JPH0230784A - Method for electrolyzing hydrochloric acid and formation of hydrochloric acid - Google Patents

Method for electrolyzing hydrochloric acid and formation of hydrochloric acid

Info

Publication number
JPH0230784A
JPH0230784A JP17967088A JP17967088A JPH0230784A JP H0230784 A JPH0230784 A JP H0230784A JP 17967088 A JP17967088 A JP 17967088A JP 17967088 A JP17967088 A JP 17967088A JP H0230784 A JPH0230784 A JP H0230784A
Authority
JP
Japan
Prior art keywords
hydrochloric acid
gas
chlorine
hydrogen
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17967088A
Other languages
Japanese (ja)
Inventor
Choichi Furuya
長一 古屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanaka Kikinzoku Kogyo KK
Original Assignee
Tanaka Kikinzoku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanaka Kikinzoku Kogyo KK filed Critical Tanaka Kikinzoku Kogyo KK
Priority to JP17967088A priority Critical patent/JPH0230784A/en
Publication of JPH0230784A publication Critical patent/JPH0230784A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To inexpensively recover gaseous chlorine and gaseous hydrogen with a convenient device with high electrolysis efficiency by using a gas-diffusion electrode as an anode and a cathode to electrolyze a soln. contg. hydrochloric acid. CONSTITUTION:The gas-diffusion electrodes 51 and 52 consisting of reaction layers 31 and 32 and gas-diffusion layers 41 and 42 are used as the anode and cathode, and oppositely arranged with a gap of about 1mm in between. A soln. contg. hydrochloric acid is passed through the gap through conduits 10a and 10b as an electrolyte 2. An electrolytic current at about 1.5V and about 200mA/cm<2> current density is applied to the electrodes 51 and 52 respectively through an anode terminal 11a and a cathode terminal 11b. As a result, hydrochloric acid is electrolyzed, and gaseous chlorine and gaseous hydrogen are recovered respectively in a gaseous chlorine chamber 9 on the anode side and a gaseous hydrogen chamber 7 on the cathode side. Gaseous chlorine and gaseous hydrogen are then supplied, as required, respectively to the gaseous chlorine chamber 9 and the gaseous hydrogen chamber 7, and a dil. hydrochloric acid soln. is passed between both electrodes as the electrolyte 2. The gas generator 1 is used as a hydrogen-chlorine fuel cell to generate electric energy and to generate hydrochloric acid in the electrolyte 2.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、ガス拡散電極を用い、塩酸を含む電解液を電
解し塩素ガスおよび/または水素ガスを得る方法と、希
塩酸溶液を電解液に変えて用い、塩素ガスと水素ガスを
供給して、電気エネルギーおよび塩酸溶液を生成させる
方法に関するものである。
Detailed Description of the Invention (Industrial Field of Application) The present invention provides a method of electrolyzing an electrolytic solution containing hydrochloric acid to obtain chlorine gas and/or hydrogen gas using a gas diffusion electrode, and a method of producing chlorine gas and/or hydrogen gas by electrolyzing an electrolytic solution containing hydrochloric acid using a gas diffusion electrode. The present invention relates to a method of supplying chlorine gas and hydrogen gas to generate electrical energy and hydrochloric acid solution.

(従来技術とその問題点) 従来、塩素ガスと同時に水素ガスを得る方法は、食塩電
解により塩素ガスと水素ガスを得る方法が一般的に用い
られている。
(Prior Art and its Problems) Conventionally, as a method of obtaining hydrogen gas at the same time as chlorine gas, a method of obtaining chlorine gas and hydrogen gas by salt electrolysis has generally been used.

また、塩酸を得る方法としては、工業的な製法として食
塩電解で生成した塩素ガスと水素ガスを化合させる合成
法によって製造されている。
Furthermore, as a method for obtaining hydrochloric acid, as an industrial method, it is produced by a synthesis method in which chlorine gas produced by salt electrolysis and hydrogen gas are combined.

該製造法では、石英の反応管中で化合させる方法で不活
性ガスの存在や触媒を充填して、爆発防止のため水素ガ
スを過剰にいれ塩素ガスと化合し高温の塩化水素を石英
蛇管で冷却する方法が行われている。
In this manufacturing method, hydrogen chloride is combined in a quartz reaction tube in the presence of an inert gas and filled with a catalyst, and in order to prevent explosions, hydrogen gas is added in excess and combined with chlorine gas. Cooling methods are being used.

