JPH0230226B2 - - Google Patents

Info

Publication number
JPH0230226B2
JPH0230226B2 JP55179423A JP17942380A JPH0230226B2 JP H0230226 B2 JPH0230226 B2 JP H0230226B2 JP 55179423 A JP55179423 A JP 55179423A JP 17942380 A JP17942380 A JP 17942380A JP H0230226 B2 JPH0230226 B2 JP H0230226B2
Authority
JP
Japan
Prior art keywords
color
correction
term
function
polynomial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP55179423A
Other languages
Japanese (ja)
Other versions
JPS57131172A (en
Inventor
Yoshimitsu Sugano
Yukifumi Tsuda
Kunio Yoshida
Hiroaki Kodera
Kison Naka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Matsushita Giken KK
Original Assignee
Matsushita Giken KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Giken KK filed Critical Matsushita Giken KK
Priority to JP55179423A priority Critical patent/JPS57131172A/en
Priority to EP81110552A priority patent/EP0054313B1/en
Priority to DE8181110552T priority patent/DE3177123D1/en
Priority to US06/332,098 priority patent/US4458265A/en
Publication of JPS57131172A publication Critical patent/JPS57131172A/en
Publication of JPH0230226B2 publication Critical patent/JPH0230226B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/46Colour picture communication systems
    • H04N1/56Processing of colour picture signals
    • H04N1/60Colour correction or control
    • H04N1/6016Conversion to subtractive colour signals
    • H04N1/6019Conversion to subtractive colour signals using look-up tables
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/46Colour picture communication systems
    • H04N1/56Processing of colour picture signals
    • H04N1/60Colour correction or control
    • H04N1/603Colour correction or control controlled by characteristics of the picture signal generator or the picture reproducer

