JPH0230816B2 - - Google Patents

Info

Publication number
JPH0230816B2
JPH0230816B2 JP57065706A JP6570682A JPH0230816B2 JP H0230816 B2 JPH0230816 B2 JP H0230816B2 JP 57065706 A JP57065706 A JP 57065706A JP 6570682 A JP6570682 A JP 6570682A JP H0230816 B2 JPH0230816 B2 JP H0230816B2
Authority
JP
Japan
Prior art keywords
hollow shaft
rod
bending
fulcrum ring
roll
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57065706A
Other languages
Japanese (ja)
Other versions
JPS58181549A (en
Inventor
Kunihiko Isebo
Noboru Itagaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP6570682A priority Critical patent/JPS58181549A/en
Publication of JPS58181549A publication Critical patent/JPS58181549A/en
Publication of JPH0230816B2 publication Critical patent/JPH0230816B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B1/00Processes of grinding or polishing; Use of auxiliary equipment in connection with such processes

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Grinding Of Cylindrical And Plane Surfaces (AREA)
  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)

Description

【発明の詳細な説明】 本発明は、中空軸(中空部が軸の長さ方向で遮
断されているものやロール類を含む)の加工方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for processing hollow shafts (including shafts in which the hollow portion is interrupted in the length direction of the shaft and rolls).

例えば、カレンダ、エンボスシング、プリンタ
等の分野では、合成樹脂、ゴム等を中空軸を用い
て圧延し、厚さ、模様、色付け等を均一にする作
業を行つている。
For example, in the fields of calendars, embossing, printers, etc., synthetic resins, rubber, etc. are rolled using hollow shafts to make the thickness, pattern, coloring, etc. uniform.

ところで、中空軸の使用温度が常温時と異なる
場合、熱膨張又は収縮の偏差、即歪により中空軸
に弾性変形内で軸方向に曲りが発生し、この曲り
が中空軸を回転させた際に「振れ」として現れ
る。「振れ」が発生した状態で圧延作業を行うと、
第1図に示す如く、材料(a)の表面に凹凸が発
生し、実際に製品として活用できるのはbで示す
範囲となるので、歩留りが低下する。更にこのよ
うな厚み精度の他、模様、色柄等の均一性精度も
損われてしまう。
By the way, if the operating temperature of the hollow shaft is different from normal temperature, the hollow shaft will bend in the axial direction during elastic deformation due to deviations in thermal expansion or contraction, and instant strain, and this bending will occur when the hollow shaft is rotated. It appears as "shake". If rolling work is performed with "runout" occurring,
As shown in FIG. 1, unevenness occurs on the surface of material (a), and the range shown by b is actually usable as a product, resulting in a decrease in yield. Furthermore, in addition to such thickness accuracy, uniformity accuracy of patterns, color patterns, etc. is also impaired.

そこで従来、前記の歪を防止する方法として、
中空軸の材質を全く均一に作るとか、使用温度状
態にて加工するとかの方法が考えられたが、例え
ば使用温度が高温(PVCカレンダにおいては約
180〜200℃)の場合は中空軸への与熱方法、温度
保持、均一性(温度ムラ)、取扱い性、安全性及
び加工機械への熱影響度等の問題で実用化されて
おらず、一般的には、常温度での加工のまま使用
しているか、又は一定の精度基準を設けてその基
準を超えたものを廃却していた。
Therefore, as a conventional method for preventing the above distortion,
Methods have been considered, such as making the material of the hollow shaft completely uniform or processing it at the operating temperature, but for example, the operating temperature is high (for PVC calendars, it is approximately
180 to 200℃), it has not been put to practical use due to problems such as how to heat the hollow shaft, temperature maintenance, uniformity (temperature unevenness), ease of handling, safety, and degree of heat influence on processing machines. Generally, they are used as they are after being processed at room temperature, or a certain accuracy standard is set and those that exceed that standard are discarded.