前者は、電解中に電極面にガスが発生するため電解効率
が悪くなり、浴電圧が高くなり、隔膜電解しているため
、膜抵抗もあり極間距離を狭くするにも限界があるとい
う欠点があった。
The disadvantage of the former is that gas is generated on the electrode surface during electrolysis, which reduces electrolysis efficiency, increases bath voltage, and because diaphragm electrolysis is used, there is membrane resistance and there is a limit to narrowing the distance between the electrodes. was there.

後者では、高濃度のものが得られるが、化合条件の調整
等に注意が必要となるため、装置が複雑で大型化して操
作も繁雑になる等の問題があった。
In the latter case, a product of high concentration can be obtained, but since care must be taken in adjusting the compounding conditions, there are problems such as the equipment becomes complicated and large, and the operation becomes complicated.

(発明の目的) 本発明は、上記従来の問題点を解決するために成された
もので、ガス拡散電極を陽極と陰極に用い極間を狭くし
て電解効率を上げ、電解液は塩酸を含む溶液を用いると
いう簡便な装置と方法で塩素ガスと水素ガスを得る方法
と、上記電解液に変え希塩酸溶液を用い、塩素ガスと水
素ガスを供給して燃料電池を構成し電気エネルギーおよ
び塩酸を得るきいう方法を提供するものである。
(Purpose of the Invention) The present invention has been made to solve the above-mentioned conventional problems. Gas diffusion electrodes are used as the anode and cathode to narrow the gap between the electrodes to increase electrolytic efficiency, and the electrolyte is made of hydrochloric acid. One method is to obtain chlorine gas and hydrogen gas using a simple device and method using a solution that contains chlorine gas, and the other is to use a dilute hydrochloric acid solution instead of the electrolyte solution and supply chlorine gas and hydrogen gas to construct a fuel cell and generate electrical energy and hydrochloric acid. It provides a way to obtain and ask questions.

(問題点を解決するための手段) 本発明の塩酸の電解方法は、陽極および陰極にガス拡散
電極を用いて塩酸を含む溶液を電解することを特徴とす
るものである。
(Means for Solving the Problems) The hydrochloric acid electrolysis method of the present invention is characterized in that a solution containing hydrochloric acid is electrolyzed using gas diffusion electrodes as an anode and a cathode.

本発明の塩酸の生成方法は、電解液に希塩酸溶液を用い
陽極および陰極にガス拡散電極を用い、陽極の電解液外
側より塩素ガスを陰極の電解液外側より水素ガスを供給
し、水素−塩素燃料電池とし、電力をえることおよび電
解液中に塩酸を生成すること特徴とするものである。
The method for producing hydrochloric acid of the present invention uses a dilute hydrochloric acid solution as an electrolyte, gas diffusion electrodes as an anode and a cathode, and supplies chlorine gas from outside the electrolyte at the anode and hydrogen gas from outside the electrolyte at the cathode. It is a fuel cell, and is characterized by generating electricity and producing hydrochloric acid in the electrolyte.

以下本発明の詳細について説明する。The details of the present invention will be explained below.

ガス拡散電極は反応層とガス拡散層の二層を有する膜状
体のもので、反応層は、平均粒径420オンダストロン
グの撥水性カーボンブラックと親水性カーボンブラック
、平均粒径0.3ミクロンのポリテトラフルオロエチレ
ン(以下PTFEとよぶ)と溶媒としてソルベントナフ
サからなり、その混合比は7:4:4:20の割合で、
さらに白金ブラック平均粒径20オングストロームを膜
厚0.Lmmに成型したときに、0. 56mg/c[
II担持する割合を加え、混合して圧縮成型したのち、
280℃で加熱乾燥して溶媒を除去したものである。
The gas diffusion electrode is a membrane-like material having two layers: a reaction layer and a gas diffusion layer.The reaction layer is made of water-repellent carbon black with an average particle size of 420 oz. and hydrophilic carbon black with an average particle size of 0.3 microns. It consists of polytetrafluoroethylene (hereinafter referred to as PTFE) and solvent naphtha as a solvent, with a mixing ratio of 7:4:4:20.
Furthermore, platinum black with an average particle diameter of 20 angstroms was coated with a film thickness of 0. When molded to Lmm, 0. 56mg/c [
After adding the proportion to support II, mixing and compression molding,
The solvent was removed by heating and drying at 280°C.

該反応層の特性は、電極としての導電性を持たせるため
にカーボンブラックが用いられている。
Carbon black is used to provide the reaction layer with electrical conductivity as an electrode.

