に移動し更に電解液取出管10から取り出
される。
After the metal is electrodeposited onto the fibrous carbon cathode in this manner, an eluent containing no impurities, such as an aqueous hydrochloric acid solution or aqua regia, is supplied from the electrolyte supply pipe 18, and the polarity of the two electrodes is reversed. When the fibrous carbon is energized to function as an anode, the metal electrodeposited on the fibrous carbon is dissolved in the eluate as metal ions, passes through the energizer 9, moves into the diaphragm 12, and is further removed from the electrolyte. It is removed from the tube 10.

取り出された溶出液は比較的高濃度の金属溶液であり、
上記操作により触媒工程洗浄液等の低濃度金属溶液を高
濃度に濃縮するとともに有機物等の不純物とも分離され
高純度化を達成することもできる。
The extracted eluate is a relatively highly concentrated metal solution,
By the above operation, a low concentration metal solution such as a catalyst process cleaning solution can be concentrated to a high concentration, and impurities such as organic substances can also be separated to achieve high purity.

第2図は、本発明の単極式電解槽の他の実施例を示す縦
断面図である。
FIG. 2 is a longitudinal sectional view showing another embodiment of the monopolar electrolytic cell of the present invention.

21は、下端近傍に通孔22が形成された隔膜23によ
り陽極室24と陰極室25に区画された電解槽本体で、
前記陽極室24には板状、棒状あるいはメツシュ状の陽
極26が設置され、又陰極室25には板状又′はメツシ
ュ状等の陰極集電体27に接続されたチョップ状の繊維
状炭素陰極28が充填されている。
21 is an electrolytic cell main body divided into an anode chamber 24 and a cathode chamber 25 by a diaphragm 23 with a through hole 22 formed near the lower end;
The anode chamber 24 is equipped with a plate-shaped, rod-shaped or mesh-shaped anode 26, and the cathode chamber 25 is equipped with chopped fibrous carbon connected to a plate-shaped or mesh-shaped cathode current collector 27. A cathode 28 is filled.

29は電解液貯留槽で、該貯留槽29中の電解液30は
電解液供給管31を通して前記陰極室25へ供給され、
電解後の電解液は陽極室24に連結された電解液取出管
32により電解液槽33へ取り出される。
29 is an electrolyte storage tank, and the electrolyte 30 in the storage tank 29 is supplied to the cathode chamber 25 through an electrolyte supply pipe 31;
The electrolyte after electrolysis is taken out to an electrolyte tank 33 through an electrolyte take-out pipe 32 connected to the anode chamber 24 .

本実施例の電解槽の陰極室25に、前記実施例と同様に
貴金属含有溶液を電解液供給管31を通して供給すると
、該電解液中の貴金属イオンが繊維状炭素陰極28上に
電析し、更に前記隔膜23の通孔22を通して陽極室に
達し、電解液の種類に応じて水電解による水素発生やシ
アンの分解が起こり、その後前記電解液取出管32を経
て電解液槽33に貯留される。
When a noble metal-containing solution is supplied to the cathode chamber 25 of the electrolytic cell of this embodiment through the electrolyte supply pipe 31 as in the previous embodiment, the noble metal ions in the electrolyte are electrodeposited on the fibrous carbon cathode 28, Furthermore, it reaches the anode chamber through the through hole 22 of the diaphragm 23, and depending on the type of electrolyte, hydrogen generation and cyanide decomposition occur due to water electrolysis, and then it is stored in the electrolyte tank 33 via the electrolyte extraction pipe 32. .

本実施例電解槽の繊維状炭素陰極28上に電析された貴
金属も前記実施例と同様に両極の極性を反転させて溶出
液を流通させることにより高濃度貴金属溶液として回収
することができる。
The noble metal electrodeposited on the fibrous carbon cathode 28 of the electrolytic cell of this embodiment can also be recovered as a highly concentrated noble metal solution by reversing the polarity of the two electrodes and flowing the eluate in the same way as in the previous embodiment.

