JPH0230783Y2 - - Google Patents

Info

Publication number
JPH0230783Y2
JPH0230783Y2 JP1983147182U JP14718283U JPH0230783Y2 JP H0230783 Y2 JPH0230783 Y2 JP H0230783Y2 JP 1983147182 U JP1983147182 U JP 1983147182U JP 14718283 U JP14718283 U JP 14718283U JP H0230783 Y2 JPH0230783 Y2 JP H0230783Y2
Authority
JP
Japan
Prior art keywords
movable part
movable
electrode
coil
restoring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1983147182U
Other languages
Japanese (ja)
Other versions
JPS6054969U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP14718283U priority Critical patent/JPS6054969U/en
Publication of JPS6054969U publication Critical patent/JPS6054969U/en
Application granted granted Critical
Publication of JPH0230783Y2 publication Critical patent/JPH0230783Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Pressure Sensors (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)

Description

【考案の詳細な説明】 〈産業上の利用分野〉 本考案は、航空機等の慣性誘導装置などに用い
られるサーボ加速度計の特性改善と構造の簡素化
に関するものである。
[Detailed Description of the Invention] <Industrial Field of Application> The present invention relates to improving the characteristics and simplifying the structure of a servo accelerometer used in inertial guidance devices for aircraft and the like.

〈従来技術〉 典形的なサーボ加速度計の構成の一例を第1図
に示す。1はフレクシヤ2a,2bで支持され、矢
印B方向の加速度に対して変位可能な金属円板で
構成された可動部であり、円筒状の復元用コイル
3と一体に形成されていて両者で一定の質量mを
有し、B方向の加速度αに対してA方向に、F=
m・αの力を発生させる。4はコイル3の配置さ
れたギヤツプに一定フラツクスを発生させるため
の円柱状永久磁石、5および5′はコイル3の外
内壁と一定ギヤツプを介して配置されて磁石のフ
ラツクスの帰路を形成するヨークであり、コイル
3に供給される直流電流によつて、上記力Fに対
向する矢印B方向の復元力F1を可動部1に発生
させる。6は可動部1の変位を検出して電気信号
に変換する変位検出手段であり、この例では一体
に取付けられた板状の電極7を可動部1と近接対
向させ、両者間に形成される静電容量COの変化
に基づいて可動部1の基準位置からの変位を検出
する。可動部1の変位検出手段は容量式の他、光
学的手段、電磁的手段と種々の変位検出手段が用
いられる。検出された変位信号eFはダンピングそ
の他の適当な演算機能を有する増幅器8に導かれ
て適当に演算され直流信号IFに変換される。この
直流電流が復元用コイルに供給され、電磁的な復
元力F1を発生させて可動部1の変位を元の位置
に引戻すように作動し、F=F1となる位置で平
衡させる。変位検出手段6、増幅器8を含むルー
プ利得が充分大の場合では、平衡状態における可
動部1の変位は極めてわずかである。このような
力平衡状態においては復元力F1は直流電流IFに比
例するから、IFの大きさが加速度によつて発生す
る力Fに比例し、従つてIFの大きさにより加速度
αを知ることができる。9は直流電流IFが供給さ
れる抵抗であり、この抵抗(抵抗値R)による電
圧降下EF=IF・Rが出力端子10に導かれ、電圧
出力信号を与える。
<Prior Art> An example of the configuration of a typical servo accelerometer is shown in FIG. A movable part 1 is supported by flexures 2 a and 2 b and is made up of a metal disk that can be displaced in response to acceleration in the direction of arrow B. The movable part 1 is formed integrally with a cylindrical restoring coil 3 so that both has a constant mass m, and in the A direction with respect to the acceleration α in the B direction, F=
Generates a force of m・α. Reference numeral 4 denotes a cylindrical permanent magnet for generating a constant flux in the gap where the coil 3 is arranged, and 5 and 5' denote a yoke that is arranged via a constant gap with the outer and inner walls of the coil 3 to form a return path for the flux of the magnet. The DC current supplied to the coil 3 generates a restoring force F 1 in the direction of arrow B, which opposes the force F, in the movable part 1 . Reference numeral 6 denotes a displacement detection means for detecting the displacement of the movable part 1 and converting it into an electric signal. In this example, a plate-shaped electrode 7 attached integrally is placed close to and opposite to the movable part 1, and is formed between the two. The displacement of the movable part 1 from the reference position is detected based on the change in the capacitance C O. As the displacement detection means of the movable part 1, various displacement detection means such as a capacitive type, an optical means, and an electromagnetic means are used. The detected displacement signal e F is guided to an amplifier 8 having damping and other appropriate calculation functions, where it is appropriately calculated and converted into a DC signal I F. This direct current is supplied to the restoring coil, which operates to generate an electromagnetic restoring force F 1 to return the displacement of the movable part 1 to its original position, and is balanced at the position where F=F 1 . When the loop gain including the displacement detecting means 6 and the amplifier 8 is sufficiently large, the displacement of the movable part 1 in a balanced state is extremely small. In such a force equilibrium state, the restoring force F 1 is proportional to the DC current I F , so the magnitude of I F is proportional to the force F generated by acceleration, and therefore the magnitude of I F increases the acceleration α You can know. Reference numeral 9 denotes a resistor to which a direct current I F is supplied, and a voltage drop E F =I F ·R due to this resistor (resistance value R) is led to an output terminal 10 to provide a voltage output signal.

