JPH02304873A - Plate type solid electrolyte fuel cell - Google Patents

Plate type solid electrolyte fuel cell

Info

Publication number
JPH02304873A
JPH02304873A JP1125873A JP12587389A JPH02304873A JP H02304873 A JPH02304873 A JP H02304873A JP 1125873 A JP1125873 A JP 1125873A JP 12587389 A JP12587389 A JP 12587389A JP H02304873 A JPH02304873 A JP H02304873A
Authority
JP
Japan
Prior art keywords
solid electrolyte
fuel
membrane
interconnector
electrode slurry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1125873A
Other languages
Japanese (ja)
Inventor
Hiroshi Sakai
広 坂井
Masao Sumi
角 正夫
Masaru Ishibashi
勝 石橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP1125873A priority Critical patent/JPH02304873A/en
Publication of JPH02304873A publication Critical patent/JPH02304873A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To make a fuel cell large by separately baking a solid electrolyte, an interconnector film, and a bar-shaped support, by assembling them, and by filling the space of the assembled body with at least one of fuel electrode slurry and an oxygen electrode slurry. CONSTITUTION:A solid electrolyte 1, an interconnector film 2, and a bar-shaped support 3 are separately baked, then they are assembled. The space of the assembled body is filled with at least one of fuel electrode slurry and an oxygen electrode slurry. Surface load applied to a fuel cell is supported by the support/ solid electrolyte film/support/interconnector film... and mechanical strength is stabilized. The fuel electrode slurry or the oxygen electrode slurry is used as the space filler to ensure mechanical strength and it is also functions as an electrical connector. A fuel cell can be made larger.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は平板型固体電解質燃料電池に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a flat plate solid electrolyte fuel cell.

本発明の燃料電池は、その電池に電流を流すことによシ
、電解セル(水電解tCO2電解等)としても使用でき
る。
The fuel cell of the present invention can also be used as an electrolysis cell (water electrolysis, tCO2 electrolysis, etc.) by passing a current through the cell.

〔従来の技術〕[Conventional technology]

固体電解質燃料電池(以下5OFCという)はYSZ(
イツトリア安定化ノルコニア)等を電解質とし、その両
側面に電極を設け、約1000℃に加熱した状態で燃料
及び酸化剤(通常は空気)を供給すると、電気化学反応
によシ直接発電するもので、高効率、無公害等の特徴を
有し次世代の発電方式として期待されている。電池構造
としては円筒型5OFCと平板型5OFCがある。円筒
型S OFCの代表例としては、特開昭54−7324
6号(以下、従来例1という)と特開昭57−1303
81号(以下、従来例2という)があシ、現在夫々数k
W級の発電試験を行うなど研究が進められている。また
、平板型5OFCの例としては第3図に示す波形状薄膜
と平板状薄膜を積層したもの(以下、従来例3という)
と第4図に示す特願昭63−30443号(以下先願と
いう)がある。
Solid electrolyte fuel cells (hereinafter referred to as 5OFC) are YSZ (
When an electrolyte such as yttria-stabilized norconia is used, electrodes are provided on both sides of the electrolyte, and fuel and an oxidizer (usually air) are supplied while the electrolyte is heated to approximately 1000°C, electricity is generated directly through an electrochemical reaction. It is expected to be a next-generation power generation method due to its features such as high efficiency and non-pollution. There are two types of battery structures: cylindrical 5OFC and flat plate 5OFC. A typical example of a cylindrical SOFC is JP-A-54-7324.
No. 6 (hereinafter referred to as conventional example 1) and JP-A-57-1303
No. 81 (hereinafter referred to as conventional example 2) is present, and currently there are several k
Research is underway, including conducting W-class power generation tests. Furthermore, an example of a flat plate type 5OFC is one in which a corrugated thin film and a flat thin film are laminated as shown in Fig. 3 (hereinafter referred to as conventional example 3).
There is Japanese Patent Application No. 63-30443 (hereinafter referred to as "prior application") shown in FIG.

