JPH02306602A - Magnetic powder and magnetic recording medium using same magnetic powder - Google Patents

Magnetic powder and magnetic recording medium using same magnetic powder

Info

Publication number
JPH02306602A
JPH02306602A JP1128439A JP12843989A JPH02306602A JP H02306602 A JPH02306602 A JP H02306602A JP 1128439 A JP1128439 A JP 1128439A JP 12843989 A JP12843989 A JP 12843989A JP H02306602 A JPH02306602 A JP H02306602A
Authority
JP
Japan
Prior art keywords
magnetic
magnetic powder
powder
recording medium
elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1128439A
Other languages
Japanese (ja)
Inventor
Masahide Kusumoto
楠本 賢秀
Mikio Kishimoto
幹雄 岸本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP1128439A priority Critical patent/JPH02306602A/en
Publication of JPH02306602A publication Critical patent/JPH02306602A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B35/00Boron; Compounds thereof
    • C01B35/08Compounds containing boron and nitrogen, phosphorus, oxygen, sulfur, selenium or tellurium
    • C01B35/10Compounds containing boron and oxygen
    • C01B35/12Borates
    • C01B35/128Borates containing plural metal or metal and ammonium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/0018Mixed oxides or hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/009Compounds containing, besides iron, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/006Compounds containing, besides cobalt, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/006Compounds containing, besides nickel, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/42Magnetic properties

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compounds Of Iron (AREA)
  • Magnetic Record Carriers (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To obtain magnetic powder for magnetic recording medium, and magnetic recording medium which have high recoding density and large reproducing output, by using specified hexagonal system ferrite magnetic powder. CONSTITUTION:Hexagonal system ferrite magnetic powder expressed by a formula RO.l(M<2+>O).m(M<3+>O3).n(Fe2O3) is used. In the formula, R is at least one kind of element selected from Ba, Sr, Pb and Ca; N<2+> is bivalent elements such as Zn, Mn, Cu, Fe, Ni and Mg, or at least one combination selected from combinations of a monovalent element and a bivalent element such as Li-Fe, Li-Al and Li-Ga; M<3+> is tervalent element such as B, La, Al, Ga and In or at least one combination selected from combinations of a bivalent element and a quadrivalent element such as Co-Ti, Zn-Ti, Ni-Ti, Co-Zr, Zn-Zr and Ni-Zr; (l) is 0.5-2.0, (m) is 0.01-0.5, (n) is 7.5-9, and a relation n+m=8 to 9 is satisfied. Thereby magnetic recording medium wherein high density recording is possible, and reproducing output is remarkably improved can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は磁性粉に係わシ、さらに詳しくは、磁気記録媒
体用として有用な新規の磁性粉と該磁性粉を用いた磁気
記録媒体に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to magnetic powder, and more particularly to a novel magnetic powder useful for magnetic recording media and a magnetic recording medium using the magnetic powder. .

〔従来の技術〕[Conventional technology]

近年、情報量の増大により記録媒体の高記録密度化が要
求されている。しかし、従来の磁性面に平行な方向に磁
化記録する面内磁気記録方式では高密度化に限界がある
In recent years, as the amount of information has increased, there has been a demand for higher recording densities in recording media. However, with the conventional longitudinal magnetic recording method in which magnetization is recorded in a direction parallel to the magnetic surface, there is a limit to increasing the density.

そこで磁化記録の方向が磁性面に垂直な垂直磁気記一方
式が、高密度が可能な記録方式として注目され、盛んに
研究開発が進められている。垂直磁気記録方式を利用し
た磁気記録媒体に種々なものがあるが、六方晶形フェラ
イト、例えばHa (CoTi )xFell−x01
@で示される磁性体を磁性粉として含む塗布型磁気記録
媒体が現在量も有望視されている。
Therefore, perpendicular magnetic recording, in which the direction of magnetization recording is perpendicular to the magnetic surface, has attracted attention as a recording method capable of achieving high density, and research and development are actively underway. There are various types of magnetic recording media that use the perpendicular magnetic recording method, but hexagonal ferrite, such as Ha (CoTi)xFell-x01,
Coating-type magnetic recording media containing a magnetic material represented by @ as magnetic powder are currently available and are viewed as promising.

