JPH02299206A - High-tension electrical apparatus - Google Patents

High-tension electrical apparatus

Info

Publication number
JPH02299206A
JPH02299206A JP11871089A JP11871089A JPH02299206A JP H02299206 A JPH02299206 A JP H02299206A JP 11871089 A JP11871089 A JP 11871089A JP 11871089 A JP11871089 A JP 11871089A JP H02299206 A JPH02299206 A JP H02299206A
Authority
JP
Japan
Prior art keywords
piping
mesh
cooling medium
insulating
heat generating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11871089A
Other languages
Japanese (ja)
Inventor
Hiroshi Murase
洋 村瀬
Hitoshi Okubo
仁 大久保
Tsuneji Teranishi
常治 寺西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP11871089A priority Critical patent/JPH02299206A/en
Publication of JPH02299206A publication Critical patent/JPH02299206A/en
Pending legal-status Critical Current

Links

Landscapes

  • Transformer Cooling (AREA)

Abstract

PURPOSE:To obtain the title electric apparatus having excellent characteristics of life and to improve its reliability by a method wherein an inclined mesh-like structure is internally provided on the horizontal part of a piping, and a particle capturing device, having a large-diameter part and a mesh-like structure internally provided on a part of the horizontal part, in provided. CONSTITUTION:A mesh-like structure 14, which is inclined against the stream 12 of a cooling medium, is internally provided on the horizontally provided part located in the middle of a piping 8. The above-mentioned mesh-like structure 14 is inclined so that a component of the stream 12 directing to the lower surface of the piping 8 will be generated, and a particle capturing device 15 is arranged on the lower part of the piping 8 located on the upstream side of the stream 12 in the vicinity of the lower section of the mesh-like structure 14. After the conductive grains present in the cooling medium reached the mesh-like structure 14, they fall down along the surface of the mesh-like structure 14 by receiving the force of downward ingredients, and they are captured into the particle capturing device 15. As a result, the conductive particles can be captured easily with certainty without disturbing the stream of the cooling medium, and the title electric apparatus having excellent characteristics of life can be obtained, and its reliability can also be improved.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は液体からなる冷却媒体により発熱部を冷却する
構造を有する高電圧電気機器に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Field of Application) The present invention relates to a high-voltage electric device having a structure in which a heat generating part is cooled by a cooling medium made of a liquid.

(従来の技術) 一般に、サイリスタバルブ装置、ガス絶縁変圧器等の高
電圧電気機器においては、絶縁ガスの冷却能力を補うた
めにパーフロロカーボン液やフロン液等の絶縁性及び冷
却性に優れた有機化合物により発熱部を冷却する構造が
採用されている。
(Prior technology) In general, in high-voltage electrical equipment such as thyristor valve devices and gas-insulated transformers, in order to supplement the cooling ability of insulating gas, organic liquids with excellent insulating and cooling properties such as perfluorocarbon liquid and fluorocarbon liquid are used. A structure is adopted in which the heat generating part is cooled by a compound.

また、通常発熱部は高電圧側にあり、熱交換器は接地電
位側に配設される。
Further, the heat generating part is usually located on the high voltage side, and the heat exchanger is usually arranged on the ground potential side.

従って、冷却媒体の循環系は高電圧絶縁を保持する必要
があり、冷却媒体を通すパイプは高分子樹脂等の絶縁物
を利用して絶縁を保持している。
Therefore, the cooling medium circulation system must maintain high voltage insulation, and the pipes through which the cooling medium passes are kept insulated by using an insulating material such as polymer resin.