円筒W 5OFCと平板型5OFCを比較すると、円筒
型5OFCは製作が比較的容易で現在、既に、かな夛L 研究が進んでいるが、発電性態(電流密度、出力密度等
)はさほど良くなく、そのため、単位出力画シの製造コ
ストも高くなることが予想されている。
Comparing the cylindrical W 5OFC and the flat plate 5OFC, the cylindrical 5OFC is relatively easy to manufacture and research is already underway, but its power generation properties (current density, output density, etc.) are not as good. Therefore, it is expected that the manufacturing cost of a unit output image will also increase.

他方従来例3.0燃料電池は薄膜のみで構成さ九しかも
1セルの間隔を1〜2■と小さくしているため、発電部
単位面積当シの電流密度、出力密度が高く、しかもセル
容積・重量轟りの出力は、従来例1.及び2.に比べ飛
躍的に向上する。しかしながら、製作が難しく、製作技
術の確立が最も重要な課題である。以下に第3図をもと
に従来°例3.の構造・機能及び製作方法を以下に示す
On the other hand, the conventional 3.0 fuel cell is composed only of thin films, and the spacing between each cell is as small as 1 to 2 cm, so the current density and output density per unit area of the power generating section are high, and the cell volume is small.・The output of the heavy roar is the same as the conventional example 1. and 2. This is a dramatic improvement compared to . However, it is difficult to manufacture, and the most important issue is the establishment of manufacturing technology. Below, based on Fig. 3, the conventional example 3. The structure, function, and manufacturing method are shown below.

従来例3.には第3図の(−1と(b)に示す2種類の
構造があるが、製作性の点から(b)の方が秀れている
ので、(b)について説明する。
Conventional example 3. There are two types of structures shown in FIG. 3 (-1 and (b)), but (b) is superior in terms of manufacturability, so (b) will be explained.

従来例3.(b)の1セル8zは、酸素電極7Iと固体
電解質72と燃料電極73で構成される積層膜74、燃
料電極75とインタコネクタ76と酸素電極77で構成
される積層膜78及び燃料と酸化剤流路を作シだす波形
の燃料側支持膜79.酸化剤側支持膜80から成立つ。
Conventional example 3. One cell 8z in (b) includes a laminated membrane 74 composed of an oxygen electrode 7I, a solid electrolyte 72, and a fuel electrode 73, a laminated membrane 78 composed of a fuel electrode 75, an interconnector 76, and an oxygen electrode 77, and a laminated membrane 78 composed of a fuel and oxidation A corrugated fuel-side support membrane 79 that creates a chemical flow path. It consists of the oxidizing agent side support film 80.

更に、セルを直列に接続するため単セル8Iと同じ構成
のセルが順次積層されモゾーール82が成立つ。
Further, in order to connect the cells in series, cells having the same configuration as the single cell 8I are sequentially stacked to form a mozole 82.

材質としては、積層膜74及び78中の酸素電極7I及
び77並びに波状の酸化剤側支持膜80は、LaSrM
nO3等の高温酸化雰囲気で高い導電性を有する酸素電
極材料を夏用する。また同様に、積層膜74及び78中
の燃料電極73及び75並びに波状の燃料側支持膜79
は、NiO+YSZ等の高温還元雰囲気で高い導電性を
有する燃料電極材料を夏用する。その他に、固体電解質
72にはイツトリア安定化ジルコニア等のイオン導電性
を有する材料を、インタコネクタ76にはLaMgCr
O3等の高温で酸化・還元の雨雲囲気に耐えられる材料
を使用する。
As for the material, the oxygen electrodes 7I and 77 in the laminated films 74 and 78 and the corrugated oxidant side support film 80 are made of LaSrM.
Oxygen electrode materials with high conductivity in high-temperature oxidizing atmospheres, such as nO3, will be used in the summer. Similarly, the fuel electrodes 73 and 75 in the laminated membranes 74 and 78 and the wavy fuel side support membrane 79
uses fuel electrode materials that have high conductivity in high-temperature reducing atmospheres, such as NiO+YSZ. In addition, the solid electrolyte 72 is made of a material with ion conductivity such as yttria-stabilized zirconia, and the interconnector 76 is made of a material having ion conductivity such as LaMgCr.
Use a material that can withstand high-temperature oxidation/reduction rain clouds such as O3.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の燃料電池には次のような問題がある。 Conventional fuel cells have the following problems.

