JPH02303134A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH02303134A
JPH02303134A JP12473689A JP12473689A JPH02303134A JP H02303134 A JPH02303134 A JP H02303134A JP 12473689 A JP12473689 A JP 12473689A JP 12473689 A JP12473689 A JP 12473689A JP H02303134 A JPH02303134 A JP H02303134A
Authority
JP
Japan
Prior art keywords
temperature
substrate
gas
film
heated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12473689A
Other languages
Japanese (ja)
Other versions
JP2805830B2 (en
Inventor
Masabumi Kunii
正文 国井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP12473689A priority Critical patent/JP2805830B2/en
Publication of JPH02303134A publication Critical patent/JPH02303134A/en
Application granted granted Critical
Publication of JP2805830B2 publication Critical patent/JP2805830B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Thin Film Transistor (AREA)

Abstract

PURPOSE:To obtain a gate insulating film of high quality on a low melting point glass substrate by abruptly raising a board surface temperature to a higher temperature than the softening point of an amorphous insulating substrate, thermally oxidizing a thin semiconductor film whole holding it at the temperature for a shorter period of time than the required period, and then rapidly lowering the temperature. CONSTITUTION:An SiO2 film formed on a glass board, and amorphous silicon is formed thereon. A gate oxide film forming abrupt thermal oxidation is conducted at this stage. That is, the board is introduced into an oxidation furnace, heated N2 gas is fed, the substrate temperature is raised to 700 deg.C in approx. 30min, and the temperature is stabilized in 5-20min. Here, after this state is held for 2sec, it is again heated to 700 deg.C, and the temperature of O2 gas is lowered in 1sec. The O2 gas temperature varying method includes switching of two types of O2 gases heated in advance to 700 and 1150 deg.C. It is again replaced with the N2 gas, the substrate temperature is lowered to the ambient temperature, and returned in approx. 30min.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はガラス基板のような非晶質絶縁基板上に成膜し
た半導体薄膜表面に高品質の絶縁膜を形成する方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for forming a high quality insulating film on the surface of a semiconductor thin film formed on an amorphous insulating substrate such as a glass substrate.

[従来の技術] 近年、大型で高解像度の液晶表示パネル、高速で高解像
度の密着型イメージセンサ、三次元工C等への実現に向
けて、ガラス、石英等の絶縁性非晶質基板や、5i02
等の絶縁性非晶質層上に、高性能な半導体素子を形成す
る試みが成されている。特に大型の液晶表示パネル等に
於いては、低コストの要求を満たすため、安価な低融点
ガラス上に薄膜トランジスタ(TPT)を形成すること
が必須の要求になりつつある。従来は、低融点ガラス基
板上に形成するTFTのゲート絶縁膜に、Journa
l of Vacuum 5cience Techn
ology Vol、B6(2) p、517 (19
88)等に見られるようにプラズマ気相成長法(PCV
D)を用いたもの、  AppliedPhysics
 Letters Vol、50(17) p、116
7 (1987)等にみられるように減圧化学気相成長
法(LPGVD)を用いたもの、Electronic
s Letters Vol、24(3)p、172 
(1988)、 Japanese Journal 
of AppliedPhysics Vol、26(
6) p、805,835.L90B (1988)等
にみられるように光化学気相成長法を用いたもの、Ja
panese Journal of Applied
 Physics Vol、22(4) p、L210
 (1983)等にみられるようにECRプラズマ気相
成長法を用いたもの等があり、いずれも低温成膜法で作
製したSiO2薄膜を用いてきた。
[Conventional technology] In recent years, insulating amorphous substrates such as glass and quartz have been developed to realize large, high-resolution liquid crystal display panels, high-speed, high-resolution contact image sensors, and three-dimensional engineering. ,5i02
Attempts have been made to form high-performance semiconductor elements on insulating amorphous layers such as . Particularly in large liquid crystal display panels and the like, in order to meet the demand for low cost, it is becoming essential to form thin film transistors (TPT) on inexpensive low melting point glass. Conventionally, the gate insulating film of a TFT formed on a low melting point glass substrate was
l of Vacuum 5science Techn
ology Vol, B6(2) p, 517 (19
88), the plasma vapor deposition method (PCV)
D), Applied Physics
Letters Vol, 50(17) p, 116
7 (1987), etc., using low pressure chemical vapor deposition (LPGVD), Electronic
s Letters Vol, 24(3)p, 172
(1988), Japanese Journal
of Applied Physics Vol. 26 (
6) p, 805,835. Those using photochemical vapor deposition as seen in L90B (1988) etc., Ja
panese Journal of Applied
Physics Vol, 22(4) p, L210
(1983), etc., using the ECR plasma vapor phase growth method, and all of them have used SiO2 thin films produced by low-temperature film formation methods.