親水性カーボンブラックは電解液との濡れ性を良くする
ためであり、撥水性カーボンブラックは電極としての性
能を損なうことなく電解液の漏れを防ぐことができ、さ
らに、適度の撥水性を持たせるためにPTFEを加えて
いる。
Hydrophilic carbon black improves wettability with the electrolyte, while water-repellent carbon black prevents leakage of the electrolyte without impairing its performance as an electrode, and also provides appropriate water repellency. For this purpose, PTFE is added.

また、白金は全体に均一分散しており、酸化還元反応を
促進するためである。
In addition, platinum is uniformly dispersed throughout to promote redox reactions.

なお、塩素ガス発生側のガス拡散電極の反応層に、白金
に変えて酸化パラジウムまたは白金イリジウム合金を白
金と同量担持させるとより塩素ガスの発生過電圧を0.
1〜0.2■低下させることができる。
Note that if the reaction layer of the gas diffusion electrode on the chlorine gas generation side supports palladium oxide or a platinum iridium alloy in the same amount as platinum instead of platinum, the overvoltage for chlorine gas generation can be further reduced to 0.
It can be reduced by 1 to 0.2 ■.

ガス拡散層は、0.1ミクロン以下の疎水性細孔のみを
有する膜で、平均粒径420オングストロームの撥水性
カーボンブラックと平均粒径0.3ミクロンのPTFE
と溶媒としてソルベントナフサとを6:4:18の割合
で混合し、厚さ0.4〜0.6mmに成型し、280℃
で加熱乾燥して溶媒を除去したものである。
The gas diffusion layer is a membrane that has only hydrophobic pores of 0.1 microns or less, and is made of water-repellent carbon black with an average particle size of 420 angstroms and PTFE with an average particle size of 0.3 microns.
and solvent naphtha as a solvent in a ratio of 6:4:18, molded to a thickness of 0.4 to 0.6 mm, and heated at 280°C.
The solvent was removed by heating and drying.

該ガス拡販層は、電解液の漏れを防ぐために1水性カー
ボンブラツクとPTFEを用いている。
The gas sales layer uses monoaqueous carbon black and PTFE to prevent electrolyte leakage.

特に、ガスの通過性を高めるための細孔を有するもので
ある。
In particular, it has pores to improve gas permeability.

ガス拡散電極は、上記の反応層とガス拡散層を接合した
もので、該ガス拡散電極は補強を施して用いることもで
きる。例えば金属の網状体に耐塩素および耐酸性の樹脂
被覆をしたものを用いて該ガス拡散電極を挟み固定すれ
ばよい。
The gas diffusion electrode is made by joining the above-mentioned reaction layer and gas diffusion layer, and the gas diffusion electrode can also be used with reinforcement. For example, the gas diffusion electrode may be sandwiched and fixed using a metal net coated with a chlorine-resistant and acid-resistant resin.

第一図は本発明に関する塩素ガスおよび水素ガス発生装
置(以下「ガス発生装置」とよぶ。)の−例を示した模
式図である。
FIG. 1 is a schematic diagram showing an example of a chlorine gas and hydrogen gas generator (hereinafter referred to as "gas generator") according to the present invention.

ガス発生装置1は電解液2に反応層31.32が接する
ように極間1 w以下に固定されたガス拡散電極51.
52と水素ガス取り出し口6を有する水素ガス室7と塩
素ガス取り出し口8を有する塩素ガス室9と電解液を供
給および取り出すために導管i0a、10bと外部より
電力を供給するためガス拡散電極に接続した陽極と陰極
の端子11a、llbから構成されている。
The gas generator 1 includes gas diffusion electrodes 51.32 fixed at a spacing of 1 W or less so that the reaction layers 31.32 are in contact with the electrolytic solution 2.
52, a hydrogen gas chamber 7 having a hydrogen gas outlet 6, a chlorine gas chamber 9 having a chlorine gas outlet 8, conduits i0a and 10b for supplying and extracting electrolyte, and a gas diffusion electrode for supplying power from the outside. It consists of connected anode and cathode terminals 11a and llb.