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Processing Or Creating Images (AREA)
  • Complex Calculations (AREA)
  • Image Processing (AREA)
  • Color Image Communication Systems (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、カラーの中間調をもつた、いわゆる
自然色の画像を記録するカラーフアクシミリ、カ
ラーインクジエツトプリンタ等の記録装置また
は、カラーデイスプレイ等の表示装置における色
補整演算装置に関する。 従来、カラーフアクシミリやカラースキヤナで
は、主として線形項のアナログ演算器で色修正マ
スキング処理を行なつているものが多い。しか
し、たとえばカラーフアクシミリの記録部にイン
クジエツトを用い減法混色による色再生を行なう
場合を例にとると、三原色色素の不要吸収特性、
相加即不軌、比例則不軌、記録紙とインクの印字
特性等の要素が相互に関連するので、単純な線形
マスキングでは十分な色補整を行なうことができ
ないという欠点があつた。 これに対し特開昭49−106714号公報には、非線
形特性を含むより厳密な色修正を行う手段が記載
されている。これによれば、赤(R)、緑(G)、青
(B)の三色分解信号を入力として、望ましいカラー
印刷物を得るためのシアン(C)、マゼンタ(M)、
イエロー(Y)のインク量を、(R、G、B)の
ある組合せに対応する色修正済の(C、M、Y)
信号があらかじめ記憶されているテーブルメモリ
を選択することにより決定する。この方法は自由
な色補整曲線を導入できること及びデイジタル技
術により精度を向上できる等の利点があり、前記
線形のアナログ演算方式に比べると確かに進んだ
方法である。しかしこの方法の難点は、(R、G、
B)の全ての組合せに対して(C、M、Y)の全
ての結果を記憶する必要があるため、装置の構成
が複雑になり高価になる点にあり、特開昭49−
106714号公報及びその後続である特開昭52−
12001号公報、同52−24701号公報、同52−37101
号公報等には、記憶量の節約手段、補正量を可変
要素と固定要素に分けて演算を効率化する手段な
どの改良策が記載されている。しかしながら、こ
れら各手段を加味しても実際の回路装置として実
現することには依然として煩雑さがあり、経済性
に問題がある。 本発明は非線形項を含む色補整処理を効果的か
つ柔軟に行うためのさらに改良された演算手段を
提供するものである。本発明によれば、非線形特
性を色分解入力信号を変数とする多項式で近似
し、多項式の各項を関数として発生する手段とこ
れとは別個に各項毎の補整係数値をパラメータと
して与える手段とを具備することにより、望まし
い色補正出力を容易にかつ高速度で得ることがで
きる。以下にインクジエツト記録を例にとり本発
明の具体的な実施例について説明する。 第1図は、インクジエツト式カラーフアクシミ
リ装置のブロツク図を示すもので、カラースキヤ
ナのドラム101に取り付けられたカラー原稿1
02の各絵素は、光源103から照射される光を
反射し、レンズ系104を経て色分解系105に
より赤(R)、緑(G)、青(B)の3色成分に分解され
た光電変換信号となる。色分解系105の出力は
対数変換部106でシアン(C)、マゼンタ(M)、
イエロー(Y)の減法混色における濃度3原色信
号に変換され、A/D変換器107でデイジタル
化されて記録信号線108へ出力される。109
は色補整演算器を示し、補正に必要な係数がデー
タ線110より設定される。ここで色補整された
C、M、Yのカラー画像信号は111は、遅延回
路112を通り、D/A変換器113でD/A変
換されアナログ信号に再生される。次にキヤリア
信号発生器114で発生された搬送波116は前
記アナログ信号により変調器115で振幅変調さ
れて、インクジエツトヘツドのピエゾ励振波形と
なり駆動回路117の出力線118を経てインク
ジエツトヘツド119に印加される。インクジエ
ツトヘツド119から吐出された3色のインク
は、ドラム121に取付けられた記録紙120上
で重なり、一連の走査を経てカラー画像が再生さ
れる。以上の構成は色補整演算器109を除いて
極く一般的なものである。 次に第1図における本発明の色補整演算器10
9の具体的な構成例を第2図に示す。次式は本器
で行われる多項のマトリクス演算式の一例であ
る。 ここで(c、m、y)は色補整演算器へのシア
ン、マゼンタ、イエローの濃度信号入力、(cp
mp、yp)は補整後の対応する出力信号を表わし
(aij)は補整係数マトリクスである。本例ではi
=1〜3、j=1〜10であり、具体的な補整数値
の一例を表1に示す。
The present invention relates to a color correction calculation device for a recording device such as a color facsimile or a color inkjet printer, or a display device such as a color display, which records images in so-called natural colors with color halftones. Conventionally, in many color facsimile machines and color scanners, color correction masking processing is mainly performed using analog computing units using linear terms. However, if we take, for example, the case where an inkjet is used in the recording section of a color facsimile to perform color reproduction by subtractive color mixing, the unnecessary absorption characteristics of the three primary color pigments,
Since factors such as additive failure, proportional law failure, and printing characteristics of recording paper and ink are interrelated, simple linear masking has the disadvantage that sufficient color correction cannot be performed. On the other hand, Japanese Patent Application Laid-open No. 106714/1983 describes means for performing more precise color correction including nonlinear characteristics. According to this, red (R), green (G), blue
Using the three-color separation signal of (B) as input, cyan (C), magenta (M),
Change the amount of yellow (Y) ink to (C, M, Y) that corresponds to a certain combination of (R, G, B).
This is determined by selecting a table memory in which the signal is stored in advance. This method has advantages such as being able to introduce a free color correction curve and improving accuracy through digital technology, and is certainly an advanced method compared to the linear analog calculation method. However, the problem with this method is that (R, G,