(1)  従来例3.では、50〜100μmのセラミ
ックス薄膜のみによシ構成されておシ、強度的に弱いと
いう問題点がある。特に、波形状の支持薄膜は電池に圧
縮、せん断等の荷重が掛った時、破損し易く、製作、装
置への組込み及び運転時に厳密な取扱いが必要となる。
(1) Conventional example 3. However, since it is constructed only from a ceramic thin film of 50 to 100 μm, there is a problem in that it is weak in strength. In particular, the corrugated supporting thin film is easily damaged when a load such as compression or shear is applied to the battery, and requires strict handling during manufacturing, installation into a device, and operation.

また、強度的に弱い為、電池の大型化が困難である。In addition, since it is weak in strength, it is difficult to increase the size of the battery.

(2)従来例3.では、固体電解質、インタコネクタ、
醗素電極、燃料電極の4種類の材料を焼成前の未焼結の
グリーン状態で3層膜及び波板を成形し、それらを積層
後、1度に焼成させるが、これらの材料は、■本来、最
適焼成温度が異カること、■固体電解質及びインタコネ
クタは緻密な膜であるが、酸素電極及び燃料電極はポー
ラスな膜を必要とすることなど、構成層各々で要求仕様
が異なる。それ故、1度の焼成で4種類の材料全てに対
し、最適ガ焼成を行うことは困難である。他方焼成温度
の高い材料に合せて高い温度で焼成すると、焼成温度の
低い材料側で材質の劣化、電極の緻密化及び電池として
有害な界面反応が生じる等の不具合が生じる。
(2) Conventional example 3. So, solid electrolyte, interconnector,
A three-layer film and a corrugated sheet are formed from four types of materials, the oxide electrode and the fuel electrode, in an unsintered green state before firing, and after laminating them, they are fired at once. Essentially, the required specifications for each constituent layer are different, such as the fact that the optimum firing temperature is different, and that solid electrolytes and interconnectors require dense films, while oxygen electrodes and fuel electrodes require porous films. Therefore, it is difficult to perform optimal firing for all four types of materials in one firing. On the other hand, if the material is fired at a high temperature to match a material that requires a high firing temperature, problems such as deterioration of the material, densification of the electrode, and interfacial reactions harmful to the battery will occur on the side of the material that requires a low firing temperature.

(3)  従来例3.の4種類の材料の選定は各々電池
構成要素としての要求に加え、熱膨張率も考慮して行っ
ているが、未焼結のグリーン状態から焼成する時には、
同一条件で昇温しでも材料、粒度等によυ焼結に伴なう
収縮が開始する温度及びその収縮量が異なる。(材料間
の熱膨張率の差がlXl0−6/℃違っている時には0
℃から1000℃まで温度を変えた時の変形量の差はl
Xl0  X(1000℃−0℃)X 100=0.1
%に過ぎないが、焼結時の収縮量の差は10%オーダで
生じる)また、多数段を積層した大型電池の焼成時にお
いては、昇温速度を非常に遅くしたとしても、電池の表
面近傍及び内部で温度差(=昇温時の温度・時間のズレ
)が生じ、その温度差により、同一材料に於ても、焼結
す々わち収縮のタイミングがずれる。以上の材料間及び
電池の位置による焼結すなわち収縮のタイミング、量の
違いによシ、焼成時に割れ、変形が生じやすくなる。な
お、この傾向は電池が大きくなればなるほど顕著となシ
セルの大型化が難しい。
(3) Conventional example 3. The selection of these four types of materials takes into account the requirements for each battery component as well as the coefficient of thermal expansion. However, when firing from an unsintered green state,
Even if the temperature is raised under the same conditions, the temperature at which shrinkage starts and the amount of shrinkage due to υ sintering differ depending on the material, particle size, etc. (If the difference in thermal expansion coefficient between materials is lXl0-6/℃, 0
The difference in deformation when changing the temperature from ℃ to 1000℃ is l
Xl0X(1000℃-0℃)X100=0.1
%, but the difference in the amount of shrinkage during sintering is on the order of 10%) Furthermore, when firing large batteries with multiple stacked layers, even if the temperature increase rate is extremely slow, the surface of the battery will shrink. A temperature difference (=temperature/time difference during heating) occurs in the vicinity and inside, and this temperature difference causes a difference in the timing of sintering, that is, shrinkage, even for the same material. Due to the differences in the timing and amount of sintering, that is, shrinkage, depending on the materials and the position of the battery, cracking and deformation are likely to occur during firing. Note that this tendency becomes more pronounced as the battery becomes larger, making it difficult to increase the size of the cell.