電解液2として塩酸を含む溶液(塩酸2〜12モル/1
を含み電解質として食塩を0〜4モル/l含む)を用い
電圧1.5V、電流密度200mA/cIIIで電解す
ると塩酸を含む溶液の電解が行われ陰極側の反応層32
中で水素ガスが発生するが、該水素ガスはガス拡散層4
2を通過して、水素ガス室7に出る。
A solution containing hydrochloric acid as electrolyte 2 (2 to 12 mol of hydrochloric acid/1
When the solution containing hydrochloric acid is electrolyzed at a voltage of 1.5 V and a current density of 200 mA/cIII using a solution containing 0 to 4 mol/l of salt as an electrolyte, the reaction layer 32 on the cathode side
Hydrogen gas is generated inside the gas diffusion layer 4.
2 and exits to the hydrogen gas chamber 7.

水素ガス室7の水素ガスは水素ガス取り出し口6から取
り出す。
Hydrogen gas in the hydrogen gas chamber 7 is taken out from the hydrogen gas outlet 6.

陽極側では電解液中の塩素イオンがガス拡散電極51の
反応層31中で塩素ガスとなりガス拡散層を通過して塩
素ガス室9にでる。
On the anode side, chlorine ions in the electrolyte become chlorine gas in the reaction layer 31 of the gas diffusion electrode 51 and exit into the chlorine gas chamber 9 through the gas diffusion layer.

塩素ガス室9の塩素ガスは塩素ガス取り出し口8から取
り出す。
Chlorine gas in the chlorine gas chamber 9 is taken out from the chlorine gas outlet 8.

導管10bより電解後の電解液を取り出し、電解液貯留
容器等に入れておき、再利用する場合は塩酸を加えて調
整する。
The electrolytic solution after electrolysis is taken out from the conduit 10b and placed in an electrolytic solution storage container or the like, and when it is to be reused, it is adjusted by adding hydrochloric acid.

また、連続的に電解を行う場合は、該電解液貯留容器か
ら導管10aに電解液を導くようにすればよい。
Further, when electrolysis is performed continuously, the electrolyte may be introduced from the electrolyte storage container to the conduit 10a.

ガス拡散電極51.52の極間を1+nm以下にするの
は、電解効率を高めるためであり、これを可能としてい
るのは、ガス拡散電極の反応層中で生成するガスがガス
拡散層から通過して電解液中に気泡が発生しないので安
定した電解ができるのである。
The reason why the distance between the electrodes of the gas diffusion electrodes 51 and 52 is set to 1+ nm or less is to increase the electrolysis efficiency, and this is made possible because the gas generated in the reaction layer of the gas diffusion electrode passes through the gas diffusion layer. Since no bubbles are generated in the electrolyte, stable electrolysis can be achieved.

また、従来法の食塩電解では、隔膜を使用されており、
膜による抵抗が生じ0.3V程度の電力を余分に消費す
るが、本発明では、塩酸を電解するため隔膜の必要はな
く余分な電力消費がない。
In addition, conventional salt electrolysis uses a diaphragm.
Although resistance due to the membrane occurs and an extra power of about 0.3 V is consumed, in the present invention, since hydrochloric acid is electrolyzed, there is no need for a diaphragm and no extra power is consumed.

尚、短時間により多くのガスを必要とするには上記電極
の表面積を大きくすればよく、同一装置を組み合わせた
り、あるいは電極を大きくするなど自由にできる。
Incidentally, in order to require more gas in a short period of time, the surface area of the above-mentioned electrodes can be increased, and this can be done freely by combining the same devices or by increasing the size of the electrodes.

第2図は、本発明に関する塩酸生成装置の一例を示した
模式図である。
FIG. 2 is a schematic diagram showing an example of a hydrochloric acid generating apparatus according to the present invention.

塩酸生成装置12は、第1図のガス発生装置とほぼ同一
の形式でよく、ガス拡散電極51.52を導電性の線1
4で接続すればよい。
The hydrochloric acid generator 12 may be of substantially the same type as the gas generator shown in FIG.
You can connect with 4.

塩酸の生成方法は、水素ガス取り出し口6より水素ガス
を供給し、塩素ガス取り出し口8より塩素ガスを供給す
る。
Hydrochloric acid is produced by supplying hydrogen gas from the hydrogen gas outlet 6 and supplying chlorine gas from the chlorine gas outlet 8.

また、電解液に変えて塩化水素の吸収液13として希塩
酸0.5〜lOモル/1を用いる。
Further, 0.5 to 10 mol/1 dilute hydrochloric acid is used as the hydrogen chloride absorption liquid 13 instead of the electrolytic solution.

供給した水素ガスは、水素ガス室7に入りガス拡散電極
52のガス拡散層42を通過して反応層32で水素イオ
ンと電子になる。
The supplied hydrogen gas enters the hydrogen gas chamber 7, passes through the gas diffusion layer 42 of the gas diffusion electrode 52, and becomes hydrogen ions and electrons in the reaction layer 32.