[発明が解決しようとする課題] しかし、TPTのゲート酸化膜の形成を低温(<600
’C)で行なう場合、高温酸化法で形成したゲート絶縁
膜と比較すると膜質が劣り、高性能のTPTが実現でき
ないという問題点があった。
[Problem to be solved by the invention] However, the formation of the gate oxide film of TPT is performed at a low temperature (<600℃).
In the case of 'C), there was a problem that the film quality was inferior to that of a gate insulating film formed by high-temperature oxidation, and a high-performance TPT could not be realized.

一方、集積回路の微細化、高集積化にともない、IEE
E Electron Device Letters
、 Vol、 EDL−6,No。
On the other hand, as integrated circuits become smaller and more highly integrated, IEE
E Electron Device Letters
, Vol. EDL-6, No.

5 、205 、 (1985)等にみられるように、
MOSトランジスタのゲート酸化膜工程で発生する熱的
ダメージを低減する目的で急速熱酸化法(RTO)と呼
ばれる方法で、通常の熱酸化膜に匹敵する膜質の酸化膜
を得られるため注目を集めるようになってきた。しかし
、従来のRTO法は専ら結晶シリコン半導体の製造に用
いられたものであり、低融点ガラス基板上のTPTの製
造に用いる方法ではなかった。
5, 205, (1985), etc.
A method called rapid thermal oxidation (RTO) is used to reduce the thermal damage that occurs in the gate oxide film process of MOS transistors, and it is attracting attention because it can produce an oxide film with a quality comparable to that of ordinary thermal oxide films. It has become. However, the conventional RTO method was used exclusively for manufacturing crystalline silicon semiconductors, and was not a method used for manufacturing TPT on a low melting point glass substrate.

本発明は以上の問題点を解決するもので、その目的は低
融点のガラス基板上に成膜した半導体薄膜表面に高品質
のゲート絶縁膜を形成する方法を提供することにある。
The present invention solves the above problems, and its purpose is to provide a method for forming a high quality gate insulating film on the surface of a semiconductor thin film formed on a low melting point glass substrate.

[課題を解決するための手段] 本発明の半導体装置の製造方法は、 (1)非晶質絶縁基板上に成膜した半導体3膜の表面を
熱酸化する方法において、前記非晶質絶縁基板の軟化点
よりも高温に基板表面温度を急速に上昇させる工程と、
前記非晶質絶縁基板の温度が軟化点に到達するのに要す
る時間よりも短い時間だけ前記温度を保持しつつ前記半
導体薄膜を熱酸化する工程と、前記基板温度を急速に低
下させる工程とを少なくとも含むことを特徴とする。
[Means for Solving the Problems] A method for manufacturing a semiconductor device of the present invention includes: (1) a method of thermally oxidizing the surface of three semiconductor films formed on an amorphous insulating substrate; a step of rapidly increasing the substrate surface temperature to a temperature higher than the softening point of the substrate;
thermally oxidizing the semiconductor thin film while maintaining the temperature for a time shorter than the time required for the temperature of the amorphous insulating substrate to reach its softening point; and rapidly lowering the substrate temperature. It is characterized by comprising at least:

(2)前記熱酸化膜上に低温で形成する絶縁膜を積層す
る工程を有することを特徴とする。
(2) The method is characterized by comprising a step of laminating an insulating film formed at a low temperature on the thermal oxide film.