ここで、サイリスタバルブ装置を例にとり従来の高電圧
電気機器の構成を第9図及び第10図を用いて説明する
。SF、ガス等の絶縁ガス2を充填したガス容器1内に
は、多数のサイリスタ素子からなるサイリスタスタック
3及びシールド電極4が絶縁スペーサ5により絶縁支持
され収納されている。そして、冷却媒体であるパーフロ
ロカーボン液は接地電位にある一方の集液管7から高分
子樹脂からなる絶縁バイブロによりサイリスタスタック
3間を循環し再び他方の集液管7に戻る。
Here, the configuration of a conventional high-voltage electric device will be explained using FIGS. 9 and 10, taking a thyristor valve device as an example. A thyristor stack 3 consisting of a large number of thyristor elements and a shield electrode 4 are insulated and supported by insulating spacers 5 and housed in a gas container 1 filled with an insulating gas 2 such as SF or gas. The perfluorocarbon liquid, which is a cooling medium, is circulated between the thyristor stacks 3 from one liquid collecting pipe 7 at ground potential by an insulating vibro made of polymer resin, and returns to the other liquid collecting pipe 7 again.

また、ガス容器1の外部には、一対の集液管7に接続さ
れた金属パイプからなる配管8が配設されている。この
配管8の途中にはポンプ9、熱交換器lO及び絶縁パイ
プに圧力が印加されないようにする圧力調整器11が接
続されている。
Furthermore, a piping 8 made of a metal pipe connected to a pair of liquid collecting pipes 7 is disposed outside the gas container 1 . A pump 9, a heat exchanger IO, and a pressure regulator 11 that prevents pressure from being applied to the insulated pipe are connected in the middle of the pipe 8.

ところで、パーフロロカーボン液が矢印12で示す流れ
を生じると、流動帯電により、冷却媒体であるパーフロ
ロカーボン液は負に帯電し、金属に正電荷を与える。そ
して、負に帯電した冷却媒体が絶縁バイブロ内を流動す
ると、絶縁バイブロは負に帯電し高電位になる。
By the way, when the perfluorocarbon liquid generates the flow shown by the arrow 12, the perfluorocarbon liquid, which is a cooling medium, becomes negatively charged due to flow charging, and gives a positive charge to the metal. When the negatively charged cooling medium flows through the insulating vibro, the insulating vibro becomes negatively charged and has a high potential.

このような流動帯電は、配管据付時に混入する塵埃や配
管のM等の導電性粒子により大きく加速され、導電性粒
子の大きさが大きい程顕著となることが知られている。
It is known that such flow charging is greatly accelerated by conductive particles such as dust mixed in during piping installation and conductive particles such as M in the piping, and becomes more pronounced as the size of the conductive particles increases.

また、流動帯電は、絶縁バイブロの沿面及び貫通方向に
放電を発生させ、絶縁バイブロの破損や絶縁ガス2の絶
縁破壊を誘発する危険性がある。
In addition, the flowing electrification causes discharge to occur along the creeping surface and in the penetrating direction of the insulating vibro, and there is a risk of inducing damage to the insulating vibro and dielectric breakdown of the insulating gas 2.

そこで、配管8の途中にメツシュ状構造物13を垂直に
設け、一定以上の大きさの導電性粒子をメソシュ状構造
物13で捕獲する方法が採用されている。
Therefore, a method is adopted in which a mesh-like structure 13 is provided vertically in the middle of the pipe 8 and conductive particles of a certain size or more are captured by the mesh-like structure 13.

しかしながら、この方法ではメツシュ状構造物13が目
詰りを起し易く、冷却媒体の流速が低下し冷却効率が低
下するとともにポンプ9に大きな負荷がかかることにな
る。
However, in this method, the mesh-like structure 13 is likely to become clogged, the flow rate of the cooling medium is reduced, the cooling efficiency is reduced, and a large load is placed on the pump 9.

(発明が解決しようとする課題) このように、従来の高電圧電気機器にあっては流動帯電
を発生させる導電性粒子の捕獲を配管に設けたメツシュ
状構造物で行なっている。このため、導電性粒子による
メツシュ状構造物の目詰りが発生し、絶縁パイプの損傷
や絶縁ガスの絶縁破壊が発生する。しかも、発熱部の冷
却効率が低下し、高電圧電気機器の寿命特性及び信頼性
が低下する。
(Problems to be Solved by the Invention) As described above, in conventional high-voltage electrical equipment, conductive particles that generate flowing electrification are captured by a mesh-like structure provided in the piping. As a result, the mesh-like structure is clogged with conductive particles, causing damage to the insulating pipe and dielectric breakdown of the insulating gas. Moreover, the cooling efficiency of the heat generating part is reduced, and the life characteristics and reliability of the high voltage electrical equipment are reduced.