該水素イオンは希塩酸中に入り、該電子は導電性の線1
4を伝わり対極側へ流れる。
The hydrogen ions enter dilute hydrochloric acid, and the electrons enter the conductive line 1
4 and flows to the opposite pole.

供給した塩素ガスは、塩素ガス室9に入りガス拡散電極
51のガス拡散層41を通過して反応層31で電子を得
て塩素イオンとなり希塩酸中に入り塩酸が生成する。
The supplied chlorine gas enters the chlorine gas chamber 9, passes through the gas diffusion layer 41 of the gas diffusion electrode 51, obtains electrons in the reaction layer 31, becomes chlorine ions, enters dilute hydrochloric acid, and generates hydrochloric acid.

供給する水素ガスと塩素ガスは最大で2kg/cnf程
度の圧力があればよく、吸収液として希塩酸を用いるの
は、導電性と生成した塩酸を再利用するのに適するから
である。
The hydrogen gas and chlorine gas to be supplied need only have a pressure of about 2 kg/cnf at the maximum, and dilute hydrochloric acid is used as the absorption liquid because of its conductivity and suitability for reusing the generated hydrochloric acid.

尚、上記塩酸生成中に電子が移動するため、電力として
取り出すこともでき、また、ガス発生装置を用いて、使
用済の廃塩酸を電解して塩素ガスと水素ガスを得ること
もでき、さらに、ガス発生装置と塩酸生成装置を組み合
わせて廃塩酸を精製することもできる。
In addition, since electrons move during the generation of hydrochloric acid, it can be extracted as electricity. Also, using a gas generator, used waste hydrochloric acid can be electrolyzed to obtain chlorine gas and hydrogen gas. It is also possible to purify waste hydrochloric acid by combining a gas generator and a hydrochloric acid generator.

その他、太陽エネルギー、深夜電力等を利用し水素ガス
と塩素ガスにエネルギを変換して貯留しておき、必要な
ときに水素ガスと塩素ガスを用いて電力として取り出す
二次電池としても利用できる。
In addition, it can also be used as a secondary battery that converts energy into hydrogen gas and chlorine gas using solar energy, late-night electricity, etc., stores it, and extracts the hydrogen gas and chlorine gas as electricity when needed.

以下、本発明の実施例について説明する。Examples of the present invention will be described below.

実施例・1 第1図に示したガス発生装置を用い、電解液として塩酸
5モル/βを含む塩化す) IJウム溶液(120g/
β)を用い、極間0.9mmとして、1、5Vの電圧で
電解した。
Example 1 Using the gas generator shown in Fig. 1, a solution containing 5 mol/β of hydrochloric acid (120 g/
β), electrolysis was carried out at a voltage of 1.5 V with an electrode gap of 0.9 mm.

使用したガス拡散電極は反応層が0.1化の厚さで、ガ
ス拡散層が0.5mmの厚さにして圧縮成型し接合し1
0cmX10cmの大きさにしたもので、水素ガス発生
側のガス拡散電極の反応層には触媒として白金を担持し
たものを用い、塩素ガス発生側のガス拡散電極の反応層
には触媒として白金イリジウム30%を担持したものを
用いた。
The gas diffusion electrode used had a reaction layer with a thickness of 0.1mm, a gas diffusion layer with a thickness of 0.5mm, compression molded and bonded.
The size is 0 cm x 10 cm, and the reaction layer of the gas diffusion electrode on the hydrogen gas generation side is supported with platinum as a catalyst, and the reaction layer of the gas diffusion electrode on the chlorine gas generation side is supported with platinum-iridium 30 as a catalyst. % was used.

塩素ガス発生量は0.11!/分で、水素ガス発生量は
0.14fl/分であった。
The amount of chlorine gas generated is 0.11! /min, and the amount of hydrogen gas generated was 0.14 fl/min.

実施例・2 実施例・1と同一条件で、極間を0.6+nn+にして
電解電圧を1.48Vで行ったところ、塩素ガスの発生
量は実施例・1と変わらず、浴電圧の変化も見られなか
った。
Example 2 Under the same conditions as Example 1, the electrode gap was set to 0.6+nn+ and the electrolysis voltage was 1.48V.The amount of chlorine gas generated was the same as in Example 1, but the bath voltage changed. I couldn't see either.