前記両実施例では、電解反応として貴金属電析及び極性
反転による該電析貴金属の再溶出のみを説明したが、本
発明の電解槽はこれらに限定されず陽極液と陰極液の混
合により支障を生ずることのない各種電解に利用するこ
とができる。
In both of the above embodiments, only noble metal electrodeposition and re-elution of the deposited noble metal due to polarity reversal were explained as electrolytic reactions, but the electrolytic cell of the present invention is not limited to these, and may be caused by mixing the anolyte and catholyte. It can be used for various electrolysis that does not occur.

更に図示の電解槽では繊維状炭素を陰極室に充填する方
式のみを示したが、例えば陰極集電体に薄厚のフェルト
状の繊維状炭素を接合して電解に使用することができる
。この電解槽によっても陰極表面積が増加して効率良く
電解を行うことができる。
Further, in the illustrated electrolytic cell, only a method of filling the cathode chamber with fibrous carbon is shown, but for example, a thin felt-like fibrous carbon can be bonded to the cathode current collector and used for electrolysis. This electrolytic cell also increases the surface area of the cathode and enables efficient electrolysis.

ス」l1上 第1図に示す単極式電解槽を使用して自動車廃触媒処理
工程洗浄液中の白金及びパラジウムの電析及び該電析金
属の電解による再溶出を行った。
Using the monopolar electrolytic cell shown in Figure 1 above, platinum and palladium were deposited in a cleaning solution for an automobile waste catalyst treatment process, and the deposited metals were re-eluted by electrolysis.

陽極として直径20mmのグラファイト棒を使用し、該
陽極を下端に直径10mm0通孔を5個放射状に形成し
た隔膜である内径25mmの泉株式会社製高圧プレス用
濾布L T −365内に収容した。陰極集電体として
グラファイト製のパンチプレートを使用し、該集電体に
接触させてフェルト状の繊維状炭素(日本カーボン株式
会社製「カーボロン−Pフェルト」)を設置し、該フェ
ルト状繊維状炭素、電解槽内壁及び前記隔膜に接触する
ようにチョップ状の繊維状炭素を充填し、更に該チョッ
プ状の繊維状炭素上に填し、更に該フェルト状の繊維状
炭素を設置した。
A graphite rod with a diameter of 20 mm was used as the anode, and the anode was housed in a high-pressure press filter cloth L T-365 manufactured by Izumi Co., Ltd. with an inner diameter of 25 mm, which was a diaphragm with five radially formed holes of 10 mm in diameter at the lower end. . A graphite punch plate is used as the cathode current collector, and felt-like fibrous carbon ("Carboron-P Felt" manufactured by Nippon Carbon Co., Ltd.) is placed in contact with the current collector. Chopped fibrous carbon was filled so as to be in contact with the carbon, the inner wall of the electrolytic cell, and the diaphragm, and then the felt was placed on top of the chopped fibrous carbon.

白金及びパラジウムを含有する洗浄液201を151/
時の割合で前記電解槽の陽極室に供給して水電解による
酸素発生反応を生じさせた後、前記隔膜の通孔を通して
陰極室へ供給し、前記繊維状炭素上に貴金属を電析させ
た後、該洗浄液を電解槽から取り出した。最初の30分
間のみは槽内に電解液を充満させるために取り出した洗
浄液を再度陽極室に循環させた。初期濃度が白金69n
+g/l及びパラジウム12mg/lの第1の洗浄液と
、初期濃度が白金40mg/l及びパラジウム4mg/
j!の第2の洗浄液を使用し、該洗浄液中の前記両金属
濃度の減少を測定したところ、第3図及び第4図のグラ
フに示す消費電流量と金属濃度の関係を得ることができ
た。
Cleaning liquid 201 containing platinum and palladium was added to 151/
After supplying it to the anode chamber of the electrolytic cell at a rate of 100 hr to cause an oxygen generation reaction by water electrolysis, it was supplied to the cathode chamber through the hole in the diaphragm to electrodeposit a noble metal on the fibrous carbon. After that, the cleaning solution was taken out from the electrolytic cell. Only for the first 30 minutes, the cleaning solution taken out was circulated into the anode chamber again to fill the tank with electrolyte. Initial concentration is platinum 69n
+ g/l and palladium 12 mg/l and an initial concentration of 40 mg/l platinum and 4 mg/l palladium.
j! By using the second cleaning solution and measuring the decrease in the concentration of both metals in the cleaning solution, it was possible to obtain the relationship between the amount of current consumption and the metal concentration shown in the graphs of FIGS. 3 and 4.