[実施例コ 第1図にTPTの製造工程図を示す。本実施例ではnチ
ャネルTPTの製造工程について説明するが、pチャネ
ルの場合についても同様なのはもちろんである。ガラス
基板100 (HOYA製NA−40; 軟化点800
℃、基板厚3mm)上に5iO2101をLPGVD法
を用い、基板温度450°Cで約200OA成膜し、こ
の上に非晶質シリコン(a−3i)をPCVD法で15
00人成膜する。ここでa−3iをTPTのチャネル部
のパタンにパタニングする。ここでa−3iを600℃
で17時間以上N2アニールしてSi薄膜102の面相
成長を行い、Siの結晶粒径を1μm程度まで成長させ
る(第1図(a))、  固相成長させずに急速熱酸化
(RTO)を行うと、a−3iが爆発的に多結晶化し、
結晶粒径の小さいp。
[Example 1] Fig. 1 shows a manufacturing process diagram of TPT. In this embodiment, the manufacturing process of an n-channel TPT will be explained, but it goes without saying that the same applies to the case of a p-channel. Glass substrate 100 (NA-40 made by HOYA; softening point 800
A film of about 200 OA of 5iO2101 was formed using the LPGVD method at a substrate temperature of 450°C (3 mm substrate thickness), and amorphous silicon (a-3i) was deposited on this film using the PCVD method for 150 OA.
00 people will deposit. Here, a-3i is patterned into the pattern of the channel portion of TPT. Here, a-3i is heated to 600℃
The Si thin film 102 is grown in planar phase by N2 annealing for 17 hours or more to grow the Si crystal grain size to approximately 1 μm (Fig. 1(a)). Rapid thermal oxidation (RTO) is performed without solid phase growth. When this is done, a-3i becomes polycrystalline explosively,
p with small grain size.

1y−3i薄膜しか得られず、TPTの性能が上がらな
いためである。またここで、PCVDで成膜したa−3
iを用いるのは、LPGVD等で成膜したpoly−3
iを固相成長させるよりも大粒径のSi薄膜が得られる
からである。
This is because only a 1y-3i thin film can be obtained and the performance of TPT cannot be improved. Also, here, a-3 film formed by PCVD
i is used for poly-3 film formed by LPGVD etc.
This is because a Si thin film with a larger grain size can be obtained than by solid phase growth of i.

この段階でゲート酸化膜形成用の急速熱酸化を行う。以
下、第2図に示すような温度変化をガスに与える。即ち
、基板を酸化炉にいれ、加熱したN2ガスを流して基板
温度を約30 m i n、  かけて室温から700
°Cまで上昇させ、5〜10m1n。
At this stage, rapid thermal oxidation is performed to form a gate oxide film. Thereafter, a temperature change as shown in FIG. 2 is applied to the gas. That is, the substrate was placed in an oxidation furnace, and heated N2 gas was flowed to raise the substrate temperature from room temperature to 700 min by approximately 30 min.
Raise to °C, 5-10 m1n.

かけて温度を安定させる。ここで02ガスに切り換え、
02ガスの温度を700°Cから1150°Cまで1秒
で上昇させ、ついでこの状態を2秒保ったあと再び70
0℃まで02ガスの温度を1秒で下降させる。02ガス
の温度変化方法は、700℃と1150°Cに予め加熱
されている2種類の02ガスを切り換える方法をとる。
to stabilize the temperature. Now switch to 02 gas,
Raise the temperature of 02 gas from 700°C to 1150°C in 1 second, then maintain this state for 2 seconds and then raise it again to 700°C.
Lower the temperature of 02 gas to 0°C in 1 second. The method for changing the temperature of the 02 gas is to switch between two types of 02 gas that have been preheated to 700°C and 1150°C.

N2ガスに再び切り換えて、基板温度を室温まで約30
 m i n、  かけて戻す。
Switch back to N2 gas and bring the substrate temperature to room temperature for about 30 minutes.
Min, call it back.

この段階で約10人のゲート酸化膜が形成されている。At this stage, about 10 gate oxide films have been formed.