実施例・3 ガス発生装置は実施例・1と同様として、電解液として
塩酸3モル/βを含む塩化ナトリウム溶液(240g/
jlりを用い、極間0.9mmとして、1.54の電圧
で電解した。
Example 3 The gas generator was the same as in Example 1, and a sodium chloride solution (240 g/β) containing 3 mol/β of hydrochloric acid was used as the electrolyte.
Electrolysis was carried out at a voltage of 1.54 using an electrode with a pitch of 0.9 mm.

使用したガス拡散電極は10cmX10cmのもので、
水素ガス発生側のガス拡散電極の反応層には触媒として
白金を担持したものを用い、塩素ガス発生側のガス拡散
電極の反応層には触媒として酸化パラジウムを担持した
ものを用いた。
The gas diffusion electrode used was 10cm x 10cm.
The reaction layer of the gas diffusion electrode on the hydrogen gas generation side was supported with platinum as a catalyst, and the reaction layer of the gas diffusion electrode on the chlorine gas generation side was supported with palladium oxide as a catalyst.

塩素ガス発生量は0.1:l/分で、水素ガス発生lは
0.13R/分であった。
The amount of chlorine gas generated was 0.1:l/min, and the amount of hydrogen gas generated was 0.13R/min.

実施例・4 実施例・3と同一条件で、極間を0.6mmにして電解
電圧を1.50Vで行ったところ、塩素ガスの発生量は
実施例・3(!:変わらず、浴電圧の時間変化も見られ
なかった。
Example 4 When electrolysis was carried out under the same conditions as Example 3, with an electrode gap of 0.6 mm and a voltage of 1.50 V, the amount of chlorine gas generated was Example 3 (!: unchanged, bath voltage No change over time was observed.

実施例・5 第2図に示した塩酸生成装置を用い、用いたガス拡散電
極は実施例・1と同じものを用い、極間は0.9mmと
して塩酸合成電池を構成した。
Example 5 A hydrochloric acid synthesis battery was constructed using the hydrochloric acid generator shown in FIG. 2, using the same gas diffusion electrodes as in Example 1, and setting the gap between the electrodes to 0.9 mm.

希塩酸3モル/lの電解液を200m1をポンプで循環
させながら、水素ガスおよび塩素ガスを0 、 05 
kg/an!の圧力を保持して供給したところ、30分
後の希塩酸濃度は5.1モル/βになっていた。
While circulating 200 ml of dilute hydrochloric acid 3 mol/l electrolyte with a pump, hydrogen gas and chlorine gas were supplied at 0.05 ml.
kg/an! The dilute hydrochloric acid concentration after 30 minutes was 5.1 mol/β.

そのままの状態で継続し1時間後の希塩酸濃度は7.1
モル/βであった。
Continuing to do so for 1 hour, the concentration of diluted hydrochloric acid was 7.1.
It was mol/β.

また、電池電圧を測定したところ0.98Vであった。Further, when the battery voltage was measured, it was 0.98V.

実施例・6 実施例・5と同一条件で、極間を0.6mraにして、
水素ガスおよび塩素ガスの圧力を0.5kg/crdに
して行ったところ、30分後の希塩酸濃度は5.0モル
/lになっていた。
Example 6 Under the same conditions as Example 5, the distance between poles was set to 0.6 mra,
When the pressure of hydrogen gas and chlorine gas was set to 0.5 kg/crd, the dilute hydrochloric acid concentration after 30 minutes was 5.0 mol/l.

そのままの状態で継続し1時間後の希塩酸濃度は7.0
モル/lであった。
The concentration of diluted hydrochloric acid after 1 hour of continuing as it is is 7.0.
It was mol/l.

また、電池電圧を測定したところ1.OOVであった。Also, when the battery voltage was measured, 1. It was OOV.

実施例・7 塩酸生成装置は実施例・5と同様のものを用い、用いた
ガス拡散電極は実施例・3と同じものを用い、極間は0
.9mmとして導電性の線は銅線を用いた。
Example 7 The same hydrochloric acid generator as in Example 5 was used, the gas diffusion electrode used was the same as in Example 3, and the gap between the electrodes was 0.
.. A copper wire was used as the conductive wire with a thickness of 9 mm.

希塩酸2モル/βを電解液として、水素ガスおよび塩素
ガスを0 、 02 kg/cmの圧力を保持して供給
したところ、30分後の希塩酸濃度は4.2モル/lに
なっていた。
When hydrogen gas and chlorine gas were supplied while maintaining a pressure of 0.02 kg/cm using 2 mol/β of diluted hydrochloric acid as an electrolyte, the concentration of diluted hydrochloric acid after 30 minutes was 4.2 mol/l.