このような構成のサーボ加速度計の問題点は、 (1) 可動部及び復元用コイルをフレクシヤに接合
する構成であり、組立てにくく、又寸法精度に
限界があり、対称性のよい可動部の製造がむず
かしい。
The problems with servo accelerometers with this type of configuration are: (1) The movable part and the restoring coil are joined to the flexure, making it difficult to assemble, and there are limits to dimensional accuracy; manufacturing the movable part with good symmetry; It's difficult.

(2) フレクシヤのわずかな曲りや可動部の非対称
性により、感度軸以外の軸方向の加速度に対し
て感度を有するようになる。即ち第1図におい
てA,B方向とは直角方向であるC方向に対し
ても感度を有する。慣性航法における加速度セ
ンサはX,Y,Zの3軸について夫々加速度を
検出して演算する方式をとるので、各軸につい
て感度軸以外の軸方向については感度をゼロに
することが望ましく、コイルの両側をフレクシ
ヤで支えるなどの対策が必要となり、構造が非
常に複雑になつていた。
(2) Due to the slight bending of the flexure and the asymmetry of the moving parts, it becomes sensitive to acceleration in directions other than the sensitivity axis. That is, in FIG. 1, it is sensitive also to direction C, which is perpendicular to directions A and B. Acceleration sensors in inertial navigation use a method that detects and calculates acceleration for each of the three axes, X, Y, and Z. Therefore, it is desirable to set the sensitivity to zero for each axis other than the sensitivity axis. This required measures such as supporting both sides with flexures, making the structure extremely complex.

〈本考案の構成〉 本考案は上記従来技術の問題点を解消し、構造
が簡単で寸法精度及び対称性を高くとれ、感度軸
以外の感度が極めて低いサーボ加速度計を提供す
ることを目的とする。
<Structure of the present invention> The purpose of the present invention is to solve the problems of the prior art described above, and to provide a servo accelerometer with a simple structure, high dimensional accuracy and symmetry, and extremely low sensitivity other than the sensitivity axis. do.

以下図面により本考案の一実施例につき説明す
る。第2図Aは変位検出用の六角形の薄板状固定
電極11の平面図、11a,11b,11cは後述
する可動電極、復元用コイル及び上記固定電極1
1のリード線引出しのために切欠いたにげであ
る。同図Bは本考案の主要部をなす可動部12及
びその支持枠13、可動電極14、復元コイル1
9を含む一体形成されたユニツトを示す平面図、
同図CはAに示す固定電極とBに示すユニツトを
組合せた状態で、Bに示すA−A′線で切つて示
した側断面図である。
An embodiment of the present invention will be described below with reference to the drawings. FIG. 2A is a plan view of the hexagonal thin plate-shaped fixed electrode 11 for displacement detection, and 11 a , 11 b , and 11 c are movable electrodes, restoring coils, and the fixed electrode 1 described later.
This is a notch cut out to draw out the lead wire of No.1. Figure B shows the movable part 12, its support frame 13, movable electrode 14, and restoring coil 1, which are the main parts of the present invention.
9 is a plan view showing an integrally formed unit including
Figure C is a side sectional view taken along the line AA' shown in B, showing a combination of the fixed electrode shown in A and the unit shown in B.