本発明はこれらの問題を解決した燃料電池を提供するこ
とを目的とする。
An object of the present invention is to provide a fuel cell that solves these problems.

(課題を解決するための手段〕 本発明に係る平板型固体電解質燃料電池は、燃料電極、
固体電解鷹膜、酸素電極及びインタコネクタ膜を薄膜で
形成し、これらを積層した平板型固体電解質燃料電池に
おいて、前記固体電解質膜とインタコネクタ膜を棒状の
支持材で支持するとともに、固体電解質とインタコネク
タ膜と棒状の支持材を単独で焼成し、それらを組合せる
とともに、各構成要素の隙間には、燃料電極スラリーと
酸素化“極スラリーのいずれか1つを充填し、強度及び
電気的接続性を向上させたことを特徴とする。
(Means for Solving the Problems) The flat solid electrolyte fuel cell according to the present invention includes a fuel electrode,
In a flat plate type solid electrolyte fuel cell in which a solid electrolyte membrane, an oxygen electrode, and an interconnector membrane are formed as thin films, and these are stacked, the solid electrolyte membrane and interconnector membrane are supported by a rod-shaped support material, and the solid electrolyte membrane and interconnector membrane are The interconnector membrane and the rod-shaped support material are individually fired and combined, and the gap between each component is filled with either a fuel electrode slurry or an oxygenated "electrode slurry" to improve strength and electrical properties. It is characterized by improved connectivity.

〔作用〕[Effect]

(1)棒状の支持材を(資)用し、第1図に示す構造に
することによシ、電池への直荷重に対しては、支持材/
固体電解質膜/支持材/インタコネクタ膜・・・とつま
った部分で支持することが出来る。また、その他の曲げ
等の荷重に対しては棒状の支持材が強度メン・櫂として
働き、強度的に非常に安定な構造となる。
(1) By using a rod-shaped support material and constructing the structure shown in Figure 1, the support material/
It can be supported by the solid electrolyte membrane/support material/interconnector membrane... In addition, the rod-shaped support material acts as a strength member and paddle against other loads such as bending, resulting in an extremely stable structure in terms of strength.

(2)固体電解質膜、インタコネクタ膜及び棒状の支持
材を各々単独で焼成し、それらを組合せるが、固体電解
質膜と、インタコネクタ膜は従来例3、と同様のテープ
キャスティング法で数10〜数lOOμmの薄板に成形
した後焼成する。この方法でセラミックスの薄板を作る
場合、形状が小さいと変形の問題は少ないが、形状が大
きくなると、小さなうねり等が不可避的に生じる。それ
故、固体電解質膜、インタコネクタ膜及び棒状の支持材
を組合せる時に、これらの素材のうねシにょるスキマが
生じる。そのit接合すると、面荷重等の荷重が掛かっ
た場合、一部に荷重が集中し破損する。そこで、燃料電
極スラリー又は酸素電極スラリーをスキマの充填材とし
て使用し強度を確保するとともに、電極材料としての電
気的接続も兼ねさせる。
(2) The solid electrolyte membrane, the interconnector membrane, and the rod-shaped support material are fired individually, and then combined. After forming into a thin plate of ~ several lOOμm, it is fired. When making a ceramic thin plate using this method, if the shape is small, there will be less problem of deformation, but if the shape becomes large, small waviness etc. will inevitably occur. Therefore, when the solid electrolyte membrane, the interconnector membrane, and the rod-shaped support material are combined, a gap is created between the ridges of these materials. When it is joined, if a load such as a surface load is applied, the load will be concentrated on one part and it will break. Therefore, a fuel electrode slurry or an oxygen electrode slurry is used as a filler in the gap to ensure strength and also serve as an electrode material for electrical connection.