そのままの状態で継続し1時間後の希塩酸濃度は6.3
モル/1であった。
The concentration of diluted hydrochloric acid after 1 hour of continuing as it is is 6.3.
It was mol/1.

また、電池電圧を測定したところ0.96Vであった。Moreover, when the battery voltage was measured, it was 0.96V.

実施例・8 実施例・7と同一条件で、極間を0.6111111に
して、水素ガスおよび塩素ガスの圧力を1.5kg/c
rdにして行ったところ、30分後の希塩酸濃度は5.
3モル/βになっていた。
Example 8 Under the same conditions as Example 7, the electrode gap was set to 0.6111111, and the pressure of hydrogen gas and chlorine gas was 1.5 kg/c.
rd, the diluted hydrochloric acid concentration after 30 minutes was 5.
It was 3 mol/β.

そのままの状態で継続し1時間後の希塩酸濃度は8.5
モル/lであった。
Continuing to do so for 1 hour, the concentration of diluted hydrochloric acid was 8.5.
It was mol/l.

また、電池電圧を測定したところ0.96Vであった。Moreover, when the battery voltage was measured, it was 0.96V.

(発明の効果) 本発明の塩酸の電解方法は、陽極および陰極にガス拡散
電極を用いるので、従来法のように電解液中に水素や塩
素のガスが発生することがなく、電極間をl mm以下
に狭めることができ、理論電解電圧に極めて近い低い電
圧で電解でき、電解効率を向上することができるもので
ある。また従来アルカリ中和処理をし排水していた塩酸
を含む廃液を電解して塩素ガスや水素ガスを低コストで
回収することができ、さらにこれらのガスを本発明のも
う一つの方法により塩酸を生成するようにすれば、廃液
から塩酸を回収、精製することができるのみならず電気
エネルギーも回収できる。
(Effects of the Invention) Since the hydrochloric acid electrolysis method of the present invention uses gas diffusion electrodes for the anode and cathode, hydrogen and chlorine gases are not generated in the electrolyte as in the conventional method, and there is no gap between the electrodes. It can be narrowed down to less than 1 mm, electrolysis can be performed at a low voltage extremely close to the theoretical electrolysis voltage, and the electrolysis efficiency can be improved. In addition, chlorine gas and hydrogen gas can be recovered at low cost by electrolyzing waste liquid containing hydrochloric acid, which was conventionally treated with alkali neutralization and drained. If generated, not only can hydrochloric acid be recovered and purified from waste liquid, but also electrical energy can be recovered.

−力木発明の塩酸の生成方法は、上記発明同様陽極およ
び陰極にガス拡散電極を用いるので、塩素ガスと水素ガ
スで簡単に電池を構成することができ、塩酸を生成する
と同時に電気エネルギーを得ることができる。また従来
法のように装置が複雑かつ大型である必要もなく操作も
簡単である。
- Since the method for producing hydrochloric acid invented by Rikiki uses gas diffusion electrodes for the anode and cathode as in the above invention, it is possible to easily construct a battery with chlorine gas and hydrogen gas, and obtain electrical energy at the same time as producing hydrochloric acid. be able to. Further, unlike the conventional method, the device does not need to be complicated and large, and the operation is simple.

さらに太陽エネルギー等の貯蔵を塩酸を電解して塩素と
水素ガスにかえておき、必要なときにその塩素と水素ガ
スで塩酸を生成して電気エネルギーを取り出すことがで
きる二次電池としても働き、その利用は極めて広いもの
である。
Furthermore, it works as a secondary battery that can store solar energy, etc. by electrolyzing hydrochloric acid and converting it into chlorine and hydrogen gas, and when necessary, generates hydrochloric acid from the chlorine and hydrogen gas and extracts electrical energy. Its use is extremely wide.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の塩酸の電解方法を示す概略図、第2図
は本発明の塩酸の生成方法を示す概略図である。 出願人  田中貴金属工業株式会社 古屋長−
FIG. 1 is a schematic diagram showing the method for electrolyzing hydrochloric acid according to the present invention, and FIG. 2 is a schematic diagram showing the method for producing hydrochloric acid according to the present invention. Applicant Tanaka Kikinzoku Kogyo Co., Ltd. Furuyacho

Claims (1)