しかし、上記BLフェライト磁性粉は、飽和磁化が高々
600mu/fl程度と低いため、高密度記録は可能で
ありながら、最大再生出力が低い磁気記録媒体しか得ら
れないという問題があった。
However, since the BL ferrite magnetic powder has a low saturation magnetization of about 600 mu/fl at most, there is a problem in that although high-density recording is possible, only a magnetic recording medium with a low maximum reproduction output can be obtained.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は塗布型磁気記録媒体の再生出力が低いという欠
点を解決し、以って高記録密度でしかも再生出力が高い
磁気記録媒体用磁性粉および磁気記録媒体を提供するこ
とを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to solve the problem of low reproduction output of coated magnetic recording media, and to provide magnetic powder for magnetic recording media and magnetic recording media that have high recording density and high reproduction output.

〔問題を解決するための手段〕[Means to solve the problem]

本発明者らは、上記目的を達成するため鋭意検討した結
果、一般式 %式%) で表わされる大方晶フェライト磁性粉で、RはBa% 
Sr%pbおよびCaから選ばれた少なくとも1種の元
素、M2+はZn %Mn s Cu %Fe、N1、
Mgなどの2価の元素あるいは、Li−Fe。
As a result of intensive studies to achieve the above object, the inventors of the present invention found that a macrogonal ferrite magnetic powder represented by the general formula (%), where R is Ba%
At least one element selected from Sr%pb and Ca, M2+ is Zn%MnsCu%Fe, N1,
Divalent elements such as Mg or Li-Fe.

Li−AJ% I、1−Gaなどの1価の元素と3価の
元素の組合せから選ばれた少なくとも1組の組合せ、M
3+はB% La s AJ 1Ga %Inなどの3
価の元素あるいはCo−Ti、Zn−Ti%N1− T
l 、Co −Zr s Zn −Zr 、 N1− 
Zrなどの2価の元素と4価の元素の組合せから選ばれ
た少なくとも1組の組合せで、lは0.5〜2.0、m
は0.01〜0,5、nは7.5〜9でかつn+m=8
〜9の関係を満たす値で示される六方晶フェライト磁性
粉が非常に高い飽和磁化を有することを見出し、本発明
をなすに至った。
Li-AJ% I, at least one combination selected from combinations of monovalent elements and trivalent elements such as 1-Ga, M
3+ is B%La s AJ 1Ga %In etc.
Valence elements or Co-Ti, Zn-Ti%N1-T
l , Co -Zr s Zn -Zr , N1-
At least one combination selected from combinations of divalent elements such as Zr and tetravalent elements, l is 0.5 to 2.0, m
is 0.01 to 0.5, n is 7.5 to 9, and n+m=8
It has been discovered that hexagonal ferrite magnetic powder having a value satisfying the relationship of ~9 has extremely high saturation magnetization, and the present invention has been completed.

一般式で1=2、m=o、n=8の組成の六方晶7エラ
イトは、一般にW型フェライト磁性体と呼ばれているも
のである。この磁性粉は従来のBaフェライト粉に比し
著しく高い飽和磁化を有し、かつ板状粒子で、その板面
に対し垂直方向に磁化容易軸を有する。
Hexagonal heptagonal 7-elite having a general formula of 1=2, m=o, and n=8 is generally called a W-type ferrite magnetic material. This magnetic powder has a significantly higher saturation magnetization than conventional Ba ferrite powder, and is a plate-shaped particle with an axis of easy magnetization perpendicular to the plate surface.