このため、従来、中空軸に使用条件下と同様な
歪を常温下で与え、その状態にて中空軸表面を研
削することにより使用時の中空軸の歪をあらかじ
め除去し、製品厚さ精度を向上して省原料化、歩
留りの向上を図ろうとする中空軸の加工方法であ
つた。
For this reason, conventionally, the distortion of the hollow shaft during use is removed in advance by giving the same strain to the hollow shaft at room temperature as under the conditions of use, and then grinding the surface of the hollow shaft under that condition, thereby improving the product thickness accuracy. This was a method for processing hollow shafts that was intended to save raw materials and improve yields.

この種の加工方法としては、従来、例えば、特
開昭55−90714号公報に記載されたようなものが
あり、これは、ドリルドロールの円周孔にボルト
を挿入し、ロ−ルの両端面にてナツトにより前記
ボルトを締め付け、前記ロールに圧縮力を加える
ことによりロールを曲げている。
This type of machining method has conventionally been described, for example, in Japanese Patent Application Laid-Open No. 55-90714, in which bolts are inserted into the circumferential holes of a drilled roll, and both ends of the roll are The roll is bent by tightening the bolt with a nut at the surface and applying compressive force to the roll.

しかしながら、前述の如き加工方法に於いて
は、ロール軸心線と平行に外力を加えるようにな
つており、曲げモーメントアームはロール軸心と
ボルト軸心間の距離と等しくなるため、曲げモー
メントアームはロール半径より大きくすることは
不可能であると共に、ロールに対し曲げモーメン
トを加えることは容易ではなく、又、ロール長さ
より長いボルトしか用いることはできなかつた。
However, in the above-mentioned processing method, an external force is applied parallel to the roll axis, and the bending moment arm is equal to the distance between the roll axis and the bolt axis. cannot be made larger than the roll radius, it is not easy to apply a bending moment to the roll, and only bolts longer than the roll length can be used.

更に、ロールの両端面からナツトを締めつけて
ロールに圧縮力を加えるため、その曲げ曲線は常
に左右対称としかなり得ないと共に、ロールの両
端面を傷つける虞れもあつて水洩れ等の要因とな
り、又、ドリルドロール以外のボアードロール
(軸径中央部が一か所に孔を有するロール)等の
加工には適用できなかつた。
Furthermore, since compressive force is applied to the roll by tightening nuts from both end faces of the roll, the bending curve can only be symmetrical at all times, and there is also the risk of damaging both end faces of the roll, causing water leakage, etc. Further, it cannot be applied to processing of bored rolls (rolls having a hole at one location in the center of the shaft diameter) other than drilled rolls.

本発明は斯かる実情に鑑み、ドリルドロールや
ボアードロール等の中空軸端面を傷つけることな
く、中空軸内部から曲げモーメントを容易に加え
得ると共に、所望の曲げ曲線を作成し得、製品厚
さ精度の向上並びに省原料化、歩留りの向上を図
り得る中空軸の加工方法を提供しようとするもの
である。
In view of these circumstances, the present invention makes it possible to easily apply a bending moment from inside the hollow shaft without damaging the end face of the hollow shaft of drilled rolls, bored rolls, etc., to create a desired bending curve, and to improve product thickness accuracy. The purpose of the present invention is to provide a method for processing a hollow shaft that can improve the manufacturing efficiency, save raw materials, and improve yield.