【特許請求の範囲】 1、陽極および陰極にガス拡散電極を用いて塩酸を含む
溶液を電解することを特徴とする塩酸の電解方法。 2、電解液に希塩酸溶液を用い、陽極および陰極にガス
拡散電極を用い、陽極気室より塩素ガスを、陰極気室よ
り水素ガスを供給し水素−塩素燃料電池とし、電気エネ
ルギーおよび電解液中に塩酸を生成することを特徴とす
る塩酸の生成方法。
[Claims] 1. A method for electrolyzing hydrochloric acid, which comprises electrolyzing a solution containing hydrochloric acid using gas diffusion electrodes as an anode and a cathode. 2. Using a dilute hydrochloric acid solution as the electrolyte, using gas diffusion electrodes as the anode and cathode, and supplying chlorine gas from the anode air chamber and hydrogen gas from the cathode air chamber, a hydrogen-chlorine fuel cell is created, which generates electrical energy and the electrolyte. A method for producing hydrochloric acid, the method comprising: producing hydrochloric acid.
JP17967088A 1988-07-19 1988-07-19 Method for electrolyzing hydrochloric acid and formation of hydrochloric acid Pending JPH0230784A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17967088A JPH0230784A (en) 1988-07-19 1988-07-19 Method for electrolyzing hydrochloric acid and formation of hydrochloric acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17967088A JPH0230784A (en) 1988-07-19 1988-07-19 Method for electrolyzing hydrochloric acid and formation of hydrochloric acid

Publications (1)

Publication Number Publication Date
JPH0230784A true JPH0230784A (en) 1990-02-01

Family

ID=16069821

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17967088A Pending JPH0230784A (en) 1988-07-19 1988-07-19 Method for electrolyzing hydrochloric acid and formation of hydrochloric acid

Country Status (1)

Country Link
JP (1) JPH0230784A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0552170A1 (en) * 1990-09-26 1993-07-28 Solar Reactor Technologies, Inc. Alkali metal hydroxide generation system and the method therefor
JP2011518257A (en) * 2008-04-22 2011-06-23 ケメタル・フット・コーポレイション Method for producing high purity lithium hydroxide and hydrochloric acid

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0552170A1 (en) * 1990-09-26 1993-07-28 Solar Reactor Technologies, Inc. Alkali metal hydroxide generation system and the method therefor
EP0552170A4 (en) * 1990-09-26 1994-03-18 Solar Reactor Tech Alkali metal hydroxide generation system and the method therefor.
JP2011518257A (en) * 2008-04-22 2011-06-23 ケメタル・フット・コーポレイション Method for producing high purity lithium hydroxide and hydrochloric acid

Similar Documents

Publication Publication Date Title
US5770033A (en) Methods and apparatus for using gas and liquid phase cathodic depolarizers
JP2841868B2 (en) Electrochemical conversion of anhydrous hydrogen halide to halogen gas using cation transfer membrane
JPS6025508B2 (en) How to generate gas by electrolytic reaction
JP2000104189A (en) Production of hydrogen peroxide and electrolytic cell for production
JP5470833B2 (en) Method for producing hydrogen peroxide
JP3274880B2 (en) Electrolytic ozone generator
JP2005144240A (en) Electrolytic cell and electrolytic water generator
EP0097218B1 (en) Photoassisted generation of hydrogen from water
JPH03252057A (en) Electrochemical cell
GB1176632A (en) Fuel Cell.
US5035869A (en) Process for reducing uranyl salt
JPH0230784A (en) Method for electrolyzing hydrochloric acid and formation of hydrochloric acid
JPH08246178A (en) Electrochemical recovering method of salts and device therefor
JP3493242B2 (en) Method and apparatus for electrochemical recovery of nitrate
Tsypkin et al. Catalytic layers in a reversible system comprising an electrolyzing cell and a fuel cell based on solid polymer electrolyte
Shibli et al. Platinum-iridium bimetal catalyst-based porous carbon electrodes for H2 Cl2 fuel cells
CN111206265B (en) Air-water circulating system and multifunctional water electrolysis device thereof
JPS63250480A (en) Improvement of method for generating ozone by electrolysis
JP3168954B2 (en) Method for producing hydrogen halide and oxygen
CN219547111U (en) Hydrogen peroxide generating device with modified cation exchange membrane
JP2574678B2 (en) Equipment for producing aqueous solution containing peroxide
JP2910096B2 (en) Water purifier
US20020058174A1 (en) Compound electrodes for electrochemical processes
JP2021025105A (en) Electrochemical device
JPH0244908B2 (en)