本発明は上記の点を考慮して成されたもので、寿命特性
に優れ信頼性を向上した高電圧電気機器を提供すること
を目的とする。
The present invention has been made in consideration of the above points, and an object of the present invention is to provide a high-voltage electric device with excellent life characteristics and improved reliability.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 上記目的を達成するために本発明においては、配管の水
平部分にメツシュ状構造物を傾斜して内装し、水平部分
の一部にメツシュ状構造物を内装した径大部を設け、あ
るいは水平部分に高分子樹脂部材を装着しかつ粒子捕獲
装置を設けている。
(Means for Solving the Problems) In order to achieve the above object, in the present invention, a mesh-like structure is installed at an angle in the horizontal part of the pipe, and a mesh-like structure is installed in a part of the horizontal part. A large-diameter portion is provided, or a polymer resin member is attached to the horizontal portion, and a particle capturing device is provided.

(作用) このように構成することにより、いずれの場合も導電性
粒子を容易にかつ確実に捕獲することができ、寿命特性
に優れ信頼性を向上した高電圧機器を提供することがで
きる。
(Function) With this configuration, conductive particles can be captured easily and reliably in any case, and a high voltage device with excellent life characteristics and improved reliability can be provided.

(実施例) 以下本発明の一実施例を第1図及び第2図を参照して説
明する。尚、第9図及び第10図に示す構成と同等部分
については同一符号を付して説明する。 SF、ガス等
の絶縁ガス2を充填したガス容器1内には、多数のサイ
リスタ素子からなる複数のサイリスタスタック3及び電
界緩和用のシールド電極4が収納されている。そして、
シールド電極4は最上段に配置され、このシールド電極
4の下側にサイリスタスタック3が多段に積層されてい
る。また、シールド電極4とサイリスタスタック3間、
サイリスクスタック3相互間及びサイリスタスタック3
とガス容器1底部間には夫々絶縁支持用の絶縁スペーサ
5が装着されている。
(Example) An example of the present invention will be described below with reference to FIGS. 1 and 2. Note that parts equivalent to the configurations shown in FIGS. 9 and 10 will be described with the same reference numerals. A plurality of thyristor stacks 3 made up of a large number of thyristor elements and a shield electrode 4 for mitigating an electric field are housed in a gas container 1 filled with an insulating gas 2 such as SF or gas. and,
The shield electrode 4 is arranged at the uppermost stage, and the thyristor stack 3 is laminated in multiple stages below the shield electrode 4. Moreover, between the shield electrode 4 and the thyristor stack 3,
Between thyristor stacks 3 and thyristor stacks 3
Insulating spacers 5 for insulating support are installed between the gas container 1 and the bottom of the gas container 1, respectively.

そして、サイリスタスタック3内には高分子樹脂からな
る絶縁バイブロが挿通されている。この絶縁バイブロの
一端には接地電位にある一方の集液管7が接続されてい
る。絶縁バイブロの他端には接地電位にある他方の集液
管7が接続されている。そして、パーフロロカーボン液
等の冷却媒体が一方の集液管7、絶縁バイブロ及び他方
の集液管7間に循環される。
An insulating vibro made of polymer resin is inserted into the thyristor stack 3. One end of this insulated vibro is connected to one liquid collecting pipe 7 which is at ground potential. The other liquid collecting pipe 7, which is at ground potential, is connected to the other end of the insulating vibro. Then, a cooling medium such as perfluorocarbon liquid is circulated between one of the liquid collection tubes 7, the insulated vibro, and the other liquid collection tube 7.