本発明は、中空軸の孔径よりも小径のロツド
と、該ロツド外周にロツド長さ方向に摺動可能に
嵌装される支点環を中空軸内に挿入し、支点環に
よつて中空軸内の所定の位置でロツドを支持し、
次にロツドの支点環より中空軸軸端側へロツド長
さ方向所要距離だけ離れた位置に、ロツドの外周
からロツド軸心線と直角方向に外力を加えると共
に、その反力を中空軸軸端部に受けさせることに
よりロツドと中空軸の端部間に逆方向の曲げ力を
与えて中空軸を使用状況下と同様な歪が発生する
よう変形させ、該中空軸を変形させた状態で、中
空軸表面を研削することにより使用状況下の歪を
除去し、しかる後前記ロツド及び支点環を取除く
ことを特徴とするものである。
The present invention involves inserting into the hollow shaft a rod having a smaller diameter than the hole diameter of the hollow shaft, and a fulcrum ring fitted on the outer periphery of the rod so as to be slidable in the length direction of the rod. supports the rod in place,
Next, an external force is applied from the outer periphery of the rod in a direction perpendicular to the rod axis at a position a required distance away from the fulcrum ring of the rod toward the end of the hollow shaft, and the reaction force is applied to the end of the hollow shaft. By applying a bending force in the opposite direction between the rod and the end of the hollow shaft, the hollow shaft is deformed so as to generate a strain similar to that under use, and in the deformed state of the hollow shaft, It is characterized in that the surface of the hollow shaft is ground to remove distortion under usage conditions, and then the rod and fulcrum ring are removed.

従つて、中空軸の加工時には、中空軸の孔内部
で支点環によつて支点を作り、中空軸内に挿入さ
れるロツドに対し該ロツド軸心線と直角方向に外
力を加えると、その反力が中空軸軸端部に作用
し、ロツドの曲がりと逆方向に中空軸が曲がり、
該中空軸に使用状況下と同様な歪が発生し、この
状態で、中空軸表面を研削して使用状況下の歪を
除去した後、ロツド及び支点環が取除かれる。
Therefore, when machining a hollow shaft, if a fulcrum is created inside the hole of the hollow shaft using a fulcrum ring and an external force is applied to the rod inserted into the hollow shaft in a direction perpendicular to the rod axis, the reaction will be A force acts on the end of the hollow shaft, causing the hollow shaft to bend in the opposite direction to the bending of the rod.
A strain similar to that under the use condition is generated in the hollow shaft, and in this state, the surface of the hollow shaft is ground to remove the strain under the use condition, and then the rod and the fulcrum ring are removed.

以下、図面を参照しつつ本発明の実施例を説明
する。
Embodiments of the present invention will be described below with reference to the drawings.

先ず、本発明の方法による加工手順の概略を第
2図A〜Gに基づいて概略的に説明する。
First, the processing procedure according to the method of the present invention will be schematically explained based on FIGS. 2A to 2G.

第2図Aは常温下で研削加工した中空軸1を示
しており、該中空軸を第2図Bに示す如く、使用
条件下に置いてその時の歪による曲り発生状態の
振れと方向を計測する。計測終了後、第2図Cに
示す如く、中空軸1を常温に戻して曲げ機構2を
組付け、次でこの曲げ機構2を用いて第2図に示
す如く、中空軸1に使用状件下と同様な曲げを与
え、その状態で第2図Eに示す如く、歪のない状
態に研削加工する。加工後、曲げ機構2を取外す
と第2図Fに示す如く、中空軸1には第2図Bと
逆方向の歪が形成され、斯かる状態で再び使用条
件下に置くと第2図Gに示す如く、歪のない中空
軸1が得られる。
Figure 2A shows a hollow shaft 1 that has been ground at room temperature.The hollow shaft is placed under usage conditions as shown in Figure 2B, and the deflection and direction of bending caused by strain at that time are measured. do. After the measurement is completed, as shown in Fig. 2C, the hollow shaft 1 is returned to room temperature and the bending mechanism 2 is assembled, and then the bending mechanism 2 is used to adjust the usage condition to the hollow shaft 1 as shown in Fig. 2. It is bent in the same manner as below, and in that state it is ground to a state without distortion as shown in Fig. 2E. After processing, when the bending mechanism 2 is removed, the hollow shaft 1 is strained in the opposite direction to that shown in FIG. 2B, as shown in FIG. As shown in the figure, a hollow shaft 1 without distortion can be obtained.