本発明での大方晶フェライト粉は上記WWiフェライト
粉よ〕飽和磁化を格段に向上させた新規な磁性粉である
The orthogonal ferrite powder used in the present invention is a novel magnetic powder that has significantly improved saturation magnetization compared to the above-mentioned WWi ferrite powder.

lが0.5より小さくなるか、1.9よ)も大きくなっ
たb、mが0.01よ〕小か、0.5を超えた場合には
飽和磁化が小さくなる。またnおよびn十mが8よシも
小さくなるか9よ〕も大きくなると、結晶形が変形しゃ
すくな〕、シかも磁気特性が低下する。
When l becomes smaller than 0.5 or 1.9) becomes larger, the saturation magnetization becomes smaller when b and m become smaller than 0.01 or exceed 0.5. Furthermore, if n and n0m become smaller than 8 or larger than 9, the crystal shape becomes less deformable and the magnetic properties deteriorate.

磁気記録媒体用磁性粉としては、保磁力が200〜20
00エルステツドの範囲にあるのが望ましい。200エ
ルステツド以下では高密度記録特性が不十分となfi、
2000工ルステツド以上となると磁気記録媒体用とし
ては不適となる。
Magnetic powder for magnetic recording media has a coercive force of 200 to 20
Preferably, it is in the range of 0.00 oersted. If it is less than 200 oersted, the high density recording characteristics will be insufficient.
If it exceeds 2000 processes, it is not suitable for use in magnetic recording media.

磁性粉の平均粒径は0.01〜0.3μmが適当である
。この値が0.01μm以下となると強磁性を呈しなく
な〕、一方0.3μm以上となると高密度記録が良好に
行えなくなる。
The average particle diameter of the magnetic powder is suitably 0.01 to 0.3 μm. When this value is 0.01 μm or less, ferromagnetism is no longer exhibited], while when it is 0.3 μm or more, high-density recording cannot be performed satisfactorily.

本発明による大方晶フェライト磁性粉は下記方法によシ
合成する。すなわち目的とする六方晶フェライトを構成
する金属イオンを含む塩、例えば塩化物、硝酸塩などの
水溶性化合物の水溶液と、アルカリ溶液とを混合して沈
澱物を生成させ、これをオートクレーブ中で150〜3
00℃で1〜6時間水熱反応させたのち反応生成物を水
洗、濾過、乾燥する。これをNaC1などのフラックス
と混合して1000〜1400℃の温度で熱処理後、温
水あるいは酸性溶液などでフラックスを除去すると、微
粒子で粒径が均一な六方晶フェライト粉が得られる。
The orthogonal ferrite magnetic powder according to the present invention is synthesized by the following method. That is, an aqueous solution of a water-soluble compound such as a salt containing metal ions constituting the desired hexagonal ferrite, such as a chloride or a nitrate, is mixed with an alkaline solution to form a precipitate, and the precipitate is heated in an autoclave to 3
After a hydrothermal reaction at 00° C. for 1 to 6 hours, the reaction product is washed with water, filtered, and dried. When this is mixed with a flux such as NaCl, heat treated at a temperature of 1000 to 1400°C, and the flux is removed with warm water or an acidic solution, fine hexagonal ferrite powder with a uniform particle size can be obtained.

本発明の磁気記録媒体は磁性粉として上記六方晶フェラ
イト粉を使用し、バインダとしては従来よシ汎用の樹脂
を用い、これにこれまた常用されている各種添加剤を加
え有機溶剤に添加混合し磁性塗料を調製し、この塗料を
ポリエステルフィルムなどの非磁性基体上にロールコー
タなど任意の塗布手段によって塗布乾燥して磁性層を形
成して炸裂する。
The magnetic recording medium of the present invention uses the above-mentioned hexagonal ferrite powder as the magnetic powder, uses a conventional general-purpose resin as the binder, and adds various commonly used additives to this and mixes it with an organic solvent. A magnetic paint is prepared, and this paint is coated onto a non-magnetic substrate such as a polyester film using any coating means such as a roll coater, dried to form a magnetic layer, and then exploded.

〔実施例〕〔Example〕

以下に本発明を実施例により詳説する。 The present invention will be explained in detail below using examples.

実施例! BaCl1282 HzO2,4411−ZnCJz 
 2,04 f −H3BO30,12f、FeC4−
6H,044,33fを含む水溶液2005gt−Na
OH50,OfおよびNa、C0,12,5fを含むア
ルカリ水溶液400d中に添加して共沈物を得、これを
オートクレーブ中で200℃%2時間水熱反応させ、得
られた生成物を水洗、濾過、乾燥後、生成物と同量のN
aCJi!を混合し、空気中で1300°Cで2時間加
熱後室温まで急冷した。この混合物を約60°Cの温水
で水洗し、NaC1’fr:除去して六方晶フェライト
粉を8Δ 得た。この粉末は前記一般式におけるR = 届り。
Example! BaCl1282 HzO2,4411-ZnCJz
2,04 f -H3BO30,12f, FeC4-
2005gt-Na aqueous solution containing 6H,044,33f
A coprecipitate was obtained by adding it to 400 d of an alkaline aqueous solution containing OH50,Of and Na, CO,12,5f, which was subjected to a hydrothermal reaction at 200°C% for 2 hours in an autoclave, and the resulting product was washed with water. After filtration and drying, the same amount of N as the product
aCJi! were mixed, heated in air at 1300°C for 2 hours, and then rapidly cooled to room temperature. This mixture was washed with warm water at about 60°C to remove NaC1'fr, yielding 8Δ hexagonal ferrite powder. This powder has R = delivery in the above general formula.

M”= Zn %M”=+B、l= 1.5、m=0.
1およびn=8.2の化合物で保磁力530エルステツ
ド、飽和磁化78emu/fs平均粒径0,07μ77
!であった0 上記合成法にもとづき得られ丸穴方晶フェライト粉を用
い、下記のようにして磁気ディスクを作製した。
M”=Zn %M”=+B, l=1.5, m=0.
1 and n=8.2, coercive force 530 oersted, saturation magnetization 78 emu/fs, average particle size 0.07 μ77
! 0 Using the round-hole cubic ferrite powder obtained based on the above synthesis method, a magnetic disk was produced in the following manner.

六方晶フェライト粉     1000重量部塩ヒーa
ttビービニルアルコール 共重合体(UCC社製VAGH)  137.5//ポ
リウレタン樹脂(大日本イン キ社製パンテフクスT 5201 )   87,5 
//α−AJ、03100  // メチルイソブチルケトン    800 〃トルエン 
          800 〃上記組成物をボールミ
ルにて3日間混合分散した後、オレイルオレート80重
量部、3官能性インシアネ一ト化合物(日本ポリウレタ
ン社製コロネー)L)25重量部を加え、さらに2時間
混合分散して磁性塗料を調製した。この塗料を厚さ75
μmのポリエステルフィルムの両面に塗布、乾燥して磁
性層を形成した。ついで平滑処理を行った後、所定の径
の円板状に打ち抜きフロッピーディスクを作製した。平
滑処理後の磁性層の厚さは3.0μmであった。
Hexagonal ferrite powder 1000 parts by weight Salt Heat a
ttVinyl alcohol copolymer (VAGH manufactured by UCC) 137.5//Polyurethane resin (Pantefux T 5201 manufactured by Dainippon Ink) 87.5
//α-AJ, 03100 // Methyl isobutyl ketone 800 Toluene
800 After mixing and dispersing the above composition in a ball mill for 3 days, 80 parts by weight of oleyl oleate and 25 parts by weight of a trifunctional incyaneto compound (Coronet L manufactured by Nippon Polyurethane Co., Ltd.) were added, and the mixture was further mixed and dispersed for 2 hours. A magnetic paint was prepared. Apply this paint to a thickness of 75
It was coated on both sides of a μm polyester film and dried to form a magnetic layer. After smoothing, a disk-shaped floppy disk with a predetermined diameter was punched out. The thickness of the magnetic layer after the smoothing treatment was 3.0 μm.

実施例2〜5 実施例1の大方晶フェライト粉の合成法において、Zn
C#2、H,BO,およびFe(Js −6H,Oの仕
込量を一般式でのl、m、nの値が表1に示す値となる
ように変えた以外は、実施例1と同様にして六方晶フェ
ライト粉を合成した。得られた磁性粉の平均粒径は何れ
も約0.07μmであった。
Examples 2 to 5 In the method for synthesizing macrogonal ferrite powder in Example 1, Zn
Example 1 except that the amounts of C#2, H, BO, and Fe (Js -6H, O) were changed so that the values of l, m, and n in the general formula became the values shown in Table 1. Hexagonal ferrite powder was synthesized in the same manner.The average particle size of the obtained magnetic powder was approximately 0.07 μm.

これ等の磁性粉を用いて、実施例1に記したと同様の方
法でフロッピーディスクを作製した。
Using these magnetic powders, a floppy disk was produced in the same manner as described in Example 1.

実施例6 実施例1の六方晶フェライト粉の合成法において、Ba
CA’2・2 H2Oに代えて5rC1*H6HxO2
,66ft−用いた以外は実施例1と同様にして大方晶
フェライト粉を合成した。得られた粉末の平均粒径は0
.07μmであった。
Example 6 In the method for synthesizing hexagonal ferrite powder of Example 1, Ba
CA'2・2 5rC1*H6HxO2 instead of H2O
, 66 ft- was used, but in the same manner as in Example 1, an orthogonal ferrite powder was synthesized. The average particle size of the obtained powder is 0
.. It was 07 μm.

この磁性粉を用いて実施例1と同様の方法でフロッピー
ディスクを作製した。
A floppy disk was produced using this magnetic powder in the same manner as in Example 1.

比較例1〜2 実施例1の六方晶フェライト粉の合成法において、Zn
C15,H,BO,およびFeCJ?、 ’ 6 H,
Oの仕込量を一般式における1%m、nの値が表1に示
した値となるように変えた以外は実施例1と同様にして
六方晶フェライト粉を合成した。得られた磁性粉の平均
粒径は約0.07μm゛であった。
Comparative Examples 1 to 2 In the method for synthesizing hexagonal ferrite powder of Example 1, Zn
C15, H, BO, and FeCJ? , ' 6 H,
Hexagonal ferrite powder was synthesized in the same manner as in Example 1, except that the amount of O charged was changed so that the values of 1% m and n in the general formula became the values shown in Table 1. The average particle size of the obtained magnetic powder was about 0.07 μm.

これ等の磁性粉末を用いて実施例1と同様の方法でフロ
ッピーディスクを作製した。
A floppy disk was produced in the same manner as in Example 1 using these magnetic powders.

表1 比較例3 BaC4j 2 HzO2,44g、yec13−6 
H,037,9f %CoC1z・6 HxOO,24
jF、およびTlC140,19fを含む水溶液2 Q
 Oyslと、Na0Hso、og、Na、Co312
.5 f含むアルカリ水溶液400M1t−混合し、生
成した沈澱物をオートクレーブ中で300°C,2時間
水熱反応させ、得られた反応生成物を水洗、濾過、乾燥
し、さらに空気中で500℃、4時間加熱処理し、Co
 −Ti置換i1Bmフェライト磁性粉を得た。得られ
た磁性粉はW盟フェライト粉に属しないものであった。
Table 1 Comparative Example 3 BaC4j 2 HzO2, 44g, yec13-6
H,037,9f %CoC1z・6 HxOO,24
Aqueous solution 2 containing jF and TlC140,19f Q
Oysl, Na0Hso, og, Na, Co312
.. 400 M of an aqueous alkali solution containing 5 f is mixed, the resulting precipitate is subjected to a hydrothermal reaction at 300°C for 2 hours in an autoclave, the resulting reaction product is washed with water, filtered, dried, and further heated at 500°C in air. After heat treatment for 4 hours, Co
-Ti-substituted i1Bm ferrite magnetic powder was obtained. The obtained magnetic powder did not belong to the W league ferrite powder.