(3)固体電解質、インタコネクタ及び支持材を単独で
焼成し、組合せ後、まず燃料電極、最後に酸素電極のス
ラリー含浸・焼成と、焼成温度の高い材料から順次焼成
を行うことにょヤ、各構成材料に最適な焼成条件を採用
出来るとともに、電池にとりて有害な界面反応を防止す
ることが出来る。
(3) The solid electrolyte, interconnector, and supporting material are fired individually, and after combining, slurry impregnation and firing are performed first for the fuel electrode, and finally for the oxygen electrode, and the firing is performed in order starting from the material with the highest firing temperature. It is possible to adopt firing conditions that are optimal for the constituent materials, and to prevent interfacial reactions that are harmful to the battery.

〔実施例〕〔Example〕

本発明の実施例を第1図〜第2図に示す。 Embodiments of the present invention are shown in FIGS. 1 and 2.

第1図は本発明の平板型5OFCの構造図である。FIG. 1 is a structural diagram of a flat plate type 5OFC of the present invention.

Iは固体電解質膜(材質はysz等)、2はインタコネ
クタ(材質はLaMgCro 5等)13は支持材(材
質はインタコネクタ又は、固体電解質と同一じ材料を使
用するか、又は、使用雰囲気に合せて燃料電極材料及び
酸素電極材料と同じ材料又は、その他高強度で安定な材
料とする)、4は燃料電極(材質はNiO+YSZ等)
、5は酸素電極(材質はLaSrMnO3等)、8は燃
料流路、9は酸化剤通路である。なお、燃料通路8と酸
化剤通路9は直交している方が燃料、酸化剤の給排気が
行い易い。
I is a solid electrolyte membrane (material is YSZ, etc.), 2 is an interconnector (material is LaMgCro 5, etc.), and 13 is a support material (the same material as the interconnector or solid electrolyte is used, or it is used in the atmosphere) In addition, the same material as the fuel electrode material and oxygen electrode material or other high strength and stable material), 4 is the fuel electrode (material is NiO + YSZ etc.)
, 5 is an oxygen electrode (made of LaSrMnO3 or the like), 8 is a fuel flow path, and 9 is an oxidizer path. Note that it is easier to supply and exhaust fuel and oxidizer if the fuel passage 8 and oxidizer passage 9 are perpendicular to each other.

実施例の電池の主要寸法は概路次の通シである。The main dimensions of the battery of the example are roughly as follows.

固体電解質; 50〜200μm 緻密膜インタコネク
タ; 50μm〜Low   緻密膜支持材   ; 
高さ1〜10■ 緻密・高強度燃料電極 ; 50〜2
00μm ポー2ス膜酸素電極 ; 50〜SOOμm
  ポーラス膜第2図は本発明の平板型5OFCの製作
フローである。固体電解質(ysz)の膜はテープキャ
スティング法でグリーン状態の膜を作!+、1500〜
1700’Cで焼成する。インタコネクタ(LaMgC
rO3)の膜はテープキャスティング法でグリーン状態
の膜を作り、1450〜1650℃で焼成する。なお、
Low程度の厚板の場合には通常のセラミックス製造と
同じく原料粉末を圧縮及び焼成にょシ直接板を作る。
Solid electrolyte; 50-200 μm dense membrane interconnector; 50 μm-Low dense membrane support material;
Height 1~10■ Dense/high strength fuel electrode; 50~2
00μm Port 2 membrane oxygen electrode; 50~SOOμm
Porous membrane FIG. 2 is a manufacturing flow of a flat plate type 5OFC of the present invention. The solid electrolyte (ysz) membrane is made in a green state using the tape casting method! +, 1500~
Fire at 1700'C. Interconnector (LaMgC
rO3) is made into a green film by tape casting and fired at 1450-1650°C. In addition,
In the case of a low-grade thick plate, the raw material powder is compressed and fired to directly produce the plate, as in normal ceramic manufacturing.