Since it is necessary to store all the results of (C, M, Y) for all the combinations of B), the configuration of the device becomes complicated and expensive.
Publication No. 106714 and its successor, JP-A-52-
Publication No. 12001, Publication No. 52-24701, Publication No. 52-37101
In the above publications, improvement measures are described, such as means for saving the amount of memory and means for increasing the efficiency of calculation by dividing the correction amount into variable elements and fixed elements. However, even if these means are taken into account, it is still complicated to realize the circuit as an actual circuit device, and there is a problem in economical efficiency. The present invention provides further improved calculation means for effectively and flexibly performing color correction processing including nonlinear terms. According to the present invention, a means for approximating nonlinear characteristics with a polynomial whose variables are color separation input signals, generating each term of the polynomial as a function, and a means for separately providing a correction coefficient value for each term as a parameter. By having the above, it is possible to easily obtain a desired color correction output at high speed. Specific embodiments of the present invention will be described below, taking inkjet recording as an example. FIG. 1 shows a block diagram of an inkjet type color facsimile device, in which a color document 1 is attached to a drum 101 of a color scanner.
Each pixel of 02 reflects the light emitted from the light source 103, passes through the lens system 104, and is separated into three color components of red (R), green (G), and blue (B) by the color separation system 105. It becomes a photoelectric conversion signal. The output of the color separation system 105 is converted into cyan (C), magenta (M),
The signal is converted into density three primary color signals in the subtractive color mixture of yellow (Y), digitized by the A/D converter 107, and output to the recording signal line 108. 109
indicates a color correction calculator, and coefficients necessary for correction are set from a data line 110. The color-corrected C, M, and Y color image signals 111 pass through a delay circuit 112, are D/A converted by a D/A converter 113, and are reproduced into analog signals. Next, the carrier wave 116 generated by the carrier signal generator 114 is amplitude-modulated by the modulator 115 using the analog signal, and becomes a piezo excitation waveform for the inkjet head, which is applied to the inkjet head 119 via the output line 118 of the drive circuit 117. be done. The three colors of ink ejected from the ink jet head 119 overlap on a recording paper 120 attached to a drum 121, and a color image is reproduced through a series of scans. The above configuration is extremely common except for the color correction calculator 109. Next, the color correction calculator 10 of the present invention in FIG.
A specific example of the configuration of 9 is shown in FIG. The following formula is an example of a polynomial matrix calculation formula performed by this device. Here, (c, m, y) are cyan, magenta, and yellow density signal inputs to the color correction calculator, (c p ,
m p , y p ) represents the corresponding output signal after compensation, and (a ij ) is the compensation coefficient matrix. In this example, i
= 1 to 3, j = 1 to 10, and an example of specific compensation values is shown in Table 1.