また、ガス容器1の外部には、南端が夫々一対の集液管
7に接続され金属パイプからなり冷却媒体の循環路とな
る配管8が配設されている。この配管8の途中には冷却
媒体を流すためのポンプ9゜冷却媒体がサイリスタスタ
ック3で得た熱を大気に放出する熱交換器IO及び圧力
調整器11が配設されている。この圧力調整器11は絶
縁ガス2の圧力と冷却媒体の圧力を平衡させ、絶縁バイ
ブロの内外に差圧が生じないようにするものである。
Further, on the outside of the gas container 1, piping 8, which is made of a metal pipe and whose southern ends are connected to a pair of liquid collecting pipes 7, respectively, is arranged and serves as a circulation path for a cooling medium. A pump 9 for flowing a cooling medium, a heat exchanger IO for releasing heat obtained by the cooling medium from the thyristor stack 3 to the atmosphere, and a pressure regulator 11 are disposed in the middle of the pipe 8. This pressure regulator 11 balances the pressure of the insulating gas 2 and the pressure of the cooling medium to prevent a pressure difference between the inside and outside of the insulating vibro.

さらに、配管8の途中でかつ水平に配設された部分には
冷却媒体の流れ12に対して傾斜してメツシュ状構造物
14を内装している。このメツシュ状構造物14は、流
れ12が配管8下面に向く成分を生じるように傾斜させ
ている。しかも、メツシュ状構造物14の下端部近傍で
流れ12の上流側の配管8下部には粒子捕獲装置15を
配設している。
Furthermore, a mesh-like structure 14 is installed in a horizontally disposed midway portion of the pipe 8 so as to be inclined with respect to the flow 12 of the cooling medium. This mesh-like structure 14 is inclined so that a component of the flow 12 is directed toward the lower surface of the pipe 8. Furthermore, a particle capture device 15 is disposed at the bottom of the pipe 8 on the upstream side of the flow 12 near the lower end of the mesh-like structure 14 .

次に本実施例の構成における作用効果を説明する。ポン
プ9を駆動することにより、冷却媒体は配管8、メツシ
ュ状構造物14、集液管7.絶縁バイブロへ送られる。
Next, the effects of the configuration of this embodiment will be explained. By driving the pump 9, the cooling medium flows through the piping 8, the mesh-like structure 14, the liquid collecting pipe 7. Sent to insulated vibro.

そして、サイリスタスタック3内の絶縁バイブロを通過
するときサイリスタスタック3を冷却し高温となった冷
却媒体は、絶縁バイブロ、集液管7及び配管8を介して
熱交換器10に入り、この熱交換器10で冷却され再び
ポンプ9に送られる。
When passing through the insulating vibro in the thyristor stack 3, the cooling medium that cools the thyristor stack 3 and becomes high temperature enters the heat exchanger 10 via the insulating vibro, the liquid collection pipe 7, and the piping 8, and enters the heat exchanger It is cooled in the container 10 and sent to the pump 9 again.

また、冷却媒体中に存在する導電性粒子はメツシュ状構
造物14に到達後メツシュ状構造物14の面に沿って下
方向の成分の力を受は落下し1粒子捕獲装置15内に捕
獲される。このように、冷却媒体中の導電性粒子は自然
に粒子捕獲装置15内に確実に捕獲することができる。
Further, after the conductive particles present in the cooling medium reach the mesh-like structure 14, they fall under the force of the downward component along the surface of the mesh-like structure 14, and are captured in the single particle capture device 15. Ru. In this way, the conductive particles in the cooling medium can be naturally and reliably captured within the particle capture device 15.

これにより、導電性粒子が絶縁バイブロ内に達すること
がなく、絶縁バイブロの損傷や絶縁ガス2の絶縁破壊を
防止することができる。
Thereby, the conductive particles do not reach inside the insulating vibro, and damage to the insulating vibro and dielectric breakdown of the insulating gas 2 can be prevented.