上記曲げ機構2の詳細を第3図A及び第4図を
参照して説明すると、該曲げ機構2は、中空軸1
内に挿入する中空軸1孔径よりも小径のロツド3
と、該ロツド3と中空軸1内壁との間に嵌設され
ロツド3を支持する一対の支点環4と、中空軸1
の両端に嵌設する一対の支持筒5と、該各支持筒
5内に螺着突入され、ロツド3の各支点環4より
中空軸1軸端側へロツド3、長さ方向所要距離だ
け離れた位置にロツド3の外周からロツド3軸心
線と直角方向に外力を加えてロツド3端を押すた
めの各押しボルト6とから成る。図中7は加工受
台である。
The details of the bending mechanism 2 will be explained with reference to FIGS. 3A and 4. The bending mechanism 2 includes a hollow shaft 1
Rod 3 with a smaller diameter than the hole diameter of the hollow shaft 1 to be inserted inside
, a pair of fulcrum rings 4 that are fitted between the rod 3 and the inner wall of the hollow shaft 1 and support the rod 3;
A pair of support tubes 5 are fitted at both ends of the rod 3, and the rods 3 are screwed into the respective support tubes 5, and the rods 3 are spaced from each fulcrum ring 4 of the rod 3 toward the end of the hollow shaft by a required distance in the length direction. Each push bolt 6 is used to press the end of the rod 3 by applying an external force from the outer periphery of the rod 3 in a direction perpendicular to the axial center line of the rod 3 at a position where the rod 3 is bent. In the figure, 7 is a processing pedestal.

第3図Bは上記曲げ機構2を用いて中空軸1を
曲げた際の中空軸1とロツド3との歪曲線の状態
を示すもので、斯かる第3図B及び第3図A等を
参照して、本発明の方法を具体的に説明する。
Figure 3B shows the state of the distortion curve between the hollow shaft 1 and the rod 3 when the hollow shaft 1 is bent using the bending mechanism 2, and Figure 3B, Figure 3A, etc. The method of the present invention will be specifically explained with reference to the following.

中空軸1に曲げ機構2を組付けた状態におい
て、押しボルト6,6を締付けると、ロツド3に
は夫々F1,F2の力が加わり、支点環4,4を原
点としてF1×l1、F2×l2の曲げモーメントが発生
する。これにより、原点より任意の距離x離れた
位置に、撓みδBの変位がみとめられる。一方、中
空軸1は押しボルト6,6を締付けることによ
り、支持筒5と中空軸1との取合部に夫々R1
R2の力が加わり、支点環4を原点としてF1×l1
R1×l3、F2×l2=R2×l4の曲げモーメントが生じ
る。この曲げモーメントにより、原点より任意の
距離x離れた位置に、撓みδSの変位を人工的に正
確に作り出すことができる。
When the bending mechanism 2 is assembled to the hollow shaft 1, when the push bolts 6, 6 are tightened, forces F 1 and F 2 are applied to the rod 3, respectively, and F 1 ×l is applied with the fulcrum rings 4, 4 as the origin. 1 , a bending moment of F 2 × l 2 occurs. As a result, a displacement of deflection δ B is observed at a position an arbitrary distance x away from the origin. On the other hand, by tightening the push bolts 6, 6, the hollow shaft 1 has R 1 and
Force R 2 is applied, F 1 ×l 1 = with fulcrum ring 4 as the origin
A bending moment of R 1 ×l 3 , F 2 ×l 2 =R 2 ×l 4 is generated. By using this bending moment, it is possible to artificially and accurately create a displacement of deflection δ S at a position an arbitrary distance x away from the origin.