Aに示す固定電極11は金属性の薄板又は絶縁
材の板に金属をスパツタ蒸着する手段で容易に実
現できる。Bに示すユニツトの構成につき、Cの
側断面図と共に説明する。12は単結晶の水晶、
シリコン基板等の薄板(70μm程度)で形成され
た六角形の可動部であり、固定電極と対向する面
(上面)は金属のスパツタ蒸着等で可動電極14
が形成されている。この可動部を一定距離を隔て
て六角形の支持枠13が取り囲んでおり、これら
両者は対向する一辺おきに3個所で可撓性のフレ
クシヤ15a,15b,15cで連結されていて、
可動部12は支持枠13に対し上下方向に相対的
に移動可能に支持されている。可動部12、支持
枠13、フレクシヤ15a〜15cはフオトリソグ
ラフイ技術と異方性エツチング技術等で一枚の基
板より高い寸法精度で切り出して製作することが
可能である。可動電極14はフレクシヤ15c
のスパツタ蒸着リード線16を介して支持枠13
上にスパツタ蒸着形成された電極17に接続され
ボンデイングしたリード線18で引出される。
The fixed electrode 11 shown in A can be easily realized by sputter deposition of metal onto a thin metal plate or an insulating plate. The structure of the unit shown in B will be explained together with the side sectional view of C. 12 is a single crystal crystal,
It is a hexagonal movable part made of a thin plate (approximately 70 μm) such as a silicon substrate, and the surface (top surface) facing the fixed electrode is made of metal sputter evaporated, etc. to form the movable electrode 14.
is formed. A hexagonal support frame 13 surrounds this movable part at a certain distance, and these two parts are connected at three locations on every other opposing side by flexible flexures 15a , 15b , and 15c .
The movable part 12 is supported so as to be movable relative to the support frame 13 in the vertical direction. The movable portion 12, the support frame 13, and the flexures 15a to 15c can be manufactured by cutting them out from a single substrate with higher dimensional accuracy using photolithography and anisotropic etching techniques. The movable electrode 14 is connected to the support frame 13 via a sputter-deposited lead wire 16 on the flexure 15c .
It is connected to an electrode 17 formed by sputter deposition thereon and led out by a bonded lead wire 18.

可動部12の下面にはループ状の復元用コイル
19がスパツタ蒸着等で形成されており、その一
端19aはメツキ手段などで可動部上面に貫通さ
れ、上面及びフレクシヤ15b上にスパツタ蒸着
で形成されたリード線20を介して支持枠13上
に同じくスパツタ蒸着で形成された電極21に接
続され、リード線22で引出される。従つて、リ
ード線20が形成される周辺部は可動電極14の
スパツタ蒸着はにげが形成されている復元用コイ
ル19の他端は、フレクシヤ15aの下面にスパ
ツタ蒸着で形成されたリード線23を介して支持
枠13の下面に同じくスパツタ蒸着で形成された
電極24に接続され、リード線25で引出され
る。
A loop-shaped restoring coil 19 is formed on the lower surface of the movable part 12 by sputter deposition or the like, and one end 19a of the coil 19 is passed through the upper surface of the movable part by plating means or the like, and a restoring coil 19 is formed on the upper surface and the flexure 15b by sputter deposition. It is connected to an electrode 21 also formed on the support frame 13 by sputter deposition via the lead wire 20 formed, and is drawn out by a lead wire 22. Therefore, the peripheral part where the lead wire 20 is formed is formed by sputter deposition of the movable electrode 14, and the other end of the restoring coil 19 is the lead wire formed by sputter deposition on the lower surface of the flexure 15a . It is connected to an electrode 24 which is also formed on the lower surface of the support frame 13 by sputter deposition via a wire 23, and is led out by a lead wire 25.

26a,26bは支持枠上面に形成されたスペー
サであり、このスペーサー上に固定電極11が支
持される。従つてこのスペーサの厚さが、固定電
極と可動電極間のギヤツプを決定する。このスペ
ーサも支持枠上に金属をスパツタ蒸着し、これに
メツキをすることにより任意の厚さに管理するこ
とが容易であり、極めて狭いギヤツプを高精度で
実現できる。固定電極11はこのスペーサ部に接
しているので、スペーサ26aにボンデングされ
たリード線28により固定電極11を引出すこと
ができる。
26 a and 26 b are spacers formed on the upper surface of the support frame, and the fixed electrode 11 is supported on these spacers. The thickness of this spacer therefore determines the gap between the fixed and movable electrodes. This spacer can also be easily controlled to any desired thickness by sputter-depositing metal onto the support frame and plating it, making it possible to realize an extremely narrow gap with high precision. Since the fixed electrode 11 is in contact with this spacer portion, the fixed electrode 11 can be drawn out by the lead wire 28 bonded to the spacer 26a .