しかも、導電性粒子はメツシュ状構造物14に付着する
ことなく粒子捕獲装置15内に落下するので。
Moreover, the conductive particles fall into the particle capture device 15 without adhering to the mesh-like structure 14.

メツシュ状構造物14の目詰りがなく1発熱部の冷却効
率を向上させることができる。ひいては、高電圧電気機
器の寿命特性及び信頼性を向上させることができる。
There is no clogging of the mesh-like structure 14, and the cooling efficiency of one heat generating section can be improved. As a result, the life characteristics and reliability of high-voltage electrical equipment can be improved.

尚、本実施例においては、メツシュ状構造物14及び粒
子捕獲装置15を1組として配管の途中に一段配置した
が、第3図に示す如く、多段配置とすることもできる。
In this embodiment, the mesh-like structure 14 and the particle capture device 15 are arranged as one set in one stage in the middle of the piping, but they can also be arranged in multiple stages as shown in FIG.

この場合、メツシュ状構造物14は後段程目を細かくか
つ傾斜を大きくしている。
In this case, the mesh-like structure 14 has finer meshes and a larger inclination toward the later stages.

次に、他の実施例を第4図を参照して説明する。Next, another embodiment will be described with reference to FIG.

この実施例では配管8の一部に径大部8aを設け、この
径大部8a内に径大部を上下に部分するようにメツシュ
状構造物16が水平に収納され、流れ12がメツシュ状
構造物16を下から上へ向うように構成されている。こ
のように構成することにより、径大部8a内の流れ12
の速度を遅くすることができ、メツシュ状構造物16の
目詰りを効果的に防止することができる。
In this embodiment, a large-diameter portion 8a is provided in a part of the pipe 8, and a mesh-like structure 16 is horizontally housed in the large-diameter portion 8a so as to vertically extend the large-diameter portion, and the flow 12 is arranged in a mesh-like manner. The structure 16 is arranged from the bottom to the top. With this configuration, the flow 12 inside the large diameter portion 8a
speed can be slowed down, and clogging of the mesh-like structure 16 can be effectively prevented.

さらに、上記の各実施例に示すメツシュ状構造物14.
16をフッソ樹脂等の高分子樹脂で構成することにより
、さらに新たな効果が得られる。つまり、メツシュ状構
造物14.16は流動帯電により負に帯電する。しかも
、導電性粒子が負に帯電しているため、導電性粒子は反
発力によりメツシュ状構造物14.16から遠ざかり捕
獲が容易となる。
Furthermore, the mesh-like structure 14 shown in each of the above embodiments.
By composing 16 with a polymer resin such as fluorocarbon resin, further new effects can be obtained. In other words, the mesh-like structures 14 and 16 are negatively charged due to flow charging. Moreover, since the conductive particles are negatively charged, the conductive particles move away from the mesh-like structures 14 and 16 due to repulsive force, making it easier to capture them.

また、第5図に示す如く、配管8内の途中に高分子樹脂
板17を装着し、配管8の高分子樹脂板17の流れ12
に対して下流側に粒子捕獲装置18を設けることができ
る。この場合も、導電性粒子は負に帯電している高分子
樹脂板17との反発力により配管8内壁近傍に移動し、
粒子捕獲装置18内に捕獲することができる。
In addition, as shown in FIG.
A particle capture device 18 can be provided on the downstream side. In this case as well, the conductive particles move near the inner wall of the pipe 8 due to the repulsive force with the negatively charged polymer resin plate 17.
The particles can be captured within the particle capture device 18 .

しかも、第6図に示す如く、粒子捕獲装置18内にフィ
ン18aを設けることにより、一旦捕獲された導電性粒
子の飛散を防止することができる。
Furthermore, as shown in FIG. 6, by providing the fins 18a within the particle trapping device 18, it is possible to prevent the conductive particles once captured from scattering.

そして、高分子樹脂板に変え、第7図に示す如く、高分
子樹脂棒19を採用することもできる。尚。
Instead of the polymer resin plate, a polymer resin rod 19 may be used as shown in FIG. still.

図中20は支持スペーサである。In the figure, 20 is a support spacer.

さらに、第8図に示す如く、第4図に示すメツシュ状構
造物16を電源21により積極的に負に帯電させ同様な
効果を得ることもできる。尚、図中22はブッシングで
あり、23は絶縁物である。
Furthermore, as shown in FIG. 8, the same effect can be obtained by positively charging the mesh-like structure 16 shown in FIG. 4 negatively with the power source 21. In the figure, 22 is a bushing, and 23 is an insulator.

また1以上述べた各実施例を任意に複数個組合せること
もできる。
Further, it is also possible to arbitrarily combine a plurality of each of the embodiments described above.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明においては、配管の水平部分
にメツシュ状構造物を傾斜して内装し、水平部分の一部
にメツシュ状構造物を内装した径大部を設け、あるいは
水平部分内に高分子樹脂部材を装着しかつ粒子捕獲装置
を設けることにより、導電性粒子を冷却媒体の流れを乱
すことなく容易にかつ確実に捕獲することができ、寿命
特性に優れ信頼性を向上した高電圧電気機器を提供する
ことができる。
As explained above, in the present invention, a mesh-like structure is installed in the horizontal part of the pipe in an inclined manner, a part of the horizontal part is provided with a large-diameter part with the mesh-like structure installed, or a mesh-like structure is installed inside the horizontal part. By installing a polymer resin member and a particle capture device, conductive particles can be captured easily and reliably without disturbing the flow of the cooling medium, and a high voltage with excellent life characteristics and improved reliability. Electrical equipment can be provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す高電圧電気機器の概略
構成図、第2図は第1図に示すメツシュ状構造物及び粒
子捕獲装置の取付を示す図、第3図は本発明の他の実施
例を示すメツシュ状構造物及び粒子捕獲装置の取付を示
す図、第4図は本発明のさらに他の実施例を示すメツシ
ュ状構造物及び粒子捕獲装置の取付を示す図、第5図は
本発明の他の実施例を示す高分子樹脂板及び粒子捕獲装
置の取付を示す図、第6図は本発明のさらに他の実施例
を示す高分子樹脂板及び粒子捕獲装置の取付を示す図、
第7図は本発明の他の実施例を示す高分子樹脂棒及び粒
子捕獲装置の取付を示す図、第8図は本発明のさらに他
の実施例を示すメツシュ状構造物及び粒子捕獲装置の取
付を示す図、第9図は従来の高電圧電気機器を示す概略
構成図、第10図は第9図に示すメツシュ状構造物の取
付を示す図である。 1・・・ガス容器    2・・・絶縁ガス3・・・サ
イリスタスタック 4・・・シールド電極5・・・M縁
スペーサ  6・・・絶縁パイプ7・・・集液管   
  8・・配管 8a・・・径大部     9・・・ポンプ10・・・
熱交換器    11・・・圧力調整器14・・・メツ
シュ状構造物  15・・・粒子捕獲装置16・・・メ
ツシュ状構造物  17・・・高分子樹脂板18・・・
粒子捕獲装置  19a・・・フィン19・・・高分子
樹脂棒  20・・・支持スペーサ21・・・電源  
    22・・・ブッシング23・・・絶縁物 代理人 弁理士 則 近 憲 佑 同  第子丸 健 第1図
FIG. 1 is a schematic configuration diagram of a high-voltage electric device showing an embodiment of the present invention, FIG. 2 is a diagram showing the attachment of the mesh-like structure and particle capture device shown in FIG. 1, and FIG. FIG. 4 is a diagram illustrating the attachment of a mesh-like structure and a particle trapping device according to another embodiment of the present invention; FIG. Figure 5 is a diagram showing the installation of a polymer resin plate and a particle trapping device showing another embodiment of the present invention, and Figure 6 is a diagram showing the installation of a polymer resin plate and a particle trapping device showing still another embodiment of the invention. A diagram showing
FIG. 7 is a diagram showing the attachment of a polymer resin rod and a particle capture device showing another embodiment of the present invention, and FIG. 8 is a diagram showing a mesh-like structure and a particle capture device showing still another embodiment of the present invention. FIG. 9 is a schematic configuration diagram showing a conventional high-voltage electric device, and FIG. 10 is a diagram showing the installation of the mesh-like structure shown in FIG. 9. 1... Gas container 2... Insulating gas 3... Thyristor stack 4... Shield electrode 5... M edge spacer 6... Insulating pipe 7... Liquid collecting pipe
8... Piping 8a... Large diameter part 9... Pump 10...
Heat exchanger 11... Pressure regulator 14... Mesh-like structure 15... Particle capture device 16... Mesh-like structure 17... Polymer resin plate 18...
Particle capture device 19a...Fin 19...Polymer resin rod 20...Support spacer 21...Power source
22...Bushing 23...Insulating material agent Patent attorney Noriyuki Chika Ken Yudo Daishimaru Ken Figure 1

Claims (5)

【特許請求の範囲】[Claims] (1)絶縁ガスを充填したガス容器内に発熱部を有する
機器本体を収納し、この機器本体の発熱部内に絶縁パイ
プを挿通し、前記ガス容器外部に熱交換器を備えた配管
を配設し、この配管と前記絶縁パイプとを接続して液体
からなる冷却媒体の循環路を形成してなる高電圧電気機
器において、前記配管に水平部分を設けこの配管の水平
部分内にメッシュ状構造物を傾斜して内装し、このメッ
シュ状構造物の冷却媒体の循環下流側近傍の配管に粒子
捕獲装置を配設してなる高電圧電気機器。
(1) A device body having a heat generating part is housed in a gas container filled with insulating gas, an insulating pipe is inserted into the heat generating part of the device body, and piping equipped with a heat exchanger is arranged outside the gas container. In a high-voltage electrical device in which this piping and the insulated pipe are connected to form a circulation path for a cooling medium made of liquid, the piping has a horizontal portion and a mesh structure is installed in the horizontal portion of the piping. This is a high-voltage electrical device with a particle capture device installed in the piping near the downstream side of the cooling medium circulation of this mesh-like structure.
(2)絶縁ガスを充填したガス容器内に発熱部を有する
機器本体を収納し、この機器本体の発熱部内に絶縁パイ
プを挿通し、前記ガス容器外部に熱交換器を備えた配管
を配設し、この配管と前記絶縁パイプとを接続して液体
からなる冷却媒体の循環路を形成してなる高電圧電気機
器において、前記配管に水平部分を設けかつこの配管の
水平部分の一部に径大部を設け、この径大部内に径大部
を上下に二分するメッシュ状構造物を内装し、前記径大
部に粒子捕獲装置を配設してなる高電圧電気機器。
(2) A device body having a heat generating part is housed in a gas container filled with insulating gas, an insulating pipe is inserted into the heat generating part of the device body, and piping equipped with a heat exchanger is arranged outside the gas container. In a high-voltage electric device in which this piping and the insulated pipe are connected to form a circulation path for a cooling medium made of liquid, the piping is provided with a horizontal portion, and a part of the horizontal portion of the piping has a diameter. A high-voltage electrical device comprising a large diameter section, a mesh-like structure inside the large diameter section that divides the large diameter section into upper and lower halves, and a particle capture device disposed in the large diameter section.
(3)メッシュ状構造物を高分子樹脂で構成してなる請
求項1または2記載の高電圧電気機器。
(3) The high-voltage electrical device according to claim 1 or 2, wherein the mesh-like structure is made of a polymer resin.
(4)メッシュ状構造物を電源により負に帯電させてな
る請求項1または2記載の高電圧電気機器。
(4) The high-voltage electric device according to claim 1 or 2, wherein the mesh-like structure is negatively charged by a power source.
(5)絶縁ガスを充填したガス容器内に発熱部を有する
機器本体を収納し、この機器本体の発熱部内に絶縁パイ
プを挿通し、前記ガス容器外部に熱交換器を備えた配管
を配設し、この配管と前記絶縁パイプとを接続して液体
からなる冷却媒体の循環路を形成してなる高電圧電気機
器において、前記配管に水平部分を設けこの配管の水平
部分内に高分子樹脂部材を装着し、この高分子樹脂部材
の冷却媒体の循環下流側近傍に粒子捕獲装置を配設して
なる高電圧電気機器。
(5) A device body having a heat generating part is housed in a gas container filled with insulating gas, an insulated pipe is inserted into the heat generating part of the device body, and piping equipped with a heat exchanger is arranged outside the gas container. In a high-voltage electric device in which this piping and the insulated pipe are connected to form a circulation path for a cooling medium made of liquid, the piping has a horizontal portion and a polymer resin member is installed in the horizontal portion of the piping. A high-voltage electrical device equipped with a particle capture device near the downstream side of the cooling medium circulation of the polymer resin member.
JP11871089A 1989-05-15 1989-05-15 High-tension electrical apparatus Pending JPH02299206A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11871089A JPH02299206A (en) 1989-05-15 1989-05-15 High-tension electrical apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11871089A JPH02299206A (en) 1989-05-15 1989-05-15 High-tension electrical apparatus

Publications (1)

Publication Number Publication Date
JPH02299206A true JPH02299206A (en) 1990-12-11

Family

ID=14743198

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11871089A Pending JPH02299206A (en) 1989-05-15 1989-05-15 High-tension electrical apparatus

Country Status (1)

Country Link
JP (1) JPH02299206A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015503073A (en) * 2011-10-17 2015-01-29 テンプトロニック コーポレイション Temperature control system with impurity filter
JP2016033940A (en) * 2014-07-31 2016-03-10 株式会社東芝 Gas isolation transformer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015503073A (en) * 2011-10-17 2015-01-29 テンプトロニック コーポレイション Temperature control system with impurity filter
JP2016033940A (en) * 2014-07-31 2016-03-10 株式会社東芝 Gas isolation transformer

Similar Documents

Publication Publication Date Title
CN1473388A (en) Microdrive
Wang et al. Theoretical and experimental studies of air gap breakdown triggered by free spherical conducting particles in DC uniform field
CN111403128B (en) Post insulator for direct current transmission and direct current transmission equipment
CN1809903A (en) Method and apparatus for cooling magnetic circuit elements
Dale et al. Methods of particle control in SF6 insulated CGIT systems
JPH02299206A (en) High-tension electrical apparatus
US2682313A (en) Alternating current ion-filter for electrical precipitators
WO2018042690A1 (en) Gas-insulated switchgear and method for capturing metal impurities inside gas-insulated switchgear
Wetzer et al. HV design of vacuum components
Holland et al. Low jitter metal vapor vacuum arc ion source for electron beam ion trap injections
JPWO2015111236A1 (en) Gas insulated electrical equipment
US1906602A (en) Lightning arrester
JP3143077B2 (en) Gas insulation equipment
Wang et al. Experimental studies on the motion and discharge behavior of free conducting wire particle in DC GIL
CN1317726C (en) Construction unit for accepting absorbers
CN1606207A (en) Part of a high-voltage electrical system having a cooling device
US5482540A (en) Electrostatic precipitator frame stabilizer and method of operation
JPH0530626A (en) Composite insulation system bus
CN112205090B (en) Shielding for high-voltage devices
US11070039B2 (en) Insulation spacer and gas insulation shutoff apparatus using the insulation spacer
JP3433004B2 (en) DC gas insulated busbar
Purser et al. The University of Rochester MP tandem upgrading program
Wang et al. Study on the discharge characteristics of combined air gap with floating potential conductor under DC high voltage
Zhang et al. Study on capture efficiency of particle trap and performance improvement method for DC GIL/GIS
Cheng et al. Reliability improvement of gas discharge tube by suppressing the formation of short-circuit pathways