JPH02301586A - Production of high-purity copper - Google Patents

Production of high-purity copper

Info

Publication number
JPH02301586A
JPH02301586A JP12176989A JP12176989A JPH02301586A JP H02301586 A JPH02301586 A JP H02301586A JP 12176989 A JP12176989 A JP 12176989A JP 12176989 A JP12176989 A JP 12176989A JP H02301586 A JPH02301586 A JP H02301586A
Authority
JP
Japan
Prior art keywords
cathode
vacuum
copper
purity
purity copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12176989A
Other languages
Japanese (ja)
Inventor
Akitomo Shirakawa
白川 亮偕
Akiyoshi Nakatsu
中津 朗善
Nobuyuki Koura
延幸 小浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP12176989A priority Critical patent/JPH02301586A/en
Publication of JPH02301586A publication Critical patent/JPH02301586A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy

Abstract

PURPOSE:To produce high-purity copper at a low cost with high productivity by melting the cathode Cu obtained by electrolysis in vacuum or by melting the treated cathode Cu in vacuum after oxidizing and reducing the cathode Cu. CONSTITUTION:A Cu anode having a low content of Ag is used as the raw material, an org. solvent bath contg. the cuprous chloride having a low content of Ag and an alkylpyridinium halide is used as an electrolytic bath to prevent the accumulation of Ag in the electrolytic bath, and electrolysis is carried out in a nonoxidizing atmosphere. The obtained cathode Cu is melted in a vacuum, or the cathode Cu is oxidized and reduced to remove the C remaining in the cathode Cu resulting from use of the org. solvent bath, and the treated cathode Cu is melted in a vacuum to gasify or oxidize the trace impurities such as gaseous H, N, O, etc., and C and to remove the impurities as the oxides. High- purity copper is produced in this way at a low cost with high productivity.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は高純度銅、特に純度99.999〜99、99
99 v1%以上の導電特性、軟質、低温軟化特性に優
れた高純度銅の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention is directed to high-purity copper, particularly purity 99.999-99.99.
The present invention relates to a method for producing high-purity copper that has excellent conductivity, softness, and low-temperature softening properties of 99 v1% or more.

〔従来の技術〕[Conventional technology]

一般に電気銅は純度99.95〜99.99%で、通常
02を100〜500ppm含有するタフピッチ銅と、
0□を5〜20ppm含有する無酸素銅として利用され
、半導体などのボンディングワイヤー、スパッターター
ゲット、軟質圧延プリント配線。
Generally, electrolytic copper has a purity of 99.95 to 99.99%, and is usually tough pitch copper containing 100 to 500 ppm of 02.
It is used as oxygen-free copper containing 5 to 20 ppm of 0□, and is used in bonding wires for semiconductors, sputter targets, and soft rolled printed wiring.

オーディオ用細電線等に用いられている。Used in thin electrical wires for audio, etc.

これ等は何れも電気分解により、粗銅中のPb、’ S
b、Ni、Bi、As、Fe、Zn等の不純物を高い精
錬効率で分離したもので、通常Cuより貴なAgや卑で
ある前記不純物の外に、S、O,C等が微量含まれてお
り、これ等不純物は高純度銅の特性に有害である。
All of these are Pb, 'S in blister copper by electrolysis.
Impurities such as Ni, Bi, As, Fe, and Zn are separated with high refining efficiency.In addition to the above impurities, such as Ag, which is nobler than Cu, and the base impurities, it contains trace amounts of S, O, C, etc. These impurities are harmful to the properties of high-purity copper.

このためより高純度銅を必要とする場合には、ゾーンメ
ルティング、フロートメルティング又は薄部などの乾式
方法が行なわれているが、何れも製造コストが高い方法
である。
For this reason, when higher purity copper is required, dry methods such as zone melting, float melting, and thin section are used, but all of these methods are expensive to manufacture.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

高純度銅を得るための上記乾式方法は、原料銅を高温で
繰り返し何度も溶融、凝固を行なうため、熱エネルギー
を多量に消費し、かつ精製速度が著しく低く、また設備
費が非常に大きいものである。従ってこれ等の方法に代
る経済的な高純度銅の精製方法の開発が強く求められて
いる。
The above dry method for obtaining high-purity copper repeatedly melts and solidifies raw copper at high temperatures, which consumes a large amount of thermal energy, has an extremely low refining rate, and has very high equipment costs. It is something. Therefore, there is a strong demand for the development of an economical method for refining high-purity copper in place of these methods.

これに必要な条件としては、 (1)高純度、即ち純度99.999〜99.9999
 w1%(以下W1%を%と略記)又はこれ以上の純銅
を経済的に攪産することができること。
The conditions necessary for this are: (1) High purity, that is, purity 99.999 to 99.9999
It is possible to economically produce pure copper of w1% (hereinafter W1% is abbreviated as %) or more.

(2)高純度銅の特性に特に有害な不純物、例えばS、
O,Cを効率的に除去できること。
(2) Impurities that are particularly harmful to the properties of high-purity copper, such as S,
Ability to efficiently remove O and C.

(3)通常の工業的電解法及びこれを複数回繰り返して
も排除できない不純物を能率良く排除できること。
(3) It is possible to efficiently remove impurities that cannot be removed even by using a normal industrial electrolytic method and repeating this process multiple times.

このように単に従来の工業的方法を繰り返すのでは達せ
られない精錬度か得られることである。
In this way, it is possible to obtain a degree of refinement that cannot be achieved by simply repeating conventional industrial methods.

〔課題を解決するための手段〕[Means to solve the problem]

本発明はこれに鑑み種々検討の結果、特に99、999
〜99.9999%以上の高純度で、導電特性。
In view of this, the present invention has been developed as a result of various studies, and in particular, 99,999
High purity of ~99.9999% or more and conductive properties.

軟質、低温軟化特性に優れた高純度銅の製造方法を開発
したもので、原料にAg含有匿が低いCuアノードを用
い、Ag含有量が低い塩化第1銅とアルキルピリンニウ
ムハロゲン化物の有機溶媒浴を電解浴として、電解処理
し、得られたカソード銅を真空中で溶解するか、又はカ
ソードCuに酸化処理と還元処理を施してから真空中で
溶解することを特徴とするものである。
We have developed a method for producing high-purity copper that is soft and has excellent low-temperature softening properties, using a Cu anode with low Ag content as the raw material, and an organic solvent of cuprous chloride and alkylpyrinnium halide with low Ag content. The method is characterized by performing electrolytic treatment using an electrolytic bath and melting the obtained cathode copper in a vacuum, or by subjecting the cathode Cu to an oxidation treatment and a reduction treatment and then melting it in a vacuum.

即ち本発明は、Ag含有量が低いCuアノードを、Ag
含有量が低い塩化第1銅とアルキルピリジニウムハロゲ
ン化物の有機溶媒浴からなる電解浴で電解精製し、得ら
れたカソードCuを真空中で溶解するか、又はカソード
Cuを酸化処理と還元処理してから真空中で溶解するこ
とにより、カッ〜ドCu中のH,N、O等のガス成分及
びC等の微量不純物をガス化又は酸化物としてとり除き
、5N〜6 N (99,999〜99、9999%)
以上のの高純度銅を得るものである。しかしてCuアノ
ード中のAg含有量はてきる限り低いことが有利であり
、通常1 ppm以下とすることが望ましい。またその
他の不純物は市販の電気銅レベルで良い。
That is, the present invention provides a Cu anode with a low Ag content.
Electrolytic refining is performed in an electrolytic bath consisting of an organic solvent bath of cuprous chloride and alkylpyridinium halide having low contents, and the resulting cathode Cu is dissolved in a vacuum, or the cathode Cu is subjected to oxidation treatment and reduction treatment. Gas components such as H, N, O, etc. and trace impurities such as C in Cu are removed by gasification or as oxides by melting in vacuum from 5N to 6N (99,999 to 99 , 9999%)
The above-mentioned high-purity copper can be obtained. Therefore, it is advantageous for the Ag content in the Cu anode to be as low as possible, and it is usually desirable to keep it below 1 ppm. Other impurities may be at the level of commercially available electrolytic copper.

〔作用〕[Effect]

本発明は上記の如く電解浴は塩化第1銅(Cock)と
アルキルピリジニウムハロゲン化物、例えばブチルピリ
ジニウムクロリド(BPC)を含む有機溶媒浴を電解浴
として電解精製することにより、電解浴中のAgの蓄積
を防ぎ、通常精製しにくいAgのカソード電着を避け、
他の不純物に対する精製効果を得、純度5〜6 N (
99,999〜99.9999%)レベルの高純度銅の
経済的な製造を可能にしたものである。
As described above, the present invention uses an organic solvent bath containing cuprous chloride (Cock) and an alkylpyridinium halide, such as butylpyridinium chloride (BPC), for electrolytic refining, thereby removing Ag in the electrolytic bath. Prevents accumulation and avoids cathodic electrodeposition of Ag, which is usually difficult to purify.
Obtained purification effect against other impurities, purity 5-6 N (
This makes it possible to economically produce high-purity copper with a purity level of 99,999% to 99.9999%.

電解浴は非酸化性の雰囲気下で使用し、塩化第1銅中の
Ag含有量はL ppm以下であることが望ましい。ま
た塩化第1銅とアルキルピリジニウムハロゲン化物の濃
度比はモル比で1/4〜471程度が良い。非酸化性の
雰囲気ガスとしてはN2.Ar、He、Co、等の不活
性ガスを用いる。また有機溶媒としてはベンゼン、トル
エン等の芳香族炭化水素の1種又は2種以上を配合して
用いる。浴温は0〜150℃、電流密度は01〜30^
/d’rrrの範囲内とする。また電解浴の拡拌は液の
強制循環1機械的拡拌等により十分に行なう。電解浴へ
の外部からの異物の混入や不純物の蓄積等に対しては多
孔質の樹脂膜。
The electrolytic bath is preferably used in a non-oxidizing atmosphere, and the Ag content in cuprous chloride is preferably L ppm or less. Further, the concentration ratio of cuprous chloride and alkylpyridinium halide is preferably about 1/4 to 471 in terms of molar ratio. As a non-oxidizing atmospheric gas, N2. An inert gas such as Ar, He, Co, etc. is used. Further, as the organic solvent, one or more aromatic hydrocarbons such as benzene and toluene are used in combination. Bath temperature is 0~150℃, current density is 01~30^
/d'rrr. Further, the electrolytic bath is sufficiently agitated by forced circulation of the liquid, mechanical agitation, etc. A porous resin membrane prevents foreign matter from entering the electrolytic bath from outside and the accumulation of impurities.

濾布、セラミック板でアノード室とカソード室を分離す
るか、電解浴全体を循環濾過する。
Separate the anode and cathode chambers with a filter cloth or ceramic plate, or circulate and filter the entire electrolytic bath.

Cuアノード中の不純物レベルが高い場合や、長時間連
続的に電解処理を行なう場合には、電解液量を増加する
か、又はその一部を連続的に電解処理と並行して抜き出
し、新配合の電解浴と交換する等の浄液操作を行なう。
When the level of impurities in the Cu anode is high or when electrolytic treatment is performed continuously for a long time, increase the amount of electrolyte or continuously extract a part of it in parallel with electrolytic treatment to create a new formulation. Perform liquid purification operations such as replacing the electrolytic bath with another one.

上記電解精製についで行なう溶解工程は、高真空下にお
ける通常の方法でよいが、特に外部からの汚染を防止す
ることは当然であり、溶解条件(真空度、温度、保持時
間等)と鋳造条件(温度1時間、ルツボ材質等)は製品
純銅中の不純物が最小となるように適宜選択する。これ
によりカッーFCu中の主な不純物でガスとして除去で
きる成分(H,N、 O等)が減少し、カソードの純度
が大巾に向上する。
The melting process that follows the electrolytic refining described above may be carried out in a normal manner under high vacuum, but it is of course necessary to prevent contamination from the outside, and the melting conditions (degree of vacuum, temperature, holding time, etc.) and casting conditions (Temperature for 1 hour, crucible material, etc.) are appropriately selected so that impurities in the pure copper product are minimized. As a result, the main impurities in KaFCu that can be removed as gases (H, N, O, etc.) are reduced, and the purity of the cathode is greatly improved.

また有機溶媒浴の使用によるカソードCu中へのCの残
留は少ないが、これを更に低減させるためには、上記の
真空溶解に先立って電解後のカソードCuを酸化又は/
及び還元処理することで容易に除去され、高純度の金属
Cuを得ることができる。
Furthermore, although the amount of C remaining in the cathode Cu due to the use of an organic solvent bath is small, in order to further reduce this, the cathode Cu after electrolysis must be oxidized or /
It is easily removed by a reduction treatment, and highly pure metal Cu can be obtained.

〔実施例〕〔Example〕

以下本発明の実施例について説明する。 Examples of the present invention will be described below.

Ag含有量が1 ppmの塩化第1銅と1−ブチルビデ
ジニウムクロリド(BPC)をモル比で371に配合し
、有機溶媒に溶かした溶融塩浴中で、Ag含有量がip
pmであるCuアノードの電解精製を行なった。このよ
うにして得られたカソードCuを真空溶解により鋳造し
た。これを分析したところ銅純度は99.9999%で
あった。
Cuprous chloride with an Ag content of 1 ppm and 1-butyl bidedinium chloride (BPC) were mixed at a molar ratio of 371, and the Ag content was ip in a molten salt bath dissolved in an organic solvent.
Electrolytic refining of a pm Cu anode was performed. The cathode Cu thus obtained was cast by vacuum melting. When this was analyzed, the copper purity was 99.9999%.

比較のため同じCuアノードを硫酸銅からなる電解浴を
用い、通常の銅電解精製を行ない、得られたカソードC
uを実施例と同様に真空溶解した。このようにして得ら
れた高純度銅を分析したところ銅純度は、99.999
%であった。
For comparison, the same Cu anode was subjected to ordinary copper electrolytic refining using an electrolytic bath made of copper sulfate, and the resulting cathode C
u was vacuum-dissolved in the same manner as in the example. When the high purity copper thus obtained was analyzed, the copper purity was 99.999.
%Met.

〔発明の効果〕〔Effect of the invention〕

このように本発明によれば、生産性が高い安価な方法で
、純度99.999〜99.9999%以上の高純度銅
が得られるもので、工業上顕著な効果を奏する。
As described above, according to the present invention, high-purity copper having a purity of 99.999 to 99.9999% or more can be obtained by a highly productive and inexpensive method, and has a remarkable industrial effect.

Claims (1)

【特許請求の範囲】[Claims]  原料にAg含有量が低いCuアノードを用い、Ag含
有量が低い塩化第1銅とアルキルピリジニウムハロゲン
化物の有機溶媒浴を電解浴として電解処理し、得られた
カソードCuを真空中で溶解するか、又はカソードCu
に酸化処理と還元処理を施してから真空中で溶解するこ
とを特徴とする高純度銅の製造方法。
Using a Cu anode with a low Ag content as a raw material, electrolytic treatment is performed using an organic solvent bath of cuprous chloride and alkylpyridinium halide with a low Ag content as an electrolytic bath, and the resulting cathode Cu is dissolved in a vacuum. , or cathode Cu
A method for producing high-purity copper, which is characterized by subjecting it to oxidation treatment and reduction treatment, and then melting it in a vacuum.
JP12176989A 1989-05-16 1989-05-16 Production of high-purity copper Pending JPH02301586A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12176989A JPH02301586A (en) 1989-05-16 1989-05-16 Production of high-purity copper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12176989A JPH02301586A (en) 1989-05-16 1989-05-16 Production of high-purity copper

Publications (1)

Publication Number Publication Date
JPH02301586A true JPH02301586A (en) 1990-12-13

Family

ID=14819432

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12176989A Pending JPH02301586A (en) 1989-05-16 1989-05-16 Production of high-purity copper

Country Status (1)

Country Link
JP (1) JPH02301586A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0882813A1 (en) * 1997-06-02 1998-12-09 Japan Energy Corporation High-purity copper sputtering targets and thin films

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0882813A1 (en) * 1997-06-02 1998-12-09 Japan Energy Corporation High-purity copper sputtering targets and thin films
US6451135B1 (en) 1997-06-02 2002-09-17 Japan Energy Corporation High-purity copper sputtering targets and thin films

Similar Documents

Publication Publication Date Title
US8192596B2 (en) Ultrahigh-purity copper and process for producing the same
JP4298712B2 (en) Method for electrolytic purification of copper
KR100603131B1 (en) Electrolytic copper plating method, pure copper anode for electrolytic copper plating, and semiconductor wafer having low particle adhesion plated with said method and anode
EP1159467A1 (en) Process for the recovery of tin, tin alloys or lead alloys from printed circuit boards
KR100758877B1 (en) Refining method of high purity platinum from platinum scrap
JPWO2005023715A1 (en) High purity copper sulfate and method for producing the same
US3660251A (en) Method for the electrolytical deposition of highly ductile copper
JPH03140489A (en) Production of high-purity copper
JPH02301586A (en) Production of high-purity copper
JPH02301585A (en) Production of high-purity copper
JPS6270589A (en) Manufacture of high purity electrolytic copper
JPH02254189A (en) Production of high purity copper
JP4797163B2 (en) Method for electrolysis of tellurium-containing crude lead
JPH01104791A (en) Production of electrolytic aluminum foil
JPS6148544A (en) High-conductivity copper alloy and low softening temperature
JP3998951B2 (en) Method and apparatus for recovering valuable metals from scrap
JPH0653947B2 (en) High-purity copper manufacturing method
JPS6024198B2 (en) Manufacturing method of anode material for copper plating
CN1197485A (en) Method of purifying gold
JP3916134B2 (en) Anode for electrolytic copper plating, method for producing the anode, and electrolytic copper plating method using the anode
KR19980027909A (en) Heat treatment method of lead frame
KR101931520B1 (en) Concentrating method of precious metal by adjusting the composition of an collecting alloy
JPS6360241A (en) Treatment for copper scrap
CN116103702A (en) Molten salt electrolytic purification method and device for metal manganese
JPH11335752A (en) Production of high purity copper material