支持材(LaMgCro 3 )は粉末から圧縮及び焼
成にょ)成形し、それを加工して所定の寸法の支持材を
得る。
The support material (LaMgCro 3 ) is molded from powder (by compression and firing), and then processed to obtain a support material of a predetermined size.

以上の工程で得られた、固体電解質膜、インタコネクタ
膜及び支持材に燃料電極スラリー(燃料電極粉末に溶媒
及び分散剤等を混合した液)を塗布し、組合せた後14
00〜1600’Cで焼成する。
After coating the solid electrolyte membrane, interconnector membrane, and support material obtained in the above steps with fuel electrode slurry (a liquid mixture of fuel electrode powder, solvent, dispersant, etc.) and combining them, 14
Fire at 00-1600'C.

最後に、上記の固体電解質/支持材/インタコネクタの
部材の両面及び支持材に酸素電極スラリー(酸素電極粉
末に溶媒及び分散剤等を混合した液)を塗布した後、所
定の段数組合せ、1200〜1400℃で焼成する。な
お、使用材料が変わり、焼成温度が変わる場合には、焼
成温度が高い材料から低い材料へと、製作手順及び条件
を変える。
Finally, after applying oxygen electrode slurry (a liquid containing oxygen electrode powder mixed with a solvent, a dispersant, etc.) to both sides of the solid electrolyte/support material/interconnector member and the support material, a predetermined number of stages were combined. Calculate at ~1400°C. In addition, when the materials used change and the firing temperature changes, the manufacturing procedure and conditions are changed from a material with a higher firing temperature to a material with a lower firing temperature.

を池完成後約1000℃に保持した状態で、燃料流路に
はH2e Co等の燃料を供給し、酸化剤流路には空気
等の酸化剤を供給すると固体電解′を介した電気化学反
応によシ直接電気が得られる。
After the pond is completed, the temperature is maintained at approximately 1000°C, and a fuel such as H2e Co is supplied to the fuel channel, and an oxidizer such as air is supplied to the oxidizer channel, and an electrochemical reaction occurs via the solid electrolyte. Direct electricity can be obtained.

本発明と先細(第4図)を比較すると次のような相異が
ある。本発明は先願すなわち第4図の接着剤12Bの製
造方法、材料の混合比等に工夫をこらし、接着剤の材料
に酸素電極126と同じ材料の使用を可能にし、(燃料
電極125の接着材としては燃料電極と同じ材料の使用
を可能にし)、従来は電池として働らかなかりた部分も
電池として働らくようにした。そのため性能が格段に向
上した。
Comparing the present invention and the tapered one (FIG. 4), there are the following differences. The present invention makes it possible to use the same material as the oxygen electrode 126 as the adhesive material by making improvements to the manufacturing method and material mixing ratio of the adhesive 12B shown in the prior application, that is, FIG. This made it possible to use the same material as the fuel electrode), allowing parts that previously did not function as a battery to function as a battery. As a result, performance has improved significantly.

〔発明の効果〕〔Effect of the invention〕

本発明は前述のよりに構成されているので、以下に記載
するような効果を奏する。
Since the present invention is configured as described above, it produces effects as described below.

(1)棒状の支持材を使用することにより、この支持材
が荷重を支え、製作、装置組込み及び運転寿の損傷がな
くなるとともに、セルの大型化が可能になる。
(1) By using a rod-shaped support material, this support material supports the load, eliminates damage during manufacturing, equipment installation, and operational life, and allows the cell to be made larger.

(2)固体電解質膜、インクコネクタ膜及び支持材を組
合せる際、燃料電極又は酸素電極スラリーをその間に充
填させることにより、スキマを埋め、強度的、電気的接
続を兼ねさせることができる。
(2) When combining the solid electrolyte membrane, ink connector membrane, and support material, by filling the space with fuel electrode or oxygen electrode slurry, gaps can be filled and a strong and electrical connection can be achieved.

(3)固体電解質、インタコネクタ及び支持材を事前に
焼成し、次に燃料電極、酸素電極とよシ焼成温度の高い
材料から順次施工することによυ、各材料毎に最適な焼
成条件を採用することができる。
(3) By pre-firing the solid electrolyte, interconnector, and support material, and then applying the fuel electrode, oxygen electrode, and other materials in order, starting with the material with the highest firing temperature, the optimum firing conditions can be determined for each material. Can be adopted.

(4)それとともに、各焼成時に焼成するのはl材料の
みなので、収縮量の均一化が可能となp、製作時の割れ
、変形が少なくなる。また、電池作用に対し悪影響を及
はす界面反応を防止することが出来る。
(4) At the same time, since only the l material is fired during each firing, the amount of shrinkage can be made uniform, and cracking and deformation during manufacturing can be reduced. Furthermore, interfacial reactions that adversely affect battery operation can be prevented.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の平板W 5OFCの実施例の構造を示
す図、 第2図は本発明の平板型5OFCの製作フローを示す図
、 第3図は従来例を示す図、 第4図は先願の構造を示す図である。 l・・・固体電解質、2・・・インタコネクタ、3・・
・支持材、4・・・燃料電極、5・・・酸素電極、6・
・・単セル、7・・・モジー−ル、8・・・燃料流路、
9・−・酸化剤流路、II・・・固体電解質、I2・・
・同スラリー液、I3・−・テープキャスティング、1
4・・・切断、I5・・・焼恋I6・・・インタコネク
タ、I7・・・同スラリー液、I8・・・テープキャス
ティング、I9・・・切断、20・・・焼成、21・−
・支持材、22・・・同原料粉末、23・・・焼成、2
4・・・切断、 25−・・研磨、26・・・燃料電極
。 27・・・同原料粉末、28・・・同スラリー液、29
・一固体電解質/支持材/インタコネクタへの燃料電極
スラリー塗布及び組立て、30・・・焼成、3 r −
・・酸素電極、32・−・同原料粉末、33・・・同ス
ラリー液、34・・・“、固体電解質/支持材/インタ
コネクタ″両面への酸素電極スラリー塗布及び組立て、
35・・・焼成
Fig. 1 is a diagram showing the structure of an embodiment of the flat plate W 5OFC of the present invention, Fig. 2 is a diagram showing the manufacturing flow of the flat plate type 5OFC of the present invention, Fig. 3 is a diagram showing a conventional example, and Fig. 4 is a diagram showing the manufacturing flow of the flat plate type 5OFC of the present invention. It is a diagram showing the structure of a prior application. l...Solid electrolyte, 2...Interconnector, 3...
・Support material, 4...Fuel electrode, 5...Oxygen electrode, 6.
...Single cell, 7...Module, 8...Fuel flow path,
9... Oxidizing agent channel, II... Solid electrolyte, I2...
・Same slurry liquid, I3--Tape casting, 1
4... Cutting, I5... Burning I6... Interconnector, I7... Slurry liquid, I8... Tape casting, I9... Cutting, 20... Baking, 21.-
・Support material, 22...Same raw material powder, 23...Calcination, 2
4... Cutting, 25-... Polishing, 26... Fuel electrode. 27... Same raw material powder, 28... Same slurry liquid, 29
・Applying fuel electrode slurry to the solid electrolyte/support material/interconnector and assembling, 30...Baking, 3 r-
...Oxygen electrode, 32... Same raw material powder, 33... Same slurry liquid, 34... "Solid electrolyte/support material/interconnector" Oxygen electrode slurry coating and assembly on both sides,
35...Baking

Claims (1)