第2図に示した実施例では、基板に単結晶水晶
を用いており、三方晶系であるため化学エツチン
グで切出す場合対称性をよくするために六角形に
しているが、特に形状に制約はない。
In the example shown in Figure 2, single crystal quartz is used for the substrate, and since it has a trigonal system, it is made into a hexagonal shape to improve symmetry when cut out by chemical etching, but there are particular restrictions on the shape. There isn't.

更に、水晶は極めてすぐれた弾性特性を有し、
クリープのない材料であることはよく知られてお
り、本考案に用いる弾性薄板として最適である。
Furthermore, crystal has extremely excellent elastic properties,
It is well known that it is a creep-free material, making it ideal for the elastic thin plate used in the present invention.

第3図は、第2図Cで示す組合せたユニツトを
復元力を発生させるための磁気回路のヨーク上に
取付けた構成図である。サーボ加速度計としての
基本的動作は第1図で説明した動作とほぼ同一で
ある。復元用コイルの形状が従来の場合は円筒状
であるのに対し、本考案の場合は平面状である
が、復元力発生のメカニズムは同じであり、コイ
ルに供給された直流電流に比例した復元力を可動
部に発生させることができる。
FIG. 3 is a configuration diagram in which the combined unit shown in FIG. 2C is mounted on a yoke of a magnetic circuit for generating restoring force. The basic operation as a servo accelerometer is almost the same as that explained in FIG. The shape of the restoring coil is cylindrical in the conventional case, whereas in the case of the present invention it is planar, but the mechanism of generating restoring force is the same, and the restoring force is generated in proportion to the DC current supplied to the coil. Force can be generated in the moving part.

尚変位の検出手段は容量式を示したが、これに
限定されず、例えば光学的又は電磁的な変位検出
手段を採用することも可能である。又フレクシヤ
の形状も実施例の形状に限定されず種々の形状が
可能である。
Although the displacement detecting means is shown as a capacitive type, it is not limited to this, and for example, it is also possible to employ an optical or electromagnetic displacement detecting means. Further, the shape of the flexure is not limited to the shape of the embodiment, and various shapes are possible.

更に加速度計として高域(周波数の高い領域)
の感度をカツトしたい場合には、本実施例の場合
可動部と支持枠間のエツチング抜きをする部分を
狭くしていくと流体抵抗が増し、簡単に空気ダン
ピングをかけることができる。このギヤツプは異
方性エツチング技術を使えば、たとえば5μmく
らいまで狭くかつ正確にできる。即ち周波数特性
をこのギヤツプをコントロールすることによつて
自由に選ぶことが可能である。
Furthermore, as an accelerometer, it has a high frequency range (high frequency region).
If it is desired to reduce the sensitivity, in this embodiment, by narrowing the etched area between the movable part and the support frame, the fluid resistance increases and air damping can be easily applied. Using anisotropic etching technology, this gap can be made as narrow and precise as 5 μm, for example. That is, the frequency characteristics can be freely selected by controlling this gap.

〈効果〉 以上説明した本考案の効果をまとめると次のよ
うになる。
<Effects> The effects of the present invention explained above can be summarized as follows.

(1) 可動部、フレクシヤ、支持体を一枚の基板よ
りフオトリソグラフイ技術、異方性エツチング
技術により一体に高精度に切出して形成でき、
対称性の優れた可動部を複雑な組立機構無しで
製作可能である。
(1) The movable part, flexure, and support body can be cut out from a single substrate with high precision using photolithography technology and anisotropic etching technology.
A movable part with excellent symmetry can be manufactured without a complicated assembly mechanism.