このRT○工程においては、ガラス基板は水平に保持し
、酸化工程中で余計なストレスが基板にかからないよう
に工夫する必要がある。基板を水平にする保持台は、耐
熱性、耐酸化性が高く、かつ基板に対する熱ダメージを
最小限に押えるため、熱伝導性のよいBN等を用いるの
が望ましい。
In this RT◯ step, it is necessary to hold the glass substrate horizontally so that no unnecessary stress is applied to the substrate during the oxidation step. The holding table for horizontally holding the substrate is preferably made of BN or the like with good thermal conductivity, in order to have high heat resistance and oxidation resistance, and to minimize thermal damage to the substrate.

RT○工程後、5iHa、02、N2ガスの混合ガスに
よる常圧化学気相成長法で更にSiO2膜を約1000
人成膜させる(第1図(b))。この時の基板温度は4
80℃である。この様にして作製したゲート絶縁膜10
3は、通常のゲート絶縁膜と殆ど変わらない絶縁耐圧を
示し、高品質な酸化膜になっていることがわかる。また
、絶縁基板は石英基板やガラス基板だけではなく、サフ
ァイア基板(A1203)あるいはMgO・A I 2
03.  B P。
After the RT○ process, a SiO2 film with a thickness of about 1000 ml is further grown by atmospheric pressure chemical vapor deposition using a mixed gas of 5iHa, 02, and N2 gas.
The film is deposited manually (Fig. 1(b)). The substrate temperature at this time is 4
The temperature is 80°C. Gate insulating film 10 produced in this way
No. 3 shows a dielectric strength voltage that is almost the same as that of a normal gate insulating film, indicating that it is a high-quality oxide film. In addition, the insulating substrate is not only a quartz substrate or a glass substrate, but also a sapphire substrate (A1203) or MgO・AI 2
03. B P.

CaF2等の結晶性絶縁基板も用いることができる。A crystalline insulating substrate such as CaF2 can also be used.

次にゲート電極104となるpoly−3iをLPCV
Dで約3000人成膜する。ゲート電極パタニング後、
P゛イオン70KeVのエネルギーで5 x 10”c
m−2の温度に打ち込みソース領域105、ドレイン領
域106を形成する(第1図(C))。層間絶縁膜10
7をLPCVI)C−約8000A成膜後、イオンを活
性化させるため、600℃で20時間アニールを行う。
Next, poly-3i which will become the gate electrode 104 is LPCVed.
Approximately 3,000 people will form a film in D. After gate electrode patterning,
P゛ion 5 x 10”c at 70KeV energy
A source region 105 and a drain region 106 are formed by implantation at a temperature of m-2 (FIG. 1(C)). Interlayer insulation film 10
After forming a film of about 8000 A, annealing is performed at 600° C. for 20 hours to activate the ions.

電極取り出し用のコンタクトホールを開け、配線電極1
08のAl5iCuを約800OAスパツタし、配線を
形成する。この後プラズマ反応炉内で水素プラズマを基
板温度250℃で120 m i n、  かけてTP
Tの完成となる(第1図(d))、  この様にして、
低融点で安価なガラス基板を用いても高性能のTPTを
作製することができる。
Open a contact hole for taking out the electrode, and connect wiring electrode 1.
Approximately 800 OA of Al5iCu of No. 08 is sputtered to form wiring. After this, hydrogen plasma was applied in a plasma reactor for 120 min at a substrate temperature of 250°C to perform TP.
In this way, T is completed (Figure 1 (d)).
A high-performance TPT can be manufactured even using a glass substrate that is low in melting point and inexpensive.

[発明の効果コ 本発明によって得られた薄膜トランジスタは、従来の低
温成膜法によって製作したTPTに比べてON電流は増
大しOFF電流は小さくなる。またスレッシュホルド電
圧も小さくなりトランジスタ特性が大きく改善される。
[Effects of the Invention] The thin film transistor obtained by the present invention has an increased ON current and a decreased OFF current compared to a TPT manufactured by a conventional low-temperature film formation method. In addition, the threshold voltage is also reduced, and transistor characteristics are greatly improved.