ス】1九l 実施例1の金属特に白金の減少量が不十分であるため、
初期濃度が白金24mg/J!及びパラジウム5mg/
lの洗浄液を、実施例1と同一の電解槽を使用しまず陰
極室に導いて繊維状炭素上への金属電析を生じさせた後
、陽極室に供給し水電解による酸素発生反応を生じさせ
た。前記洗浄液中の前記両金属濃度の減少を測定したと
ころ、第5図のグラフに示す消費電流量と金属濃度の関
係を得ることができた。
19l Since the amount of metal in Example 1, especially platinum, was insufficiently reduced,
The initial concentration is 24mg/J of platinum! and palladium 5mg/
Using the same electrolytic cell as in Example 1, 1 of the cleaning solution was first led to the cathode chamber to cause metal electrodeposition on the fibrous carbon, and then supplied to the anode chamber to cause an oxygen generation reaction by water electrolysis. I let it happen. When the decrease in the concentration of both metals in the cleaning solution was measured, the relationship between the amount of current consumption and the metal concentration as shown in the graph of FIG. 5 could be obtained.

該グラフ中消費電流量が2AH//lの時点で白金及び
パラジウムともその濃度が1rag/l以下となった。
In the graph, when the current consumption was 2 AH//l, the concentrations of both platinum and palladium became 1 rag/l or less.

更に工業的規模への応用のため、処理容量を増やして同
様の操作を行ったところ第1表に示す結果を得ることが
できた。
Furthermore, for application on an industrial scale, the processing capacity was increased and similar operations were performed, and the results shown in Table 1 were obtained.

(発明の効果) 本発明は、成形後に繊維状に維持されている炭素を電極
特に陰極として使用する単極式電解槽である。
(Effects of the Invention) The present invention is a monopolar electrolytic cell in which carbon maintained in a fibrous form after molding is used as an electrode, particularly a cathode.

該繊維状炭素電極は、対極に面する部分のみが電極作用
を発現する従来の炭素電極等の多孔質電極と異なり、繊
維状炭素の長さが十分に長く電極内における電位勾配が
な(該電極のどの部分でも電位が等しいため、電解反応
が前記電極のどの部第   1   表 分でも生じ該電極のほぼ全面が電極として機能し電流密
度の低減をはじめとする電解条件を有利にすることがで
きるものと推測することができる。
The fibrous carbon electrode differs from porous electrodes such as conventional carbon electrodes in which only the portion facing the counter electrode exhibits an electrode effect, and the fibrous carbon electrode is sufficiently long so that there is no potential gradient within the electrode. Since the potential is the same in all parts of the electrode, an electrolytic reaction occurs in any part of the electrode, and almost the entire surface of the electrode functions as an electrode, making the electrolytic conditions favorable, including reducing the current density. It can be assumed that it is possible.

このような特性を有する繊維状炭素電極を使用する本発
明の単極式電解槽は、当初前記繊維状炭素電極を陰極と
して使用し、該陰極の有する大きな電極有効面積を利用
して陰極液中に含有される金属イオンを高電流効率で対
応する金属に還元し該陰極上に電析させた後、両極の極
性を反転させて前記繊維状炭素電極を陽極として電解を
行い該電極上に電析している金属を酸化して所定の高濃
度金属溶液を得るタイプと、前記繊維状炭素電極を陰極
として使用して金属の電析を含む任意の電解反応を電極
の反転を行うことなく生じさせるタイプとに大別するこ
とができる。
The monopolar electrolytic cell of the present invention using a fibrous carbon electrode having such characteristics initially uses the fibrous carbon electrode as a cathode, and utilizes the large effective area of the cathode to absorb water into the catholyte. After reducing the metal ions contained in the carbon to the corresponding metal with high current efficiency and electrodepositing it on the cathode, the polarity of the two electrodes is reversed and electrolysis is carried out using the fibrous carbon electrode as the anode, and the electrode is deposited on the electrode. A type that oxidizes the metal being deposited to obtain a predetermined high concentration metal solution, and a type that uses the fibrous carbon electrode as a cathode to perform any electrolytic reaction including metal electrodeposition without reversing the electrode. It can be roughly divided into two types:

いずれのタイプの電解槽でも前記繊維状炭素電極特に該
繊維状炭素による陰極の有効電解面積の飛躍的な増加が
生じ、電流効率の増加を図ることができる。又該電極上
に貴金属触媒を担持させると電解電圧の低減が可能にな
り、電流効率及び電解電圧の両面から消費電力の低減を
実現することができる。
In any type of electrolytic cell, the effective electrolysis area of the fibrous carbon electrode, especially the cathode formed by the fibrous carbon, is dramatically increased, and the current efficiency can be increased. Further, by supporting a noble metal catalyst on the electrode, it is possible to reduce the electrolysis voltage, and it is possible to realize a reduction in power consumption in terms of both current efficiency and electrolysis voltage.

前述のどのタイプの単極式電解槽でも上記した利点が生
じるが隔膜に通孔が形成され電解液が陽極室−陰極室あ
るいは陰極室−陽極室の順に流通するため、陽極液と陰
極液の混合により不都合が生ずる電解反応例えば食塩電
解には使用できないが、上記した貴金属の電析反応等の
場合には電解液の供給及び取出をいわゆるワンパス方式
で行うことができるため、作業性が大きく向上する。し
かも例えばシアン分解の如く陽極室におけるシアン分解
と陰極室における貴金属電析のような陰陽両極室で別個
の電解反応を必要とするプロセスでは上記ワンパス方式
で容易かつ迅速に行うことができる。
All of the above-mentioned types of monopolar electrolytic cells have the above-mentioned advantages, but because holes are formed in the diaphragm and the electrolyte flows in the order of anode chamber - cathode chamber or cathode chamber - anode chamber, the anolyte and catholyte are separated. Although it cannot be used for electrolytic reactions where mixing causes inconveniences, such as salt electrolysis, in the case of the above-mentioned precious metal electrodeposition reactions, the electrolyte can be supplied and taken out in a so-called one-pass method, greatly improving work efficiency. do. Furthermore, processes that require separate electrolytic reactions in both cathode and cathode chambers, such as cyanide decomposition in the anode chamber and noble metal electrodeposition in the cathode chamber, can be easily and quickly carried out using the one-pass method.

又本発明に係わる電解槽は単極式であるため、両極の極
性を容易に反転させることができる。この利点を利用し
て上述した通り、本発明に関して特異的である、電析金
属を電極極性を反転させることにより再溶解させて高濃
度金属溶液を得るという操作が可能になる。
Further, since the electrolytic cell according to the present invention is of a monopolar type, the polarity of both electrodes can be easily reversed. Utilizing this advantage, as described above, it becomes possible to obtain a highly concentrated metal solution by redissolving the deposited metal by reversing the electrode polarity, which is unique to the present invention.

更に本発明の電解槽で前記繊維状炭素電極を電極室全体
に充填した構造を採用すると、前記繊維状炭素の量が増
加して電極有効面積を増加させて電解液が確実に電極に
接触して所定の電解反応を促進する効果が生ずるだけで
なく、該電極と前記隔膜が接触するゼロギャップタイプ
の電解が可能になり、より以上の電力低減を図ることが
できる。
Furthermore, when the electrolytic cell of the present invention adopts a structure in which the entire electrode chamber is filled with the fibrous carbon electrode, the amount of the fibrous carbon increases, increasing the effective area of the electrode and ensuring that the electrolyte comes into contact with the electrode. This not only has the effect of promoting a predetermined electrolytic reaction, but also enables zero-gap type electrolysis in which the electrode and the diaphragm are in contact with each other, thereby further reducing power consumption.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の単極式電解槽の一実施例を示す縦断
面図、第2図は、同じく他の実施例を示す縦断面図、第
3図及び第4図は、実施例1における消費電流量と金属
濃度の関係を示すグラフ、第5図は、実施例2における
消費電流量と金属濃度の関係を示すグラフである。 1・・・電解槽本体 5・・・陰極集電体7・・・円板
体 9・・・通孔
FIG. 1 is a longitudinal sectional view showing one embodiment of a monopolar electrolytic cell of the present invention, FIG. 2 is a longitudinal sectional view showing another embodiment, and FIGS. 3 and 4 are embodiments. FIG. 5 is a graph showing the relationship between current consumption and metal concentration in Example 2. FIG. 1... Electrolytic cell body 5... Cathode current collector 7... Disc body 9... Through hole

Claims (5)

【特許請求の範囲】[Claims] (1)隔膜で陽極室及び陰極室に区画された単極式電解
槽において、集電体に接続された繊維状炭素を少なくと
も一方の極室で電極として使用しかつ前記隔膜に通孔を
形成し電極液の流通を可能にしたことを特徴とする単極
式電解槽。
(1) In a monopolar electrolytic cell divided into an anode chamber and a cathode chamber by a diaphragm, fibrous carbon connected to a current collector is used as an electrode in at least one electrode chamber, and a through hole is formed in the diaphragm. A monopolar electrolytic cell characterized by allowing the circulation of an electrode solution.
(2)繊維状炭素を極室内に充填した請求項1に記載の
単極式電解槽。
(2) The monopolar electrolytic cell according to claim 1, wherein the electrode chamber is filled with fibrous carbon.
(3)繊維状炭素が陰極となるように通電を行うように
した請求項1又は2に記載の単極式電解槽。
(3) The monopolar electrolytic cell according to claim 1 or 2, wherein electricity is applied so that the fibrous carbon serves as a cathode.
(4)通孔を有する隔膜を介して陽極室及び陰極室に区
画された単極式電解槽の少なくとも一方の極室に集電体
が接続された繊維状炭素を収容して電極とした単極式電
解槽に、前記繊維状炭素が陰極となるように通電しなが
ら金属含有溶液を前記電解槽の両極室を順に通過するよ
う供給して該溶液中の金属を前記繊維状炭素陰極上に電
析させた後、両極の極性を反転させるよう通電しながら
前記電析金属を溶解させる溶液を反転した両極室を順に
通過するよう供給して前記電析金属を前記溶液中に溶解
させ回収することを特徴とする電解方法。
(4) A monopolar electrolytic cell is divided into an anode chamber and a cathode chamber through a diaphragm having a through hole, and fibrous carbon connected to a current collector is housed in at least one of the electrode chambers to form an electrode. A metal-containing solution is supplied to a polar electrolytic cell so as to pass through both electrode chambers of the electrolytic cell in order while electricity is applied so that the fibrous carbon serves as a cathode, and the metal in the solution is transferred onto the fibrous carbon cathode. After the electrodeposition, a solution for dissolving the electrodeposited metal is sequentially supplied to pass through the inverted bipolar chamber while electricity is applied to reverse the polarity of the electrodes, and the electrodeposited metal is dissolved in the solution and recovered. An electrolytic method characterized by:
(5)通孔を有する隔膜を介して陽極室及び陰極室に区
画された単極式電解槽の該陰極室に集電体を接続した繊
維状炭素を陰極として収容した単極式電解槽の前記両極
室を順に通過するよう電解液を供給しながら電解を行う
ことを特徴とする電解方法。
(5) A monopolar electrolytic cell that is divided into an anode chamber and a cathode chamber through a diaphragm having a through hole, and a monopolar electrolytic cell containing fibrous carbon as a cathode with a current collector connected to the cathode chamber. An electrolysis method characterized in that electrolysis is performed while supplying an electrolytic solution so as to pass through the bipolar chambers in sequence.
JP1128534A 1989-05-22 1989-05-22 Single-electrode electrolytic cell and method for electrolysis using the cell Pending JPH02310387A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1128534A JPH02310387A (en) 1989-05-22 1989-05-22 Single-electrode electrolytic cell and method for electrolysis using the cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1128534A JPH02310387A (en) 1989-05-22 1989-05-22 Single-electrode electrolytic cell and method for electrolysis using the cell