(2) 更に復元用コイルもスパツタ蒸着により可動
部に平面状に一体形成されており、測定すべき
加速度の感度軸方向の厚さを極めて薄くでき、
かつフレクシヤの曲りによる非対称性の影響は
極めて小さいので、感度軸以外の軸感度を極め
て小さいSN比の高い加速度計を実現できる。
(2) Furthermore, the restoring coil is also integrally formed in a planar shape with the movable part by sputter deposition, making it possible to make the thickness in the direction of the sensitivity axis of the acceleration to be measured extremely thin.
In addition, since the influence of asymmetry due to bending of the flexure is extremely small, it is possible to realize an accelerometer with a high signal-to-noise ratio and extremely low axis sensitivity other than the sensitivity axis.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のサーボ加速度計の一例を示す構
成図、第2図は本考案の一実施例を示す要部の構
成図、第3図は全体の組立構成図を示す。 11……固定電極、12……可動部、13……
支持枠、14……可動電極、15a,15b,15
……フレクシヤ、19……復元用コイル。
FIG. 1 is a block diagram showing an example of a conventional servo accelerometer, FIG. 2 is a block diagram of a main part of an embodiment of the present invention, and FIG. 3 is a diagram showing the overall assembled structure. 11...Fixed electrode, 12...Movable part, 13...
Support frame, 14...Movable electrode, 15 a , 15 b , 15
c ...Flexia, 19...Restoration coil.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 電磁力を発生する復元用コイルと一体に形成さ
れた可動部の質量に対して測定すべき加速度が加
わつたときに生ずる力を上記可動部の変位により
検出して電気信号に変換し、この電気信号を電流
増幅して上記復元用コイルに供給して発生する電
磁力で上記力と平行させる構成のサーボ加速度計
において、上記可動部は単結晶基板にフオトリソ
グラフイとエツチングの技術を用いて支持枠、可
撓性フレクシヤと一体に形成され、一方の側に可
動電極を他方の側に復元用コイルを平面状に形成
するとともに固定電極と上記可動電極を対向させ
てスペーサを介して固着したことを特徴とするサ
ーボ加速度計。
The force generated when the acceleration to be measured is applied to the mass of the movable part, which is integrally formed with the restoring coil that generates the electromagnetic force, is detected by the displacement of the movable part and converted into an electrical signal. In a servo accelerometer configured to amplify a signal and supply it to the restoring coil, the electromagnetic force generated is parallel to the force, and the movable part is supported on a single crystal substrate using photolithography and etching techniques. It is formed integrally with the frame and the flexible flexure, and has a movable electrode on one side and a restoring coil on the other side, and the fixed electrode and the movable electrode are faced and fixed via a spacer. A servo accelerometer featuring:
JP14718283U 1983-09-22 1983-09-22 Servo accelerometer Granted JPS6054969U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14718283U JPS6054969U (en) 1983-09-22 1983-09-22 Servo accelerometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14718283U JPS6054969U (en) 1983-09-22 1983-09-22 Servo accelerometer

Publications (2)

Publication Number Publication Date
JPS6054969U JPS6054969U (en) 1985-04-17
JPH0230783Y2 true JPH0230783Y2 (en) 1990-08-20

Family

ID=30327379

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14718283U Granted JPS6054969U (en) 1983-09-22 1983-09-22 Servo accelerometer

Country Status (1)

Country Link
JP (1) JPS6054969U (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7997136B2 (en) * 2008-10-08 2011-08-16 Honeywell International Inc. MEMS force balance accelerometer

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5431892A (en) * 1977-08-12 1979-03-08 Seiko Instr & Electronics Ltd Pneumatic pulse servo actuator
JPS5433735A (en) * 1977-08-05 1979-03-12 Shimadzu Corp Recording system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5433735A (en) * 1977-08-05 1979-03-12 Shimadzu Corp Recording system
JPS5431892A (en) * 1977-08-12 1979-03-08 Seiko Instr & Electronics Ltd Pneumatic pulse servo actuator

Also Published As

Publication number Publication date
JPS6054969U (en) 1985-04-17

Similar Documents

Publication Publication Date Title
EP0140334B1 (en) Accelerometer
US5036286A (en) Magnetic and electric force sensing method and apparatus
US5780742A (en) Mechanical resonance, silicon accelerometer
KR20020064378A (en) Accelerometer
CN102590555A (en) Resonance-force balance capacitance type three-axis acceleration transducer and manufacture method
JP5634697B2 (en) Micro Electro Mechanical System (MEMS) Force Parallel Accelerometer
JPS63503090A (en) Accelerometer guaranteed mass interface
WO1997049998A1 (en) Accelerometer without proof mass
US5396798A (en) Mechanical resonance, silicon accelerometer
JPH0230783Y2 (en)
JP2000512019A (en) Small box type vibration gyroscope
US5524488A (en) Flux control groove
CN114167082A (en) Monocrystalline silicon flexible accelerometer
JPH05142246A (en) Acceleration sensor
JP2913525B2 (en) Inclinometer
JP4054073B2 (en) Force rebalance accelerometer including a low stress magnet interface.
JP3818399B2 (en) Ultra-small acceleration sensor
CA2213245C (en) Mechanical resonance, silicon accelerometer
JPH06194383A (en) Servo type oscillation sensor
JPH0628662Y2 (en) Vibration type differential pressure sensor
JPH06230027A (en) Acceleration sensor
JPS61148320A (en) Tilt angle detector
JP3313793B2 (en) Bonding method of silicon structure and glass structure and mechanical quantity sensor using the same
JPS5926286Y2 (en) Accelerometer
RU2506546C1 (en) Microelectromechanical sensor of micro motions with magnetic field