磁性粉の平均粒径は0.06μmであった。The average particle size of the magnetic powder was 0.06 μm.

この磁性粉を用いて実施例1と同様の方法によってフロ
ッピーディスクを作製した。
A floppy disk was produced using this magnetic powder in the same manner as in Example 1.

上記各実施例、比較例で得られた磁性粉およびフロッピ
ーディスクの磁気特性、電磁変換特性を調べ、その結果
を表2に示す。
The magnetic properties and electromagnetic conversion properties of the magnetic powders and floppy disks obtained in each of the above Examples and Comparative Examples were investigated, and the results are shown in Table 2.

フロッピーディスクの磁気特性は、磁気記録媒体の面に
垂直な方向の特性で示した。また電磁変換特性の好個は
、ギャップ長 0.4μ’、)ラック幅 70μmのフ
ェライト磁気ヘッドを用い、磁気ヘッドと媒体との相対
速度は3m/mで測定し九〇 〔発明の効果〕 以上説明したように、大方晶フェライト磁性粉として、
一般式 %式%) で表わされるW鳳フェライト磁性粉に属し、4、m、n
を所定の範囲の値に限定した大方晶7エライト粉は、飽
和磁化が著しく高く、かつ、この磁性粉を用いた磁気記
録媒体の最大磁束密度(Bm)が非常に大きくなシ、高
密度記録が可能でしかも再生出力が大幅に改善された磁
気記録媒体が得られることは明らかである。
The magnetic properties of a floppy disk are shown in the direction perpendicular to the surface of the magnetic recording medium. Further, good electromagnetic conversion characteristics were obtained by using a ferrite magnetic head with a gap length of 0.4 μ' and a rack width of 70 μm, and measuring the relative speed between the magnetic head and the medium at 3 m/m. As explained, as an orthogonal ferrite magnetic powder,
It belongs to the W ferrite magnetic powder represented by the general formula % formula %), 4, m, n
The macrogonal 7-elite powder, in which It is clear that a magnetic recording medium can be obtained which is capable of reproducing data and has significantly improved reproduction output.

Claims (3)

【特許請求の範囲】[Claims] (1) 一般式 RO・l(M_2^3^+O)・m(M_2^30_3
)・n(Fe_2O_3)で表わされる六方晶フェライ
ト磁性粉で、RはBa、Sr、Pb、Cdの中から選ば
れた少なくとも1種の元素、M^2^+はZn、Cu、
Mn、Fe、Ni、Mgなどの2価の元素あるいは、L
i−Fe、Li−Al、Li−Gaなどの1価の元素と
3価の元素の組み合せの中から選ばれた少なくとも1組
の組合せ、m^3^+はB、La、Al、Ga、Inな
どの3価の元素あるいは、Co−Ti、Zn−Ti、N
i−Ti、Co−Zr、Zn−Zr、Ni−Zrなどの
2価の元素と4価の元素の組合せの中から選ばれた少な
くとも1組の組合せ、またlは0.5〜2.0)mは0
.01〜0.5、nは7.5〜9でかつn+m=8〜9
関係を満たす値で示されることを特徴とする六方晶フェ
ライト磁性粉。
(1) General formula RO・l(M_2^3^+O)・m(M_2^30_3
)・n(Fe_2O_3) is a hexagonal ferrite magnetic powder, where R is at least one element selected from Ba, Sr, Pb, and Cd, and M^2^+ is Zn, Cu,
Divalent elements such as Mn, Fe, Ni, Mg, or L
At least one combination selected from combinations of monovalent elements and trivalent elements such as i-Fe, Li-Al, Li-Ga, m^3^+ is B, La, Al, Ga, Trivalent elements such as In or Co-Ti, Zn-Ti, N
At least one combination selected from combinations of divalent elements and tetravalent elements such as i-Ti, Co-Zr, Zn-Zr, and Ni-Zr, or l is 0.5 to 2.0 )m is 0
.. 01-0.5, n is 7.5-9 and n+m=8-9
A hexagonal ferrite magnetic powder characterized by being represented by a value that satisfies a relationship.
(2)六方晶フェライト磁性粉の保磁力が200〜20
00エルステッド、飽和磁化が60emu/g以上、平
均粒径が0.01〜0.3μmであることを特徴とする
請求項(1)記載の六方晶フェライト磁性粉。
(2) Coercive force of hexagonal ferrite magnetic powder is 200 to 20
The hexagonal ferrite magnetic powder according to claim 1, characterized in that the powder has a saturation magnetization of 0.00 oersted, a saturation magnetization of 60 emu/g or more, and an average particle size of 0.01 to 0.3 μm.
(3)非磁性支持体上に主に磁性粉とバインダを含む磁
性層を設けた磁気記録媒体において該磁性粉として請求
項(1)および請求項(2)記載の磁性粉を用いたこと
を特徴とする磁気記録媒体。
(3) Use of the magnetic powder described in claims (1) and (2) as the magnetic powder in a magnetic recording medium in which a magnetic layer containing mainly magnetic powder and a binder is provided on a non-magnetic support. Features of magnetic recording media.
JP1128439A 1989-05-22 1989-05-22 Magnetic powder and magnetic recording medium using same magnetic powder Pending JPH02306602A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1128439A JPH02306602A (en) 1989-05-22 1989-05-22 Magnetic powder and magnetic recording medium using same magnetic powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1128439A JPH02306602A (en) 1989-05-22 1989-05-22 Magnetic powder and magnetic recording medium using same magnetic powder

Publications (1)

Publication Number Publication Date
JPH02306602A true JPH02306602A (en) 1990-12-20

Family

ID=14984763

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1128439A Pending JPH02306602A (en) 1989-05-22 1989-05-22 Magnetic powder and magnetic recording medium using same magnetic powder

Country Status (1)

Country Link
JP (1) JPH02306602A (en)

Similar Documents

Publication Publication Date Title
US4636433A (en) Magnetic powders for magnetic recording media and magnetic recording media employing said magnetic powder therein
JPWO2003079333A1 (en) Magnetic recording medium and magnetic recording cartridge
US20090098411A1 (en) Method of manufacturing ferrite powder, ferrite powder, and magnetic recording media
JPS6242337B2 (en)
JPH0719363B2 (en) Magnetic recording medium
JPS62287604A (en) Magnetic material and manufacture of the same and magnetic recording medium
JP2620256B2 (en) Magnetic recording media
JPH02306602A (en) Magnetic powder and magnetic recording medium using same magnetic powder
JPH05144615A (en) Magnetic recording magnetic powder and magnetic recording medium using the same
JP2659957B2 (en) Magnetic powder, manufacturing method thereof, and magnetic recording medium using the magnetic powder
JP5293946B2 (en) Method for producing nonmagnetic particle powder for nonmagnetic underlayer of magnetic recording medium, and magnetic recording medium
JP4268629B2 (en) Magnetic recording medium and magnetic recording cartridge
JP2547000B2 (en) Ferromagnetic fine powder for magnetic recording
JPH0619829B2 (en) Magnetic recording medium
JPS6238531A (en) Magnetic recording medium
JP2761916B2 (en) Magnetic recording / reproducing method
JP3194294B2 (en) Magnetic recording media
JPH02249127A (en) Magnetic recording medium
JPH01122025A (en) Magnetic recording medium
JP4268628B2 (en) Magnetic recording medium and magnetic recording cartridge
JPS59124023A (en) Magnetic recording medium
JPH02134722A (en) Magnetic recording medium
JPH0677036A (en) Magnetism recording magnetic particle and magnetism recording medium using the same
JPH0289218A (en) Magnetic recording medium
JPH0542055B2 (en)