Publications (1)

Publication Number Publication Date
JPH02310387A true JPH02310387A (en) 1990-12-26

Family

ID=14987133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1128534A Pending JPH02310387A (en) 1989-05-22 1989-05-22 Single-electrode electrolytic cell and method for electrolysis using the cell

Country Status (1)

Country Link
JP (1) JPH02310387A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100367709B1 (en) * 2000-05-29 2003-01-10 희성엥겔하드주식회사 Recovery method of platinum group metals from waste water

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5176177A (en) * 1974-08-07 1976-07-01 Suriihandoretsudo Ando Eitosau
JPS5691886A (en) * 1979-12-18 1981-07-25 Elf Aquitaine Improved fibriform filtering porous electrode in carbon or graphite* its use to electrochemical reaction* and electrochemical reactor proveded with said electrode
JPS6293390A (en) * 1985-10-21 1987-04-28 Toyo Soda Mfg Co Ltd Method for depositing and dissolving metal

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5176177A (en) * 1974-08-07 1976-07-01 Suriihandoretsudo Ando Eitosau
JPS5691886A (en) * 1979-12-18 1981-07-25 Elf Aquitaine Improved fibriform filtering porous electrode in carbon or graphite* its use to electrochemical reaction* and electrochemical reactor proveded with said electrode
JPS6293390A (en) * 1985-10-21 1987-04-28 Toyo Soda Mfg Co Ltd Method for depositing and dissolving metal

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100367709B1 (en) * 2000-05-29 2003-01-10 희성엥겔하드주식회사 Recovery method of platinum group metals from waste water

Similar Documents

Publication Publication Date Title
US4585539A (en) Electrolytic reactor
KR100858551B1 (en) A method of extraction of platinum group metals from the spent catalysts by electrochemical processes
EP0171478B1 (en) Electrolyzing process and electrolytic cell employing fluidized bed
RU2004102511A (en) ELECTROLYSIS CELL FOR COMPLETING THE CONCENTRATION OF METAL IONS IN ELECTRODEPOSITION METHODS
CN101260530A (en) Device and technique for indirectly electric oxidation synthesis of organic substance electrolytic regeneration medium
US4578159A (en) Electrolysis of alkali metal chloride brine in catholyteless membrane cells employing an oxygen consuming cathode
US3915817A (en) Method of maintaining cathodes of an electrolytic cell free of deposits
JP2520674B2 (en) Method and device for recovering metal supported on carrier
US5225054A (en) Method for the recovery of cyanide from solutions
JP2802276B2 (en) Electrolytic treatment method and electrolytic reaction tank
JPH02310387A (en) Single-electrode electrolytic cell and method for electrolysis using the cell
JPH02305987A (en) Single-electrode electrolytic cell and electrolytic method using the cell
US5464506A (en) Electrolytic device and method having a porous and stirring electrode
US4971675A (en) Electrolyzer for purification of fluids
US4302319A (en) Continuous electrolytic treatment of circulating washings in the plating process and an apparatus therefor
JPH11158681A (en) Treatment of selenium-containing water to be treated
JPH032959B2 (en)
JP2832221B2 (en) Bipolar electrolytic cell
JPS63100190A (en) Electrolytic device for generating gas
US4276134A (en) Method for removing chlorate from caustic solutions with electrolytic iron
CN114920398B (en) High-salt ammonia nitrogen wastewater treatment device and treatment method
CN218812140U (en) Copper electrolytic tank for recycling ammonium chloride system etching waste liquid
JP6847477B1 (en) Electrolyzed water production equipment and method for producing electrolyzed water using this
JPH0413432B2 (en)
KR101048790B1 (en) Separation of Platinum Group Metals Using a Flow Electrolyzer