非晶質絶縁基板上に優れた特性の薄膜トランジスタを作
製することが可能となるので、ドライバー回路を同一基
板上に集積した液晶ディスプレイ等のアクティブマトリ
クス基板に応用した場合にも十分な高速動作が実現され
る。さらに、電源電圧の低減、消費電流の低減、信頼性
の向上に対して大きな効果がある。また、700″C以
下の低温プロセスによる作製も可能なので、アクティブ
マトリクス基板の低価格化及び大面積化に対してもその
効果は大きい。
Since it is possible to fabricate thin film transistors with excellent characteristics on an amorphous insulating substrate, sufficient high-speed operation can be achieved even when applied to active matrix substrates such as liquid crystal displays where driver circuits are integrated on the same substrate. be done. Furthermore, it has great effects on reducing power supply voltage, reducing current consumption, and improving reliability. In addition, since it is possible to manufacture by a low-temperature process at 700''C or less, this is highly effective in reducing the cost and increasing the area of active matrix substrates.

本発明を、光電変換素子とその走査回路を同一チップ内
に集積した密着型イメージセンサ−に応用した場合には
、読み取り速度の高速化、高解像度化、さらに階調をと
る場合に大きな効果をうみだす。高解像度化が達成され
るとカラー読み取り用密着型イメージセンサ−への応用
も容易となる。
When the present invention is applied to a contact image sensor in which a photoelectric conversion element and its scanning circuit are integrated on the same chip, it will have great effects in increasing the reading speed, increasing the resolution, and further increasing the gradation. It starts to emerge. Once high resolution is achieved, it will be easier to apply it to a contact type image sensor for color reading.

もちろん電源電圧の低減、消費電流の低減、信頼性の向
上に対してもその効果は大きい。また低温プロセスによ
って作製することができるので、低コストの低融点ガラ
ス基板を使用でき、密着型イメージセンサ−チップの長
尺化が可能となり、一本のチップでA4サイズあるいは
A3サイズの様な大型ファクシミリ用の読み取り装置を
実現できる。従って、センサーチップの二本継ぎのよう
な手数がかかり信頼性の悪い技術を回避することができ
、実装歩留りも向上され、かつ素子の但コスト化に著し
い効果をあげる。
Of course, this has great effects in reducing power supply voltage, reducing current consumption, and improving reliability. In addition, since it can be manufactured using a low-temperature process, it is possible to use a low-cost, low-melting-point glass substrate, and it is possible to increase the length of the contact image sensor chip. A reading device for facsimile can be realized. Therefore, it is possible to avoid a complicated and unreliable technique such as splicing two sensor chips together, improve the mounting yield, and have a significant effect on reducing the cost of the device.

以上絶縁基板上の薄膜トランジスタを例として説明した
が、単結晶Si基板上の集積回路の素子分離技術に対し
ても、本発明を応用することができる。また、三次元デ
バイスのようなS○工核技術利用した素子に対しても、
本発明を応用することができる。
Although the explanation has been given above using a thin film transistor on an insulating substrate as an example, the present invention can also be applied to element isolation technology for an integrated circuit on a single crystal Si substrate. Also, for elements using S○ engineering nuclear technology such as three-dimensional devices,
The present invention can be applied.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の半導体装置の製造方法を示す図。 第2図は急速熱酸化工程におけるガス温度の変化図。 100・・・・・・・・・非晶質絶縁基板101・・・
・・・・・・5iO2 102・・・・・・・・・Si薄膜 103・・・・・・・・・ゲート絶縁膜104・・・・
・・・・・ゲート電極 105・・・・・・・・・ソース領域 106・・・・・・・・・ドレイン領域107・・・・
・・・・・層間絶縁膜 108・・・・・・・・・配線電極 以上
FIG. 1 is a diagram showing a method for manufacturing a semiconductor device according to the present invention. Figure 2 is a diagram of changes in gas temperature during the rapid thermal oxidation process. 100...Amorphous insulating substrate 101...
......5iO2 102...Si thin film 103...Gate insulating film 104...
...Gate electrode 105...Source region 106...Drain region 107...
・・・・・・Interlayer insulating film 108・・・・・・More than wiring electrode