【表】 第2図において(c、m、y)入力201はデ
イジタルで与えられ関数項発生器202に接続さ
れる。関数項発生器202はたとえばPROM(プ
ログラマブルリードオンリーメモリ)あるいは
RAM(ランダムアクセスメモリ)で構成され、
入力(c、m、y)はこれらメモリのアドレス入
力線に加えられて、関数項発生器202にあらか
じめ項別に分解し記憶されているcm、my、yc、
c2、m2、y2等の二次の非線形項の関数値を読み
出す。203はマルチプレクサであり、一組の入
力(c、m、y)に対して一次項c、m、y、二
次項cm、my、yc、c2、m2、y2および定数項kの
合計10項の入力を制御信号207に従つて選択的
に順次出力線210へ導く。一方、補整係数
(aij)は書込みデータ線208を介して書き換え
可能なRAM204へあらかじめ設定しておく。
以上の各項関数値と補整係数は、タイミング制御
回路206の制御信号207に従つて各々マルチ
プレクサ203及びRAM204より時系列で
順々に取り出され、デイジタル型乗算器および加
算器から成る累積乗算器205で前式のマトリク
ス演算が時系列で行われ、cp、mp、ypの補整済出
力209を得る。本発明は、以上の構成に示され
るごとく、色補整演算を多項の補正関数を各項別
に発生する関数発生器と、その補整係数を設定し
ておくメモリとに分けてマトリクス演算を行なう
ところに特徴がある。第2図における累積型乗算
器205は比較的高価な素子であるが、本例のよ
うに各項の演算を時系列で行えば各色について各
1個で実現でき経済的となる。ただし時系列の場
合には逆に演算速度が遅くなるので、より高速化
を狙いたい場合には逆に演算速度が遅くなるの
で、これを各項毎に置けばよい。第2図の実施例
において(c、m、y)入力を各8ビツト(256
レベル)とし、最終出力(cp、mp、yp)として7
ビツトの精度を保証する具体的な演算回路を構成
した結果、約3μsで一回の計算が可能であつた。
これは一般のカラー画像再生記録装置に適用して
リアルタイム処理を行うに十分な速度である。 なお本実施例では多項式を二次形式としたが、
これに高次項を追加してさらに複雑な補整曲線を
近似できることは言うまでもない。また各関数項
として前式の他に、逆数項、対数項、指数関数項
など目的に応じてより近似度の良い形式を選ぶこ
とも容易である。 以上のような構成は最近のデイジタル集積回路
素子を利用すれば簡単かつ経済的に実現でき、従
来のアナログ方式に比較して高い精度が保証され
る。とくに本発明では、補整関数項の内容と補整
係数を要求される最適条件に合わせて柔軟に変更
することができ、色分解入力系からカラー記録装
置に至る過程に含まれる種々の非線形な歪を包括
的に修正することが可能であり、かつリアルタイ
ムで処理できる即時性をもつので、極めて汎用性
に富んでいる。
[Table] In FIG. 2, (c, m, y) inputs 201 are provided digitally and are connected to a function term generator 202. The function term generator 202 is, for example, a PROM (programmable read only memory) or
Consists of RAM (Random Access Memory)
The inputs (c, m, y) are added to the address input lines of these memories, and are divided into cm, my, yc,
Read out the function values of second-order nonlinear terms such as c 2 , m 2 , y 2 , etc. 203 is a multiplexer, and for a set of inputs (c, m, y), the sum of linear terms c, m, y, quadratic terms cm, my, yc, c 2 , m 2 , y 2 and constant term k The inputs of 10 terms are selectively and sequentially guided to the output line 210 according to the control signal 207. On the other hand, the compensation coefficient (a ij ) is set in advance in the rewritable RAM 204 via the write data line 208.
The above-mentioned function values and correction coefficients are sequentially taken out in time series from the multiplexer 203 and the RAM 204 in accordance with the control signal 207 of the timing control circuit 206, and are taken out by the cumulative multiplier 205, which is composed of a digital multiplier and an adder. The matrix calculation in the previous equation is performed in time series to obtain a corrected output 209 of c p , m p , and y p . As shown in the above configuration, the present invention performs matrix calculations by dividing the color correction calculation into a function generator that generates a polynomial correction function for each term and a memory in which the correction coefficients are set. It has characteristics. The accumulative multiplier 205 in FIG. 2 is a relatively expensive element, but if the calculations for each term are performed in time series as in this example, it can be realized with one piece for each color, which is economical. However, in the case of a time series, the calculation speed is slow, so if you want to increase the speed even further, the calculation speed will be slow, so you can set this for each term. In the embodiment shown in FIG. 2, the (c, m, y) inputs are each 8 bits (256
level) and the final output (c p , m p , y p ) is 7
As a result of constructing a specific arithmetic circuit that guarantees bit accuracy, it was possible to perform a single calculation in approximately 3 μs.
This is a speed sufficient to perform real-time processing when applied to a general color image reproduction/recording device. Note that in this example, the polynomial is in quadratic form, but
It goes without saying that by adding higher-order terms to this, even more complex compensation curves can be approximated. In addition to the above equation, it is also easy to select a form with a better approximation as each function term, such as a reciprocal term, a logarithmic term, or an exponential function term, depending on the purpose. The above configuration can be easily and economically realized using recent digital integrated circuit elements, and higher accuracy is guaranteed than in conventional analog systems. In particular, in the present invention, the content of the correction function term and the correction coefficient can be flexibly changed according to the required optimal conditions, and various nonlinear distortions included in the process from the color separation input system to the color recording device can be eliminated. It is extremely versatile because it can be comprehensively modified and can be processed in real time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明をインクジエツト式カラーフア
クシミリ装置に適用した実施例を示すブロツク
図、第2図は本発明の一実施例における色補整演
算装置の構成例を示す結線図である。 101,121……ドラム、102……カラー
画像の反射原稿、103……光源、104……レ
ンズ系、105……3色分解および光電変換部、
106……対数変換部、107……A/D変換
部、109……色補整演算器、112……遅延回
路、113……D/A変換部、114……搬送波
発生器、115……振幅変調回路、117……イ
ンクジエツトヘツド駆動回路、119……オン・
デマンド型インクジエツトヘツド、120……記
録紙、202……補整関数発生用PROM(または
スタテイツクRAM)、203……マルチプレク
サ、204……補整係数記憶用RAM、205…
…累積型デイジタル乗算器、206……タイミン
グ制御回路。
FIG. 1 is a block diagram showing an embodiment in which the present invention is applied to an inkjet type color facsimile device, and FIG. 2 is a wiring diagram showing an example of the configuration of a color correction calculation device in one embodiment of the present invention. 101, 121...Drum, 102...Color image reflection original, 103...Light source, 104...Lens system, 105...Three color separation and photoelectric conversion unit,
106... Logarithmic converter, 107... A/D converter, 109... Color correction calculator, 112... Delay circuit, 113... D/A converter, 114... Carrier wave generator, 115... Amplitude Modulation circuit, 117...Ink jet head drive circuit, 119...ON/
Demand-type ink jet head, 120... Recording paper, 202... PROM (or static RAM) for generating compensation functions, 203... Multiplexer, 204... RAM for storing compensation coefficients, 205...
...cumulative digital multiplier, 206...timing control circuit.

Claims (1)

【特許請求の範囲】[Claims] 1 カラー原画を走査して得た色分解信号に色修
正処理を施こす色補整演算装置において、色分解
信号をデイジタル数値に変換するアナログ・デイ
ジタル変換器と、この変換器の色信号数値を組合
わせてこれを変数とする多項の補正関数を各項毎
に発生する関数発生器と、補整関数の係数を記憶
する書換え可能な係数メモリと、前記関数発生器
の出力と前記係数とを各項毎に乗算し結果を累積
する演算手段とを具備し、非線形項を含む色補整
処理を行うことを特徴とする色補整演算装置。
1. In a color correction calculation device that performs color correction processing on color separation signals obtained by scanning a color original image, an analog-to-digital converter that converts color separation signals into digital values is combined with the color signal values of this converter. There is also a function generator that generates a polynomial correction function for each term using the polynomial correction function as a variable, a rewritable coefficient memory that stores the coefficients of the correction function, and a function generator that generates a polynomial correction function for each term. 1. A color correction calculation device, comprising calculation means for multiplying each time and accumulating the results, and performing color correction processing including a nonlinear term.
JP55179423A 1980-12-17 1980-12-17 Color compensating and operating device Granted JPS57131172A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP55179423A JPS57131172A (en) 1980-12-17 1980-12-17 Color compensating and operating device
EP81110552A EP0054313B1 (en) 1980-12-17 1981-12-17 Colour image duplicating device and method
DE8181110552T DE3177123D1 (en) 1980-12-17 1981-12-17 Colour image duplicating device and method
US06/332,098 US4458265A (en) 1980-12-17 1981-12-17 Color image duplicating system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55179423A JPS57131172A (en) 1980-12-17 1980-12-17 Color compensating and operating device

Publications (2)

Publication Number Publication Date
JPS57131172A JPS57131172A (en) 1982-08-13
JPH0230226B2 true JPH0230226B2 (en) 1990-07-05

Family

ID=16065596

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55179423A Granted JPS57131172A (en) 1980-12-17 1980-12-17 Color compensating and operating device

Country Status (1)

Country Link
JP (1) JPS57131172A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0965537A (en) * 1995-08-22 1997-03-07 Nitto Kogyo Kk Electric wire underground multipurpose duct
US6829062B2 (en) 1998-04-20 2004-12-07 Mitsubishi Denki Kabushiki Kaisha Color conversion device and color conversion method

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59171276A (en) * 1983-03-17 1984-09-27 Canon Inc Picture processing device
JPS60140976A (en) * 1983-12-27 1985-07-25 Toshiba Corp Color picture processor
JPH0640255B2 (en) * 1984-03-31 1994-05-25 株式会社東芝 Image signal processor
JPS60232794A (en) * 1984-05-01 1985-11-19 Fuji Photo Film Co Ltd Color outputting method in picture processing
US4970584A (en) * 1985-05-15 1990-11-13 Ricoh Company, Ltd. Method and apparatus for the compensation of color detection
JP2527715B2 (en) * 1986-05-30 1996-08-28 キヤノン株式会社 Image processing method
CN110949015B (en) * 2018-09-26 2021-12-14 海德堡印刷机械股份公司 Two-stage density compensation method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0965537A (en) * 1995-08-22 1997-03-07 Nitto Kogyo Kk Electric wire underground multipurpose duct
US6829062B2 (en) 1998-04-20 2004-12-07 Mitsubishi Denki Kabushiki Kaisha Color conversion device and color conversion method

Also Published As

Publication number Publication date
JPS57131172A (en) 1982-08-13

Similar Documents

Publication Publication Date Title
US4590515A (en) Method and apparatus for modifying color reduction depending on tone
US4844288A (en) Reproduction picture sharpness emphasizing method and apparatus
US4551751A (en) Color reduction dependent on tone
JPH0151828B2 (en)
US5008742A (en) Dot signal conversion method
JPH0230226B2 (en)
US5253083A (en) Image reading apparatus having improved shading correction
US6344903B1 (en) System and method for multi-level processing with level limiting
US5225901A (en) Apparatus and method for converting and displaying r, g, and b signals from a prepress scanner
JP2002252781A (en) Color transformation method, color transformer and printer with scanner function
JPH0754963B2 (en) Image processing device
JPH06121160A (en) Color correction circuit
JP2614620B2 (en) Color processing method
JPS5824457A (en) Color image recording apparatus
JPS59163973A (en) Color recording system
JPS61273073A (en) Edge emphasis processor of color gradation picture information
JPH01192561A (en) Image information processing system
JP2556475B2 (en) Color image processing device
JPH0242276B2 (en)
JP3206932B2 (en) Image processing method and apparatus
JPH10229493A (en) Image area based resolution conversion processor
JP2547939B2 (en) Color image processor
KR840001217B1 (en) Digital masking operation method
JPH1127531A (en) Image processor, method and storage medium
JP2568187B2 (en) Color masking method