【特許請求の範囲】[Claims] 燃料電極、固体電解質膜、酸素電極及びインタコネクタ
膜を薄膜で形成し、これらを積層した平板型固体電解質
燃料電池において、前記固体電解質膜とインタコネクタ
膜を棒状の支持材で支持するとともに、固体電解質とイ
ンタコネクタ膜と棒状の支持材を単独で焼成し、それら
を組合せるとともに、各構成要素の隙間には、燃料電極
スラリーと酸素電極スラリーのいずれか1つを充填し、
強度及び電気的接続性を向上させたことを特徴とする平
板型固体電解質燃料電池。
In a flat solid electrolyte fuel cell in which a fuel electrode, a solid electrolyte membrane, an oxygen electrode, and an interconnector membrane are formed of thin films and are stacked, the solid electrolyte membrane and interconnector membrane are supported by a rod-shaped support material, and the solid The electrolyte, the interconnector membrane, and the rod-shaped support material are fired individually and combined, and the gap between each component is filled with either a fuel electrode slurry or an oxygen electrode slurry,
A flat plate solid electrolyte fuel cell characterized by improved strength and electrical connectivity.
JP1125873A 1989-05-19 1989-05-19 Plate type solid electrolyte fuel cell Pending JPH02304873A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1125873A JPH02304873A (en) 1989-05-19 1989-05-19 Plate type solid electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1125873A JPH02304873A (en) 1989-05-19 1989-05-19 Plate type solid electrolyte fuel cell

Publications (1)

Publication Number Publication Date
JPH02304873A true JPH02304873A (en) 1990-12-18

Family

ID=14921038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1125873A Pending JPH02304873A (en) 1989-05-19 1989-05-19 Plate type solid electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JPH02304873A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009009737A (en) * 2007-06-26 2009-01-15 Ngk Spark Plug Co Ltd Solid electrolyte fuel cell and its manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009009737A (en) * 2007-06-26 2009-01-15 Ngk Spark Plug Co Ltd Solid electrolyte fuel cell and its manufacturing method

Similar Documents

Publication Publication Date Title
Xia et al. A simple and cost‐effective approach to fabrication of dense ceramic membranes on porous substrates
US5993986A (en) Solide oxide fuel cell stack with composite electrodes and method for making
JP6437821B2 (en) Composite anode for solid oxide fuel cells with improved mechanical integrity and efficiency
JP3502012B2 (en) Solid oxide fuel cell and method of manufacturing the same
EP1732157A1 (en) Method and apparatus for forming electrode interconnect contacts for a solid-oxyde fuel cell stack
US8697313B2 (en) Method for making a fuel cell from a solid oxide monolithic framework
US8715886B1 (en) Method for making a fuel cell
US20090162723A1 (en) Integrated Single-Chamber Solid Oxide Fuel Cells
JPH09129252A (en) Highly durable solid electrlyte fuel cell and manufacture thereof
CN113488689B (en) Solid oxide fuel cell stack and method for preparing the same
JP6748518B2 (en) Method for manufacturing electrochemical reaction cell
KR102198390B1 (en) Direct Flame-Solid Oxide Fuel Cell under rapid start-up and shut-down condition
KR102109730B1 (en) Method for fabricating solid oxide fuel cell
JP5502365B2 (en) Half cell for solid oxide fuel cell, solid oxide fuel cell, and method for producing half cell for solid oxide fuel cell
JP3244310B2 (en) Solid oxide fuel cell
JPH03116659A (en) Solid electrolyte type fuel battery
JPH02304873A (en) Plate type solid electrolyte fuel cell
JP5074004B2 (en) Solid oxide fuel cell and method for producing the same
JP2005085522A (en) Supporting membrane type solid oxide fuel cell
JP2002358980A (en) Solid electrolyte fuel cell
JPH11126617A (en) Solid electrolyte-type fuel cell and its manufacture
JP2704071B2 (en) Method for manufacturing single cell of solid oxide fuel cell
US20230132773A1 (en) Sealed porous structures for solid oxide fuel cells and methods of fabricating thereof
JPH01197971A (en) Plate type solid electrolyte fuel cell
JP2771090B2 (en) Solid oxide fuel cell