又、中空軸1、ロツド3の撓み曲線は、夫々形
状が判れば一定の計算方法で容易に求めることが
できる。即ち、使用状況下でのひずみ量を計測す
れば、逆に歪量=δSとして、R1,F1,R2,F2
l1,l2,l3,l4の数値を決めることができる。
Further, the bending curves of the hollow shaft 1 and the rod 3 can be easily determined by a certain calculation method if the respective shapes are known. In other words, if we measure the amount of strain under the usage conditions, we will get R 1 , F 1 , R 2 , F 2 ,
The numerical values of l 1 , l 2 , l 3 , and l 4 can be determined.

従つてこの方法により、常温時にあらかじめ歪
量δSに相当する曲げを中空軸1に与えたうえで、
中空軸1の表面を研削加工することにより、使用
状況下での歪を除去することができる。
Therefore, by this method, after bending the hollow shaft 1 corresponding to the amount of strain δ S in advance at room temperature,
By grinding the surface of the hollow shaft 1, distortion under usage conditions can be removed.

勿論中空軸1の歪は左右対称でなくとも、 F1とF2のバランスを変える方法、 支点環4のセツト位置によりl1,l2を変える
方法、 第3図Bにおけるl3,l4を変える方法、 支点環4の数を変える方法、 ロツド3の数を複数にする方法、 上記〜を適宜組合せる方法、 等、色々な曲線を描くことができ、特に第3図A
において、押しボルト6,6の方向を左右で変え
るとか、数を多くすることにより、中空軸1に
は、第5図に示す如く軸芯に対して歪が二次元的
なもの(X−Y面内)や、第6図に示す如く軸芯
に対して歪が三次元的なもの(X−Y−Z面)
等、自由な曲線が簡単且つ正確に設定できる。
Of course, even if the distortion of the hollow shaft 1 is not symmetrical, there are ways to change the balance between F 1 and F 2 , ways to change l 1 and l 2 depending on the set position of the fulcrum ring 4, and l 3 and l 4 in Fig. 3B. Various curves can be drawn, such as by changing the number of fulcrum rings 4, by increasing the number of rods 3, and by appropriately combining the above ~.
By changing the direction of the push bolts 6, 6 on the left and right sides or increasing the number of push bolts 6, 6, the hollow shaft 1 has a two-dimensional strain (X-Y (in-plane) or three-dimensional distortion with respect to the axis as shown in Figure 6 (X-Y-Z plane)
etc., free curves can be set easily and accurately.

一例として胴径610mm、胴長1830mm、全長3340
mmのドリルドロールについての実験結果を示す。
即ち、このドリルドロールの使用温度は180℃で
あり、そのときの最大歪量は略ロール胴部中央で
10μであつた。この歪を除去するため、前述の方
法でF1,F2,l1〜l4を算出したところ、F1=F2
約2.600Kg、l1=l2=500mm、l3=l4=360mmにすれ
ばよいことが判つた。そこで、ロツド3の径を
120mmのものを挿入し、上記条件にてロールに曲
りを与えた状態で常温下で研削し、しかる後再び
180℃に加熱して歪量を計測したところ、最大の
値で2μであつた。
As an example, body diameter 610mm, body length 1830mm, total length 3340mm
Experimental results for mm drilled rolls are shown.
In other words, the operating temperature of this drilled roll is 180℃, and the maximum strain at that time is approximately at the center of the roll body.
It was 10μ. In order to remove this distortion, we calculated F 1 , F 2 , l 1 to l 4 using the method described above, and found that F 1 = F 2 =
It was found that it would be sufficient to set the weight to about 2.600Kg, l 1 = l 2 = 500 mm, and l 3 = l 4 = 360 mm. Therefore, the diameter of rod 3 is
Insert a 120mm roll, grind under the above conditions at room temperature with the roll bent, and then grind again.
When heated to 180°C and measured the amount of strain, the maximum value was 2μ.

第7図及び第8図は夫々本発明の方法に使用す
る曲げ機構の他の例を示すもので、第7図に示す
ものは、支持筒5及び押しボルト6の代りに楔式
のスライドキー8を中空軸1内壁とロツド3との
間に押込むようにしたものであり、一方第8図に
示すものは、中空部が軸の長さ方向で遮断された
中空軸1′の場合であつて、夫々中空軸1′両端部
の中空部内に挿入したロツド3を支点環4,4′
にて支持し、且つ各ロツド3端を中空環1′端部
に螺着した各押しボルト6により締付けるように
したものである。
7 and 8 show other examples of the bending mechanism used in the method of the present invention, and the one shown in FIG. 7 has a wedge-type slide key instead of the support tube 5 and push bolt 6. 8 is inserted between the inner wall of the hollow shaft 1 and the rod 3. On the other hand, the one shown in FIG. , the rods 3 inserted into the hollows at both ends of the hollow shaft 1' are attached to the fulcrum rings 4, 4'.
The 3 ends of each rod are tightened by push bolts 6 screwed onto the ends of the hollow ring 1'.

これらの方式とした場合でも前記実施例と同等
の作用効果を奏し得る。
Even when these systems are used, the same effects as those of the embodiments described above can be achieved.

尚、本発明は前記実施例にのみ限定されるもの
ではなく、例えば、真直な中空軸に人工的に曲げ
を与えて研削し、使用状況下で偏心量を有する中
空軸を作る方法にも本発明を応用することがで
き、その他本発明の要旨を逸脱しない限り種々変
更を加え得ることは勿論である。
It should be noted that the present invention is not limited only to the above-mentioned embodiments; for example, the present invention is also applicable to a method of artificially bending and grinding a straight hollow shaft to create a hollow shaft that has an eccentric amount under the usage conditions. It goes without saying that the invention can be applied and various changes can be made without departing from the gist of the invention.

如上のように本発明によれば、 (i) ロツドの長さを長くすれば、支点と荷重点と
の距離即ち曲げモーメントアームを大きくとれ
るので、中空軸に対し、該中空軸内部から曲げ
モーメントを容易に加えることができ、又、前
記ロツドは分割されていても中空軸に対し曲げ
モーメントを加えることができる。
As mentioned above, according to the present invention, (i) By increasing the length of the rod, the distance between the fulcrum and the load point, that is, the bending moment arm, can be increased, so that the bending moment from inside the hollow shaft can be increased. can be easily applied, and even if the rod is divided, it can apply a bending moment to the hollow shaft.

更に、前記曲げモーメントアームの変更等に
より左右非対称の曲げ曲線を作ることができ、
又、ドリルドロールは勿論のこと、ボアードロ
ール等の中空軸の加工にも適用でき、しかも前
記支点環は中空軸内に挿入されるため中空軸端
面を傷つける心配もない。
Furthermore, it is possible to create a left-right asymmetrical bending curve by changing the bending moment arm, etc.
In addition, it can be applied to machining hollow shafts such as bored rolls as well as drilled rolls, and since the fulcrum ring is inserted into the hollow shaft, there is no fear of damaging the end face of the hollow shaft.

(ii) (i)項により加工された中空軸を使用すること
により、使用状況下での歪による振れがなくな
るので、被圧延整品の厚みむらがなくなり、製
品々質(厚み精度や強度等)が飛躍的に向上す
る。
(ii) By using a hollow shaft machined according to (i), there will be no runout due to strain under usage conditions, which will eliminate unevenness in the thickness of rolled products and improve product quality (thickness accuracy, strength, etc.). ) will improve dramatically.

(iii) 厚みむらがなくなることにより、原料の節約
を図ることができ、省エネルギーによるランニ
ングコストの低減も図れる。
(iii) By eliminating thickness unevenness, raw materials can be saved, and running costs can also be reduced due to energy savings.

(iv) 精度不良による製品損失がなくなり、大幅な
生産性向上が期待できる。
(iv) Product losses due to poor accuracy will be eliminated, and a significant increase in productivity can be expected.

(v) 廃却ロール等の出る率が少なくなることによ
り、製造コストが安くなる。
(v) Manufacturing costs are reduced by reducing the amount of waste rolls, etc.

等の優れた効果を発揮する。Demonstrates excellent effects such as

【図面の簡単な説明】[Brief explanation of drawings]

第1図は歪が発生した中空軸にて圧延された材
料の形状を示す図、第2図A〜Gは本発明の方法
による加工手順を示す概略図、第3図Aは本発明
の方法に用いる曲げ機構により中空軸に曲げを与
える状態を示す断面図、第3図Bは第3図Aに対
応した歪曲線の状態を示す説明図、第4図は第3
図Aの−矢視図、第5図及び第6図は夫々他
の歪曲線の説明図、第7図及び第8図は夫々曲げ
機構の他の例を示す断面図である。 1,1′……中空軸、2……曲げ機構、3,
3′……ロツド、4……支点環、5……支持筒、
6……押しボルト、7……加工受台、8……スラ
イドキー。
Fig. 1 is a diagram showing the shape of a material rolled with a hollow shaft where strain has occurred, Fig. 2 A to G are schematic diagrams showing the processing procedure according to the method of the present invention, and Fig. 3 A is a diagram showing the method of the present invention. FIG. 3B is an explanatory diagram showing the state of the strain curve corresponding to FIG. 3A, and FIG.
The - arrow view in FIG. A, FIGS. 5 and 6 are illustrations of other strain curves, respectively, and FIGS. 7 and 8 are sectional views showing other examples of the bending mechanism, respectively. 1, 1'...Hollow shaft, 2...Bending mechanism, 3,
3'... Rod, 4... Support ring, 5... Support cylinder,
6...Push bolt, 7...Processing stand, 8...Slide key.

Claims (1)

【特許請求の範囲】[Claims] 1 中空軸の孔径よりも小径のロツドと、該ロツ
ド外周にロツド長さ方向に摺動可能に嵌装される
支点環を中空軸内に挿入し、支点環によつて中空
軸内の所定の位置でロツドを支持し、次にロツド
の支点環より中空軸軸端側へロツド長さ方向所要
距離だけ離れた位置に、ロツドの外周からロツド
軸心線と直角方向に外力を加えると共に、その反
力を中空軸軸端部に受けさせることによりロツド
と中空軸の端部間に逆方向の曲げ力を与えて中空
軸を使用状況下と同様な歪が発生するよう変形さ
せ、該中空軸を変形させた状態で、中空軸表面を
研削することにより使用状況下の歪を除去し、し
かる後前記ロツド及び支点環を取除くことを特徴
とする中空軸の加工方法。
1. A rod with a smaller diameter than the hole diameter of the hollow shaft and a fulcrum ring fitted on the outer periphery of the rod so as to be slidable in the length direction of the rod are inserted into the hollow shaft, and the fulcrum ring allows the rod to be inserted into a predetermined position within the hollow shaft. Then, apply an external force from the outer periphery of the rod in a direction perpendicular to the rod axis at a position a required distance away from the fulcrum ring of the rod toward the end of the hollow shaft in the rod length direction. By applying a reaction force to the end of the hollow shaft, a bending force in the opposite direction is applied between the rod and the end of the hollow shaft, deforming the hollow shaft so that the same strain occurs under the usage conditions, and A method for machining a hollow shaft, which comprises: removing distortion under use by grinding the surface of the hollow shaft in a deformed state; and then removing the rod and fulcrum ring.
JP6570682A 1982-04-20 1982-04-20 Method of machining hollow shaft Granted JPS58181549A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6570682A JPS58181549A (en) 1982-04-20 1982-04-20 Method of machining hollow shaft

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6570682A JPS58181549A (en) 1982-04-20 1982-04-20 Method of machining hollow shaft

Publications (2)

Publication Number Publication Date
JPS58181549A JPS58181549A (en) 1983-10-24
JPH0230816B2 true JPH0230816B2 (en) 1990-07-10

Family

ID=13294726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6570682A Granted JPS58181549A (en) 1982-04-20 1982-04-20 Method of machining hollow shaft

Country Status (1)

Country Link
JP (1) JPS58181549A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04120512U (en) * 1991-04-11 1992-10-28 東洋アルミホイルプロダクツ株式会社 gas range top plate cover
JPH0552615U (en) * 1991-12-10 1993-07-13 日本製箔株式会社 Aluminum sheet mat for gas stove
JPH06159693A (en) * 1992-11-25 1994-06-07 Nippon Foil Mfg Co Ltd Cooking mat for multi-burner head range

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2541217B2 (en) * 1987-05-12 1996-10-09 石川島播磨重工業株式会社 Shaft processing method
JP2535907B2 (en) * 1987-05-21 1996-09-18 石川島播磨重工業株式会社 Roll surface processing method
JP2541222B2 (en) * 1987-05-28 1996-10-09 石川島播磨重工業株式会社 Grinding equipment
JP4693396B2 (en) * 2004-11-22 2011-06-01 大日本印刷株式会社 Die head manufacturing and assembly method
DE102011050860B4 (en) * 2011-06-06 2014-12-24 Andritz Küsters Gmbh Grinding process of gravure rolls and gravure roll
CN103597226B (en) 2011-06-06 2016-08-24 安德里茨库斯特斯有限公司 Roller and the method being used for manufacturing and operating
JP7249395B1 (en) 2021-11-10 2023-03-30 株式会社Sumco Semiconductor sample evaluation method, semiconductor sample evaluation device, and semiconductor wafer manufacturing method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5590714A (en) * 1978-12-27 1980-07-09 Hitachi Metals Ltd Processing method for roll

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5590714A (en) * 1978-12-27 1980-07-09 Hitachi Metals Ltd Processing method for roll

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04120512U (en) * 1991-04-11 1992-10-28 東洋アルミホイルプロダクツ株式会社 gas range top plate cover
JPH0552615U (en) * 1991-12-10 1993-07-13 日本製箔株式会社 Aluminum sheet mat for gas stove
JPH06159693A (en) * 1992-11-25 1994-06-07 Nippon Foil Mfg Co Ltd Cooking mat for multi-burner head range

Also Published As

Publication number Publication date
JPS58181549A (en) 1983-10-24

Similar Documents

Publication Publication Date Title
Mamalis et al. Spread and flow patterns in ring rolling
JPH0230816B2 (en)
JPS63149038A (en) Method for working steel pipe end part by outer upsetting press
US4250606A (en) Method of processing roll
US3681962A (en) Apparatus for rolling rings
JPH0212649B2 (en)
JP2003170223A (en) Method and apparatus for correcting end of steel pipe
JP3333115B2 (en) Large diameter ring forging equipment
JPH0669587B2 (en) Cold roll forming method and apparatus
JPH06198337A (en) Method for correction welded steel tube
US6490900B1 (en) Pipe gauging and rounding apparatus and method
US4061008A (en) Rolls of a skewed-roll machine for trueing cylindrical metal articles
JP2524309B2 (en) High precision rolling method and device
RU2240190C1 (en) Method for making corrugated tubes
RU2130348C1 (en) Buildup rolling roll
US5377515A (en) Process for cold pilger rolling of thin-walled pipes
JPS60261608A (en) Pipe contraction working method
JPH06126366A (en) Prespinning method for ring, plate and strip materials having modified cross section shape
JPH01299710A (en) Straightener having variable roller distance for shape steel
JPH08267166A (en) Roll forming method for shaftlike metallic parts
JP2545947B2 (en) Centering method for multi-stage steel pipe rolling machine
KR830000252B1 (en) Roll processing method
JPH02179338A (en) Method for forging deformed ring
JPH08103808A (en) Aligning method of rolling mill
JP2582748B2 (en) Method for manufacturing thin web H-section steel