Claims (2)

【特許請求の範囲】[Claims] (1)非晶質絶縁基板上に成膜した半導体薄膜の表面を
熱酸化する方法において、前記非晶質絶縁基板の軟化点
よりも高温に基板表面温度を急速に上昇させる工程と、
前記非晶質絶縁基板の温度が軟化点に到達するのに要す
る時間よりも短い時間だけ前記温度を保持しつつ前記半
導体薄膜を熱酸化する工程と、前記基板温度を急速に低
下させる工程とを少なくとも含むことを特徴とする半導
体装置の製造方法。
(1) In a method of thermally oxidizing the surface of a semiconductor thin film formed on an amorphous insulating substrate, the step of rapidly increasing the substrate surface temperature to a temperature higher than the softening point of the amorphous insulating substrate;
thermally oxidizing the semiconductor thin film while maintaining the temperature for a time shorter than the time required for the temperature of the amorphous insulating substrate to reach its softening point; and rapidly lowering the substrate temperature. A method for manufacturing a semiconductor device, the method comprising:
(2)前記熱酸化膜上に低温で形成する絶縁膜を積層す
る工程を有することを特徴とする請求項1記載の半導体
装置の製造方法。
2. The method of manufacturing a semiconductor device according to claim 1, further comprising the step of: (2) laminating an insulating film formed at a low temperature on the thermal oxide film.
JP12473689A 1989-05-18 1989-05-18 Method for manufacturing semiconductor device Expired - Fee Related JP2805830B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12473689A JP2805830B2 (en) 1989-05-18 1989-05-18 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12473689A JP2805830B2 (en) 1989-05-18 1989-05-18 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPH02303134A true JPH02303134A (en) 1990-12-17
JP2805830B2 JP2805830B2 (en) 1998-09-30

Family

ID=14892842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12473689A Expired - Fee Related JP2805830B2 (en) 1989-05-18 1989-05-18 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP2805830B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6291365B1 (en) 1999-02-10 2001-09-18 Nec Corporation Method for manufacturing thin gate silicon oxide layer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6291365B1 (en) 1999-02-10 2001-09-18 Nec Corporation Method for manufacturing thin gate silicon oxide layer

Also Published As

Publication number Publication date
JP2805830B2 (en) 1998-09-30

Similar Documents

Publication Publication Date Title
US7037765B2 (en) Semiconductor device and method of manufacturing the same
US5904508A (en) Semiconductor device and a method of manufacturing the same
US5834827A (en) Thin film semiconductor device, fabrication method thereof, electronic device and its fabrication method
US8603870B2 (en) Semiconductor device and method of manufacturing the same
JP3163822B2 (en) Transistor and manufacturing method thereof
JPH0422120A (en) Thin film semiconductor device
JPH098313A (en) Fabrication of semiconductor device and liquid crystal display
JP2917388B2 (en) Method for manufacturing semiconductor device
JPH03104209A (en) Manufacture of semiconductor device
JPH02303134A (en) Manufacture of semiconductor device
JP2717233B2 (en) Insulated gate field effect semiconductor device and method of manufacturing the same
JP2004288864A (en) Thin film semiconductor, manufacturing method thereof, electro-optical device and electronic equipment
JP2000183351A (en) Manufacture of thin-film semiconductor device
JPH034564A (en) Manufacture of semiconductor device
JPS6336574A (en) Thin film transistor
JPH0393273A (en) Manufacture of thin film semiconductor device
JP3109650B2 (en) Method for manufacturing thin film transistor
JP2751420B2 (en) Method for manufacturing semiconductor device
JPH05235353A (en) Active matrix substrate and manufacture thereof
JP2794833B2 (en) Method for manufacturing thin film transistor
JPS63119268A (en) Manufacture of semiconductor device
KR0178489B1 (en) Method for dopant activation in the fabrication of semiconductor devices
JPH03108319A (en) Manufacture of semiconductor device
JP2995833B2 (en) Method for manufacturing thin film semiconductor device
JP3185790B2 (en) Method for manufacturing thin film semiconductor device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees