JPH02305544A - Three-dimensional measuring eyeground camera - Google Patents

Three-dimensional measuring eyeground camera

Info

Publication number
JPH02305544A
JPH02305544A JP1125162A JP12516289A JPH02305544A JP H02305544 A JPH02305544 A JP H02305544A JP 1125162 A JP1125162 A JP 1125162A JP 12516289 A JP12516289 A JP 12516289A JP H02305544 A JPH02305544 A JP H02305544A
Authority
JP
Japan
Prior art keywords
retinal layer
light
reflected
front surface
optical system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1125162A
Other languages
Japanese (ja)
Other versions
JP2919855B2 (en
Inventor
Akio Sakurai
桜井 明男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Topcon Corp
Original Assignee
Topcon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Topcon Corp filed Critical Topcon Corp
Priority to JP1125162A priority Critical patent/JP2919855B2/en
Publication of JPH02305544A publication Critical patent/JPH02305544A/en
Application granted granted Critical
Publication of JP2919855B2 publication Critical patent/JP2919855B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Eye Examination Apparatus (AREA)

Abstract

PURPOSE:To have three-dimensional measurement of the bottom surface of a retina layer and its front surface simultaneously by equipping a measuring optical system with an optical separating means, which separates the reflected light at the retina layer bottom surface from the reflected light at its front surface. CONSTITUTION:The light from a monitoring light source 12 and a photographing light source 13 irradiates the eyeground R with white light. Among this white light, the green having short wavelength is reflected at the front surface of the retina layer, while the red having a long wavelength is reflected at the bottom surface of the retina layer. A measuring optical system 11 has image focusing optical systems 26, 27, and a dichroic mirror 36 installed between lenses 32, 34 and another 33 admits passage of red, and reflects the green. The red beam contains information about the shape of the retina layer bottom surface while the green beam includes information about the shape of the front surface, and they are introduced by TV cameras 37, 38 and ones 40, 41 to a monitor screen 42, respectively. Thus a front surface image and a bottom surface image are obtained, and then the photographing light source 13 is actuated to flash for obtaining two sets of three-dimensional images.

Description

【発明の詳細な説明】 (ti業上の利用分野) 本発明は、網膜層底面と網膜層表面とを同時に立体計測
できる立体計測眼底カメラに関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Use) The present invention relates to a stereoscopic fundus camera capable of simultaneously stereoscopically measuring the bottom surface of the retinal layer and the surface of the retinal layer.

〈従来の技術) 従来から、対物レンズを介して入射する眼底反射光束を
2孔絞りを介して分割し、この2孔絞りによって分割さ
れた分割光束を一対の計測光学系に導き、同時立体視を
可能とした立体計測眼底カメラが知られている。この従
来の同時立体視式眼底カメラでは、網膜層表面の所望部
位を撮影して、網膜層表面の形状を立体計測できるよう
になっている。
<Prior art> Conventionally, the fundus-reflected light flux that enters through an objective lens is split through a two-hole diaphragm, and the split light flux split by the two-hole diaphragm is guided to a pair of measurement optical systems to provide simultaneous stereoscopic vision. A stereoscopic fundus camera that enables this is known. This conventional simultaneous stereoscopic fundus camera is capable of stereoscopically measuring the shape of the retinal layer surface by photographing a desired part of the retinal layer surface.

(発明が解決しようとする課題) この種の立体計測眼底カメラは、たとえば、縁内陣の診
断に際して、視神経乳頭の陥凹の計測に用いられている
。すなわち、乳頭部での網膜層の厚さが他の部分よりも
厚くなっているので、乳頭部の立体計測を行い、立体形
状の変化により縁内陣の診断を行っているのが実状であ
る。
(Problems to be Solved by the Invention) This type of stereoscopic fundus camera is used, for example, to measure the recess of the optic disc when diagnosing internal calculus. In other words, since the thickness of the retinal layer in the papilla is thicker than in other parts, the reality is that three-dimensional measurements of the papilla are performed and diagnosis of limbus is made based on changes in the three-dimensional shape.

しかしながら、縁内陣は、本来、網膜層が欠損して網膜
層が薄くなることにより症状の悪化の6断がされるもの
であるので、網膜神経層の厚さを直接立体計測できれば
、より正確に縁内陣の診断を行うことができることにな
る。
However, in the case of limbal lining, the symptoms worsen due to loss of the retinal layer and thinning of the retinal layer, so if the thickness of the retinal nerve layer could be directly measured three-dimensionally, it would be more accurate. This means that it will be possible to diagnose rim naijin.

本発明は、上記の事情に鑑みて為されたもので、その目
的とするところは、網膜層成面と網膜層表面とを同時に
立体計測できる立体計測眼底カメラを提供するところに
ある。
The present invention has been made in view of the above-mentioned circumstances, and its purpose is to provide a stereoscopic fundus camera capable of simultaneously stereoscopically measuring the retinal layer formation and the retinal layer surface.

(課題を解決するための手段) 本発明に係わる立体計測眼底カメラの特徴は、網膜層成
面の立体計測と網膜層表面との立体計測とを行うために
、網膜層成面からの反射光と網膜層表面からの反射光と
を分離する光学的分離手段が計測光学系に設けられてい
るところにある。
(Means for Solving the Problems) A feature of the stereoscopic fundus camera according to the present invention is that in order to perform stereoscopic measurement of the retinal layer formation and stereoscopic measurement with the retinal layer surface, reflected light from the retinal layer formation The measurement optical system is provided with an optical separation means for separating the light reflected from the surface of the retinal layer and the light reflected from the surface of the retinal layer.

(作用) 本発明によれば、たとえば、白色光を投影すると波長の
短い光が網膜層表面で比較的多く反射される。一方、波
長の長い光は網膜層成面まで比較的多く浸透し、その網
膜層成面で比較的多く反射される。従って、網膜層表面
からの反射光により網膜層表面形状に対応する像が得ら
れる一方、網膜層成面からの反射光により網膜層成面形
状に対応する像が得られ、これによって、立体計測が行
われる。
(Function) According to the present invention, for example, when white light is projected, a relatively large amount of light with a short wavelength is reflected on the surface of the retinal layer. On the other hand, a relatively large amount of light with a long wavelength penetrates to the surface of the retinal layer, and is reflected in a relatively large amount at the surface of the retinal layer. Therefore, an image corresponding to the retinal layer surface shape is obtained by the reflected light from the retinal layer surface, and an image corresponding to the retinal layer surface shape is obtained by the reflected light from the retinal layer surface. will be held.

(実施例) 以下に、本発明に係わる立体計測眼底カメラの実施例を
図面を参照しつつ説明する。
(Example) Hereinafter, an example of a stereoscopic fundus camera according to the present invention will be described with reference to the drawings.

第1図ないし第6図は本発明に係わる立体計測カメラの
実施例を示す図であって、第1図において、10は眼底
照明系、11は計測光学系である。
1 to 6 are diagrams showing embodiments of a stereoscopic measurement camera according to the present invention. In FIG. 1, 10 is a fundus illumination system, and 11 is a measurement optical system.

眼底照明系10は、観察光源12、撮影光源13を有す
る。観察光源12と撮影光源13とはハーフミラ−14
に関して共役である。その観察光源12とハーフミラ−
14との間にはコンデンサレンズ15が設けられ、その
撮影光源13とハーフミラ−14との間にはコンデンサ
レンズ16が設けられている。なお、コンデンサレンズ
16の光軸上には、撮影光源13を挟んでコンデンサレ
ンズ16と反対側に凹面鏡17が設けられている。
The fundus illumination system 10 includes an observation light source 12 and a photographing light source 13. The observation light source 12 and the photography light source 13 are half mirrors 14
is conjugate with respect to The observation light source 12 and half mirror
A condenser lens 15 is provided between the photographing light source 13 and the half mirror 14, and a condenser lens 16 is provided between the photographing light source 13 and the half mirror 14. A concave mirror 17 is provided on the optical axis of the condenser lens 16 on the opposite side of the condenser lens 16 with the photographing light source 13 in between.

観察光源12による照明光、撮影光源13による照明光
は白色光であり、ハーフミラ−14、遮光板18、リレ
ーレンズ19、反射鏡20、リレーレンズ21を介して
穴空きミラー22に導かれるものである。穴空きミラー
22は穴部22aを有する。その照明光はその穴空きミ
ラー22によって対物レンズ23に向けて反射され、被
検111Eの角膜C1水晶体Kを通過し、眼底Rを照明
する・白色光のうち波長の短い光(緑色光)は網膜層表
面で比較的多く反射され、波長の長い光(赤色光、赤外
光を含む)は比較的多く網膜層成面まで浸透して網膜層
成面で反射される。
The illumination light from the observation light source 12 and the illumination light from the photographing light source 13 are white lights, and are guided to the perforated mirror 22 via the half mirror 14, the light shielding plate 18, the relay lens 19, the reflecting mirror 20, and the relay lens 21. be. The perforated mirror 22 has a hole 22a. The illumination light is reflected by the perforated mirror 22 toward the objective lens 23, passes through the cornea C1 and the crystalline lens K of the subject 111E, and illuminates the fundus R. Of the white light, light with a short wavelength (green light) A relatively large amount of light with long wavelengths (including red light and infrared light) that is reflected at the surface of the retinal layer penetrates to the retinal layer surface and is reflected at the retinal layer surface.

計測光学系11は、第2図に示すように、2孔絞り24
、光束分割器兼用の像正立用のポロプリズム25、一対
の結像光学系26.27を有する。
The measurement optical system 11 includes a two-hole aperture 24 as shown in FIG.
, a Porro prism 25 for erecting an image which also serves as a beam splitter, and a pair of imaging optical systems 26 and 27.

2孔絞り24は一対の円形開口24a、24bを有する
。この一対の円形開口24a、24bit対物レンズ2
3の光軸Nに対し、被検眼Eの左右方向に対称である。
The two-hole diaphragm 24 has a pair of circular openings 24a and 24b. This pair of circular apertures 24a, 24-bit objective lens 2
It is symmetrical in the left-right direction of the eye E to be examined with respect to the optical axis N of No. 3.

2孔絞り24は穴空きミラー22を境に対物レンズ23
と反対側に設けられている。
The two-hole diaphragm 24 connects the objective lens 23 with the perforated mirror 22 as the boundary.
is located on the opposite side.

眼底反射光束Pは水晶体K、対物レンズ23、穴空きミ
ラー22の穴部22aを通過した後、2孔絞り24に導
かれる。そして、この2孔絞り24の円形開口24m、
24bを通過して分割光束となる。その眼底反射光束P
には網膜層表面形状に対応する情報と、網膜層成面形状
に対応する情報とを含んでいる。ポロプリズム25はそ
の2孔絞り24を通過した眼底反射光束Pの通過方向前
方に配置されている。なお、遮光板18は被検1111
Eの瞳孔と共役位置に配置されており、遮光板18は角
膜Cによる撮影に有害な有害反射光が円形開口24a、
24bを通過するのを阻止する役割を果たす。
The fundus reflected light beam P passes through the crystalline lens K, the objective lens 23, and the hole 22a of the perforated mirror 22, and then is guided to the two-hole diaphragm 24. And 24 m of circular openings of this two-hole diaphragm 24,
24b and becomes a divided luminous flux. The fundus reflected light flux P
includes information corresponding to the retinal layer surface shape and information corresponding to the retinal layer surface shape. The Porro prism 25 is disposed forward in the direction of passage of the fundus-reflected light beam P that has passed through the two-hole aperture 24. Note that the light shielding plate 18 is
The light shielding plate 18 is arranged at a position conjugate with the pupil of E, and the circular aperture 24a prevents harmful reflected light harmful to imaging by the cornea C.
24b.

結像光学系26は合焦レンズ28、結像レンズ系29を
有し、結像光学系27は合焦レンズ30、結像レンズ系
31を有する。結像レンズ系29はレンズ32.33を
有し、結像レンズ系31はレンズ34.35を有する。
The imaging optical system 26 has a focusing lens 28 and an imaging lens system 29, and the imaging optical system 27 has a focusing lens 30 and an imaging lens system 31. Imaging lens system 29 has lenses 32.33 and imaging lens system 31 has lenses 34.35.

レンズ32.34とレンズ33との間には、ダイクロイ
ックミラー36が設けられている。このダイクロイック
ミラー36は赤色光(波長600nm以上の光)を透過
させ、緑色光(波長640nm以下の光)を反射させる
光学的分離手段として機能を有する。なお、このダイク
ロイックミラー36の代わりにハーフミラ−と色温度フ
ィルターとを用いることもできる。その赤色光は網膜層
表面形状に関する情報を含み、その緑色光は網膜層表面
形状に関する情報を含む、その赤色光はレンズ33.3
5を介してテレビカメラ37.38に導かれ、その緑色
光は反射ミラー39により反射されて、テレビカメラ4
0.41に導かれる。
A dichroic mirror 36 is provided between the lenses 32, 34 and 33. This dichroic mirror 36 functions as an optical separation means that transmits red light (light with a wavelength of 600 nm or more) and reflects green light (light with a wavelength of 640 nm or less). Note that a half mirror and a color temperature filter can be used instead of the dichroic mirror 36. The red light contains information about the retinal layer surface shape, the green light contains information about the retinal layer surface shape, the red light contains information about the retinal layer surface shape, and the red light contains information about the retinal layer surface shape.
5 to the television camera 37, 38, the green light is reflected by the reflective mirror 39, and the green light is directed to the television camera 4.
0.41.

合焦レンズ28.30は別個独立に対物し、ンズ23の
光軸Nの方向に可動可能であり、一方の結像光学系によ
り得られる偉がぼやけないように装置本体を移動させて
合焦を行ったとき、他方の結像光学系により得られた像
がぼやけたとしても、他方の結像光学系の合焦レンズを
光軸方向に可動させることにより、その他方の結像光学
系により得られる眼底像のぼやけを修正でき、良好な眼
底像を同時立体視できるようになっている。一方、レン
ズ33.35は合焦補助手段として機能するもので、光
軸方向に連動して可動されるものとなっている。
The focusing lenses 28 and 30 have separate and independent objectives and are movable in the direction of the optical axis N of the lens 23, and focus by moving the main body of the device so that the image obtained by one of the imaging optical systems is not blurred. Even if the image obtained by the other imaging optical system becomes blurred when performing this, by moving the focusing lens of the other imaging optical system in the optical axis direction, The blurring of the obtained fundus image can be corrected, allowing simultaneous stereoscopic viewing of good fundus images. On the other hand, the lenses 33 and 35 function as focusing aids and are movable in conjunction with the optical axis direction.

すなわち、網膜層表面にピントが合うように装置本体を
可動させて合焦を行ったとき、第3図に示すように、モ
ニター画面42には網膜層表面の像G、(、′が形成さ
れる。ここで、網膜層表面の像GS G−のいずれか一
方のピントが合っていないとき、両方の網膜層表面の像
G、G=のピントが合うように合焦レンズ28.30の
いずれか一方を光軸方向に可動させて調節する。そして
、次に、モニター画面42に網膜層成面の形状に対応す
る像を表示させる。そして、モニター画面42に表示さ
れた網膜層成面の形状に対応する像のピントが合ってい
ないときは、レンズ33.35を光軸方向に可動させて
ピントを合わせる。なお、その第3図において、Hは乳
頭部を示している。
That is, when the main body of the device is moved to focus on the retinal layer surface, images G, (,' of the retinal layer surface are formed on the monitor screen 42, as shown in FIG. 3). Here, when either one of the retinal layer surface images GS G- is out of focus, either one of the focusing lenses 28 or 30 is adjusted so that both retinal layer surface images G and G= are in focus. Then, an image corresponding to the shape of the retinal layer plane is displayed on the monitor screen 42. Then, the image of the retinal layer plane displayed on the monitor screen 42 is adjusted. When the image corresponding to the shape is out of focus, the lenses 33 and 35 are moved in the optical axis direction to bring it into focus. In FIG. 3, H indicates the papilla.

このようにして、網膜層表面にピントの合った網膜層表
面像と網膜層成面にピントの合った網膜層成面像とが得
られ、次に、撮影光源13を閃光させて二組の立体画像
を得て、この立体画像をテレビカメラ37.38.40
.41を介して図示を略すフレームメモリに立体計測デ
ータとして記憶させる。そして、その立体計測データを
解析する。
In this way, a retinal layer surface image in focus on the retinal layer surface and a retinal layer surface image in focus on the retinal layer surface are obtained, and then the imaging light source 13 is flashed to create two sets of images. Obtain a three-dimensional image and transmit this three-dimensional image to a television camera 37.38.40
.. 41 and stored as stereoscopic measurement data in a frame memory (not shown). The three-dimensional measurement data is then analyzed.

この立体解析により、第4図に示すように、緑色光によ
り網膜層表面の立体断面偉Jが得られ、赤色光により網
膜層成面の立体断面偉りが得られ・網膜の線維層Sの形
状が求められる。この線維層Sの厚さは、正常眼の場合
、最も厚い箇所で150〜200ミクロンであり、薄い
箇所で20〜30ミクロンである。そこで、この立体断
面像J、  Lに基づき、その差を第5図に示すように
、撮影範囲の全領域に渡って数値として差分表示するよ
うにすれば、網膜の線維層Sの厚さを数値的に把握でき
る。また、第6図に示すように、ワイヤーフレームWに
よりモニター画面42に表示することにすれば、眼底R
の形状を直感的に把握できることになる。
Through this three-dimensional analysis, as shown in Figure 4, a three-dimensional cross section of the retinal layer surface can be obtained using green light, a three-dimensional cross section of the retinal layer surface can be obtained using red light, and a three-dimensional cross section of the retinal fiber layer S can be obtained using red light. The shape is required. In the case of a normal eye, the thickness of this fibrous layer S is 150 to 200 microns at its thickest point and 20 to 30 microns at its thinnest point. Therefore, based on these three-dimensional cross-sectional images J and L, if the difference is displayed as a numerical value over the entire imaging range as shown in Fig. 5, the thickness of the fiber layer S of the retina can be calculated. Can be understood numerically. Furthermore, as shown in FIG. 6, if it is displayed on the monitor screen 42 using a wire frame W, the fundus R
This allows you to intuitively grasp the shape of

以上、実施例について説明したが、撮影時に直接向am
察できるようにクイックリターンミラーを設けておくこ
ともできる。
The embodiments have been described above, but when shooting directly
A quick return mirror can also be provided for easy viewing.

(発明の効果) 本発明に係わる立体計測眼底カメラは、以上、説明した
ように構成したので、網膜層成面と網膜層表面とを同時
に立体計測できる。
(Effects of the Invention) Since the stereoscopic fundus camera according to the present invention is configured as described above, it is possible to three-dimensionally measure the retinal layer formation and the retinal layer surface at the same time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係わる立体計測眼底カメラの光学系の
側面図、 第2図は本発明に係わる立体計測眼底カメラの光学系の
平面図、 第3図はモニター画面に表示された網膜層表面の像を示
す図、 第4図はモニター画面に表示された立体断面像を示す図
、 第5図はモニター画面に表示された数値例を示す図、 第6図はモニター画面に表示されたワイヤーフレームを
示す図、 である。 11・・・計測光学系 36・・・ダイクロイックミラー(光学的分離手段)3
3.35・・・レンズ(合焦補助手段)第3図 第4図 第5図 第6図
FIG. 1 is a side view of the optical system of the stereoscopic fundus camera according to the present invention, FIG. 2 is a plan view of the optical system of the stereoscopic fundus camera according to the present invention, and FIG. 3 is the retinal layer displayed on the monitor screen. Figure 4 shows an image of the surface; Figure 4 shows a three-dimensional cross-sectional image displayed on the monitor screen; Figure 5 shows an example of numerical values displayed on the monitor screen; Figure 6 shows the values displayed on the monitor screen. This is a diagram showing a wire frame. 11...Measuring optical system 36...Dichroic mirror (optical separation means) 3
3.35... Lens (focusing aid) Fig. 3 Fig. 4 Fig. 5 Fig. 6

Claims (2)

【特許請求の範囲】[Claims] (1)計測光学系により網膜層表面を同時立体計測する
立体計測眼底カメラにおいて、 網膜層底面の立体計測と網膜層表面との立体計測とを行
うために、網膜層表面からの反射光と該網膜層表面から
の反射光の波長とは異なる波長の網膜層底面からの反射
光とを分離する光学的分離手段が計測光学系に設けられ
ていることを特徴とする立体計測眼底カメラ。
(1) In a stereoscopic fundus camera that simultaneously measures the retinal layer surface three-dimensionally using a measurement optical system, in order to perform three-dimensional measurement of the bottom surface of the retinal layer and three-dimensional measurement of the retinal layer surface, the light reflected from the retinal layer surface and the A stereoscopic fundus camera characterized in that the measurement optical system is provided with an optical separation means for separating light reflected from the bottom surface of the retinal layer having a different wavelength from the wavelength of the light reflected from the surface of the retinal layer.
(2)前記網膜層底面の像の合焦を補助する合焦補助手
段が前記計測光学系に設けられていることを特徴とする
請求項1記載の立体計測眼底カメラ。
(2) The stereoscopic fundus camera according to claim 1, wherein the measurement optical system is provided with a focusing assisting means for assisting in focusing the image of the bottom surface of the retinal layer.
JP1125162A 1989-05-18 1989-05-18 Stereoscopic fundus camera Expired - Fee Related JP2919855B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1125162A JP2919855B2 (en) 1989-05-18 1989-05-18 Stereoscopic fundus camera

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1125162A JP2919855B2 (en) 1989-05-18 1989-05-18 Stereoscopic fundus camera

Publications (2)

Publication Number Publication Date
JPH02305544A true JPH02305544A (en) 1990-12-19
JP2919855B2 JP2919855B2 (en) 1999-07-19

Family

ID=14903411

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1125162A Expired - Fee Related JP2919855B2 (en) 1989-05-18 1989-05-18 Stereoscopic fundus camera

Country Status (1)

Country Link
JP (1) JP2919855B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100339259B1 (en) * 2000-03-16 2002-06-01 양연식 Three dimensional real-time image apparatus of ocular retina
JP2008018043A (en) * 2006-07-13 2008-01-31 Kowa Co Eye fundus photographing system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5478103B2 (en) * 2009-04-15 2014-04-23 興和株式会社 Image processing method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63238843A (en) * 1987-03-27 1988-10-04 興和株式会社 Ophthalmic diagnostic method and apparatus
JPH01101959A (en) * 1987-10-16 1989-04-19 Kowa Co Scanning type laser imaging apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63238843A (en) * 1987-03-27 1988-10-04 興和株式会社 Ophthalmic diagnostic method and apparatus
JPH01101959A (en) * 1987-10-16 1989-04-19 Kowa Co Scanning type laser imaging apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100339259B1 (en) * 2000-03-16 2002-06-01 양연식 Three dimensional real-time image apparatus of ocular retina
JP2008018043A (en) * 2006-07-13 2008-01-31 Kowa Co Eye fundus photographing system

Also Published As

Publication number Publication date
JP2919855B2 (en) 1999-07-19

Similar Documents

Publication Publication Date Title
JP4852546B2 (en) Ophthalmic imaging equipment
JPH0753151B2 (en) Ophthalmic measuring device
JP2004261293A (en) Fundus camera
JP2927445B2 (en) Stereoscopic fundus camera
JP2000005131A (en) Fundus camera
JPH0646995A (en) Eye refractometer
JPH11313800A (en) Ophthalmological device
JP2919855B2 (en) Stereoscopic fundus camera
JPH0975308A (en) Corneal endothelial cell photographing device
JPS6117494B2 (en)
JP3269675B2 (en) Fundus camera
JPS6246170B2 (en)
JP5807701B2 (en) Fundus photographing device
JPH05245109A (en) Eyeground camera
JPH08150121A (en) Eyeground camera
JP2860592B2 (en) Fundus camera
JP3199125B2 (en) Stereoscopic fundus camera
JPH07327931A (en) Eye ground camera
JPS6034378B2 (en) fundus camera
JPS5854821B2 (en) fundus camera
JPH04253838A (en) Simultaneous stereoscopic fundus camera
JPH0414972B2 (en)
JP6107906B2 (en) Fundus photographing device
JP2023063828A (en) Ophthalmologic apparatus
JP3363520B2 (en) Ophthalmic equipment

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees