JPH02298759A - Latent heat accumulation capsule used for latent heat accumulation tank - Google Patents

Latent heat accumulation capsule used for latent heat accumulation tank

Info

Publication number
JPH02298759A
JPH02298759A JP1116133A JP11613389A JPH02298759A JP H02298759 A JPH02298759 A JP H02298759A JP 1116133 A JP1116133 A JP 1116133A JP 11613389 A JP11613389 A JP 11613389A JP H02298759 A JPH02298759 A JP H02298759A
Authority
JP
Japan
Prior art keywords
capsule
latent heat
phase change
heat storage
melting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1116133A
Other languages
Japanese (ja)
Other versions
JP2755422B2 (en
Inventor
Takeo Saito
武雄 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP1116133A priority Critical patent/JP2755422B2/en
Publication of JPH02298759A publication Critical patent/JPH02298759A/en
Application granted granted Critical
Publication of JP2755422B2 publication Critical patent/JP2755422B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Abstract

PURPOSE:To increase a melting speed of a phase change substance by forming a latent heat accumulation capsule so that it is flat in a shape substantially and that the ratio between the average diameter of the main surface in the horizontal direction thereof and the average thickness is the vertical direction thereof is set in a specified range. CONSTITUTION:A latent heat accumulation capsule 1 is formed so that it is flat in a shape substantially and that the ratio between the average diameter in the horizontal direction of the capsule 1 and the average thickness in the vertical direction thereof is 2:1 to 10:1 or preferably 4:1 to 8:1. A phase change substance of this capsule 1 is a hydrate, and therefore it is melted by heating in some degree and separated vertically into a liquid phase 12 of small density and a solid phase 3 of large density. Since the capsule 1 is formed to be the flat one having the ratio as stated above, the area of contact of the phase change substance accommodated in the capsule 1 with the bottom part of the capsule is increased and the mixing properties of the liquid phase 2 of the phase change substance and the solid phase 3 thereof due to a vortex is promoted on a wide interface. By the improvement in contact melting and convection melting thus obtained, the melting speed of the phase change substance can be increased conspicuously.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、潜熱蓄熱タンクに使用する潜熱蓄熱カプセル
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a latent heat storage capsule used in a latent heat storage tank.

〔従来の技術〕[Conventional technology]

従来からビノベ住宅等の温水および冷水等を利用する空
調装置及び潜熱蓄熱システムに、潜熱蓄熱カプセル(以
ドカプセルと略称す)を充填した潜熱蓄熱タンク(以下
タンクと略称す)を使用して熱エネルギーを貯蔵するこ
とが知られている。
Conventionally, latent heat storage tanks (hereinafter referred to as tanks) filled with latent heat storage capsules (hereinafter referred to as docapsules) are used to store heat in air conditioners and latent heat storage systems that use hot and cold water, etc. in Binobe houses. Known to store energy.

上記の典型的なものとして潜熱蓄熱タンクを用いた空調
装置を第6図について説明すると、例えば太陽熱利用の
場合は、太陽光20に面した日照側に水等の媒体の流路
を設けた太陽熱集熱器21を配設し、これを鉄、不銹鋼
、プラスチック、FRP、コンクリート等で構築したタ
ンク22に配管23 、24を介して接続し、配管23
にはポンプ25をまた配管24には弁26を配設する。
An air conditioner using a latent heat storage tank as a typical example of the above is explained with reference to FIG. A heat collector 21 is provided, and this is connected to a tank 22 constructed of iron, stainless steel, plastic, FRP, concrete, etc. via pipes 23 and 24.
A pump 25 is provided in the pipe 24, and a valve 26 is provided in the pipe 24.

タンク22は通常約300 i’の容積を有し、内部に
は高密度ポリエチレン等の薄肉プラスチック製の約70
叩直径の球状カプセル(仏、クリストビア社により市販
されている)27が約1.000個充填されている。球
状カプセル27には例えば塩化カルシウム6水塩(Ca
Cβ26Lo)等の相変化物質(PCM)が収容されて
いる。集熱器21内で加熱された約60℃の媒体がタン
ク22内のカプセル27の周囲を通過中にカプセル27
内の相変化物質を加熱してその一部を融解する。即ちこ
の融解時に媒体の熱の一部が相変化物質の潜熱に変わる
The tank 22 typically has a volume of about 300 i' and has an internal capacity of about 70 i' made of thin-walled plastic such as high-density polyethylene.
Approximately 1,000 spherical capsules 27 (commercially available from Christobia, France) of diameter 27 are filled. The spherical capsule 27 contains, for example, calcium chloride hexahydrate (Ca
A phase change material (PCM) such as Cβ26Lo) is accommodated. While the medium heated in the heat collector 21 at about 60° C. passes around the capsule 27 in the tank 22, the capsule 27
The phase change material inside is heated to melt a portion of it. That is, during this melting, part of the heat of the medium is converted into latent heat of the phase change material.

このようにして熱を奪われて約30℃の低温となった媒
体が再び集熱器21に送られて太陽熱により加熱される
。上記のサイクルを繰返えすうちにカプセル内の相変化
物質は全部融解することにより約50℃の高い熱エネル
ギーを蓄熱するに至る。
The medium, which has thus been deprived of heat and has a low temperature of about 30° C., is again sent to the heat collector 21 and heated by solar heat. As the above cycle is repeated, all of the phase change material within the capsule melts, resulting in storage of high thermal energy of approximately 50°C.

これを空調に使用する際には、高温となったカプセル2
7の周囲に別の媒体を流し、相変化物質が凝固する際の
放熱によって該媒体を加熱して高温媒体を得、これを空
調用の対応機器に送る(図示せず)。
When using this for air conditioning, the hot capsule 2
Another medium is flowed around 7, and the medium is heated by the heat released when the phase change material solidifies to obtain a high temperature medium, which is sent to a corresponding equipment for air conditioning (not shown).

また太陽熱集熱器の代りに低料金の深夜電力を利用する
場合は、専用の加熱器を使用して循環媒体を加熱し、こ
れによってカプセル内の相変化物質に蓄熱する。
If low-cost late-night electricity is used instead of a solar collector, a special heater is used to heat the circulating medium, thereby storing heat in the phase change material inside the capsule.

上記のカプセルに対して要求される性能は下記の三つで
ある。
The following three performances are required for the above capsule.

■ 蓄熱速度即ち融解速度が速いこと、(殊に深夜電力
を使用する場合は融解速度が速いことが望ましい)。
■ The heat storage rate, that is, the melting rate is fast (especially when using late-night electricity, it is desirable that the melting rate is fast).

■ 放熱速度即ち凝固速度が速いこと、く凝固速度は融
解速度に略比例する)。
■ The heat dissipation rate, that is, the solidification rate, is fast (the solidification rate is approximately proportional to the melting rate).

■ 単価が低いこと、(多数個のカプセルを使用するの
で低価格は重要である)。
■ Low unit price (low price is important since a large number of capsules are used).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の球状カプセルはカプセル本体の構造が簡単で製造
しやすい利点があるが、形が球形であるためその中心部
までの距離が大きい。そのためカプセルの中心部にある
相変化物質に外部の熱が伝わるのに長時間を要し、融解
速度が遅い欠点がある。
Conventional spherical capsules have the advantage that the capsule body has a simple structure and is easy to manufacture, but because of their spherical shape, the distance to the center is long. Therefore, it takes a long time for external heat to be transferred to the phase change material in the center of the capsule, resulting in a slow melting rate.

従って本発明の目的は、従来の球状カプセルに代るカプ
セルの形状を案出して相変化物質の融解速度を速めるこ
とである。
It is therefore an object of the present invention to devise an alternative capsule shape to the conventional spherical capsule to increase the rate of melting of phase change materials.

〔課題を解決するための手段〕[Means to solve the problem]

上記の目的は、内部に相変化物質を有して、潜熱蓄熱タ
ンク内に略水平状に保って積み重ね状に収容する潜熱蓄
熱カプセルにおいて、上記カプセルが略偏平形であり、
かつ該カプセルの水平方向の主面の平均径と上下方向の
平均厚さとの比が2=1〜10 : 1、好ましくは4
:1〜8:1に形成されたことを特徴とする潜熱蓄熱タ
ンクに使用する潜熱蓄熱カプセルによって達成される。
The above object is to provide a latent heat storage capsule having a phase change substance therein and stored in a stacked state in a substantially horizontal state in a latent heat storage tank, wherein the capsule has a substantially flat shape;
and the ratio of the average diameter of the main surface in the horizontal direction to the average thickness in the vertical direction of the capsule is 2=1 to 10:1, preferably 4.
This is achieved by a latent heat storage capsule used in a latent heat storage tank characterized by having a ratio of :1 to 8:1.

〔実施例〕〔Example〕

以下図面を参照して本発明の詳細な説明する。 The present invention will be described in detail below with reference to the drawings.

実施例1: 前述したように従来の球状カプセルの中心部はカプセル
の外表面から最大距離の位置にあって相変化物質が外部
の熱媒体によって溶ける融解速度が遅い。従って球状カ
プセルの上下方向の厚さを少なくすれば外表面から中心
部の距離が短くなって融解速度が速くなることに着目し
、第1図に示す回転楕円体のカプセル1と第2図に示す
球状カプセル27とについて比較試験をした。実際には
両型式のカプセルを夫々周囲よりヒーターで一様に加熱
し、またスライダックで温度制御をして、内部に充填し
た相変化物質の変化を観察した。カプセル内部の相変化
物質(CaC126H20)は水和物なので、ある程度
の加熱によって融解して、密度の小さい液相2と密度の
大きい固相3とに夫々上下に分離する。4はカプセルの
中心を示す。
Example 1: As described above, the center of a conventional spherical capsule is located at the maximum distance from the outer surface of the capsule, and the melting rate of the phase change material is slow due to the external heat medium. Therefore, we focused on the fact that by reducing the vertical thickness of a spherical capsule, the distance from the outer surface to the center becomes shorter and the melting speed becomes faster. A comparative test was conducted on the spherical capsule 27 shown in FIG. In reality, both types of capsules were uniformly heated from the surroundings using a heater, and the temperature was controlled using a slider to observe changes in the phase-change material filled inside. Since the phase change substance (CaC126H20) inside the capsule is a hydrate, it is melted by heating to a certain extent and separates into a lower density liquid phase 2 and a higher density solid phase 3, respectively. 4 indicates the center of the capsule.

この場合の融解のメカニズムは接触融解と対流融解に分
れ、融解の大部分(70%)は固相3とカプセル1底部
間の接触融解で行われ、残りの30%はカプセル内の対
流融Mで行われることが観察された。これにより固相3
とカプセル1との接触面積が大きい程融解速度が速くな
り、換言すればカプセルを偏平にすれば有効であること
が判明した。
The melting mechanism in this case is divided into contact melting and convective melting, with most of the melting (70%) occurring through contact melting between the solid phase 3 and the bottom of the capsule 1, and the remaining 30% occurring through convective melting within the capsule. It was observed that M. This allows solid phase 3
It has been found that the larger the contact area between the capsule 1 and the capsule 1, the faster the melting rate.In other words, it has been found that it is effective to make the capsule flat.

またカプセルが偏平であると界面5上の液相2中で矢印
6の方向の渦7が交互に発生する(この現象はベナール
(仏)の原理で証明されているのでその説明を省略する
)。即ち液相中に互に反対方向の渦が多数発生するので
液相2と固相3間の界面5で対流融解が行われて両相が
よく混合し、これによっても融解速度が速くなる。
Furthermore, if the capsule is flat, vortices 7 in the directions of arrows 6 are generated alternately in the liquid phase 2 on the interface 5 (this phenomenon has been proven by Benard's principle, so its explanation will be omitted). . That is, since a large number of vortices in opposite directions are generated in the liquid phase, convective melting occurs at the interface 5 between the liquid phase 2 and the solid phase 3, and the two phases mix well, which also increases the melting rate.

これに反し従来の球状カプセル27の場合は第2図に示
すように、第1図に比較して面相とカプセル間の接触面
積が小さく、また界面5上の液相2中で回転方向が互に
反対の一対の渦7のみが発生するが、これらの渦7は流
速が遅く、液相2と固相3との混合力が弱く従って融解
速度が遅い。
On the other hand, in the case of the conventional spherical capsule 27, as shown in FIG. 2, the contact area between the surface phase and the capsule is smaller than that in FIG. Only a pair of vortices 7 opposite to each other are generated, but these vortices 7 have a slow flow rate and a weak mixing force between the liquid phase 2 and the solid phase 3, resulting in a slow melting rate.

尚、上記の比較試験は同一厚さ、同一容積の高密度ポリ
エチレン製のカプセルについて行なった。
The above comparative test was conducted on high-density polyethylene capsules of the same thickness and volume.

第3図は各型式のカプセルの形状の違いによる融解速度
の比較を表す。図において縦軸は融解体債比即ち相変化
物質の融解した体積/内容積を表しその値が1になれば
相変化物質が全部融解したことを示し、横軸は時間を示
す。尚、各型式のカプセルは夫々同一容積に形成されて
いる。
FIG. 3 shows a comparison of the melting rates depending on the shape of each type of capsule. In the figure, the vertical axis represents the melt/bond ratio, ie, the melted volume/inner volume of the phase change material, and a value of 1 indicates that the phase change material has all melted, and the horizontal axis represents time. Note that each type of capsule is formed to have the same volume.

図中Aは従来の球状カプセル、B、C及びDは回転楕円
体状カプセルを表しそのうちB、C及びDは水平方向の
主面の径を上下方向の平均厚さとの比(アスペクト比と
仮称す)が2:1.4+1及び8:1のものを夫々示し
、Eは上記のアスペクト比が8=1の円板状カプセルを
示す。
In the figure, A is a conventional spherical capsule, B, C, and D are spheroidal capsules, and B, C, and D are the ratio of the diameter of the main surface in the horizontal direction to the average thickness in the vertical direction (tentative name: aspect ratio). 2:1.4+1 and 8:1, respectively, and E indicates a disk-shaped capsule with an aspect ratio of 8=1.

図から判るように回転楕円体状カプセル特に円板状カプ
セル(これらは共に回転体形である)の融解速度は同一
容積の球状カプセルの融解速度に比較した場合、極めて
速いことが判る。このようにアスペクト比が2以上の回
転体形カプセルは球形カプセルに比較して優れているが
、アスペクト比の上限を決定するために例えば円板状カ
プセルについて考察すると、アスペクト比=10:1の
円板状カプセルの必要材料量は厚さを同一とじた場合、
それと同一容積の球状カプセルの4倍となるので上限を
10:1以下にすることが望ましい。
As can be seen from the figure, the melting rate of the spheroidal capsule, particularly the disk-shaped capsule (both of which are in the shape of a rotating body), is extremely fast when compared to the melting rate of a spherical capsule of the same volume. In this way, a rotating capsule with an aspect ratio of 2 or more is superior to a spherical capsule, but when considering a disc-shaped capsule, for example, to determine the upper limit of the aspect ratio, a circular capsule with an aspect ratio of 10:1 is superior to a spherical capsule. The amount of material required for a plate-shaped capsule is as follows when the thickness is the same:
Since this is four times the volume of a spherical capsule with the same volume, it is desirable to set the upper limit to 10:1 or less.

実施例2: 第4図は直方体形のカプセル8の斜視図で、この場合も
水平方向の主面9の平均径を上下方向の厚さ10との比
を2:1以上に採れば速い融解速度が得られることが判
明した。
Embodiment 2: FIG. 4 is a perspective view of a rectangular parallelepiped capsule 8. In this case as well, fast melting can be achieved if the ratio of the average diameter of the main surface 9 in the horizontal direction to the thickness 10 in the vertical direction is 2:1 or more. It turns out that speed can be achieved.

実施例3: 本発明によればカプセルを偏平形にしたので結果的に若
干大型(大径)になるが、従来多数個(約1.、uuu
個)使用した球状カプセルに比して少数の大形偏平カプ
セルを使用すれば多数のカプセルを水平状にならべる手
間も簡略化できる。但しこの場合球状カプセルに比べて
偏平状カプセルの周囲の媒体の流通が悪くなるので第5
図に示すように例えば円板状カプセル11の上下に連通
ずる少なくとも一つの筒状貫通孔12を設けると好都合
である。また該カプセル11の表面に、外方に突出した
複数の突出部13を設けると、該突起部13が、上下に
重ね合わせたカプセル11間のスペーサの役目をして媒
体の流通性を向上する。
Embodiment 3: According to the present invention, the capsule is made into a flat shape, resulting in a slightly larger (large diameter) capsule.
) If a smaller number of large flat capsules are used than the spherical capsules used, the effort of arranging a large number of capsules horizontally can be simplified. However, in this case, the circulation of the medium around the flat capsule is poorer than that of the spherical capsule, so the fifth
As shown in the figure, it is convenient to provide, for example, at least one cylindrical through hole 12 that communicates with the upper and lower parts of the disc-shaped capsule 11. Further, when a plurality of outwardly projecting protrusions 13 are provided on the surface of the capsule 11, the protrusions 13 serve as spacers between the capsules 11 stacked one above the other, thereby improving the circulation of the medium. .

〔発明の効果〕〔Effect of the invention〕

本発明は上記のように構成して主面の径と厚さの比が2
=1〜10:1の偏平なカプセルに形成したので、カプ
セルに収容した相変化物資の面相とカプセル底部間の接
触面積が増大し、また広い界面上で相変化物質の液相と
面相との渦流による混合性が増進し、これらによって得
られる接触融解及び対流融解の向上によって相変化物質
の融解速度を著しく増大することができる。
The present invention is constructed as described above, and the ratio of the diameter to the thickness of the main surface is 2.
= 1 to 10:1, the contact area between the surface phase of the phase change material housed in the capsule and the bottom of the capsule is increased, and the liquid phase of the phase change material and the surface phase are formed on a wide interface. The increased vortex mixing and the resulting enhanced catalytic and convective melting can significantly increase the melting rate of the phase change material.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のカプセルの縦断面図、第2図は従来の
球状カプセルの縦断面図、第3図は各型式のカプセルの
形状の違いによる融解速度比較図、示す断面図、第6図
は従来の空調装置を示す全体概略図である。 i、a、ti・・・カプセル、 12・・・筒状貫通孔、   13・・・突起部。
Fig. 1 is a longitudinal cross-sectional view of the capsule of the present invention, Fig. 2 is a longitudinal cross-sectional view of a conventional spherical capsule, Fig. 3 is a comparison of melting rates depending on the shape of each type of capsule, and Fig. 6 is a cross-sectional view. The figure is an overall schematic diagram showing a conventional air conditioner. i, a, ti...capsule, 12...cylindrical through hole, 13...protrusion.

Claims (1)

【特許請求の範囲】 1、内部に相変化物質を有して、潜熱蓄熱タンク内に略
水平状に保って積み重ね状に収容する潜熱蓄熱カプセル
において、上記カプセルが略偏平形であり、かつ該カプ
セルの水平方向の主面の平均径と上下方向の平均厚さと
の比が2:1〜10:1、好ましくは4:1〜8:1に
形成されたことを特徴とする潜熱蓄熱タンクに使用する
潜熱蓄熱カプセル。 2、上記カプセルが回転体形である請求項1に記載の潜
熱蓄熱カプセル。 3、上記カプセルが直方体形である請求項1に記載の潜
熱蓄熱カプセル。 4、上記カプセルが上下に連通した少なくとも一つの筒
状貫通孔を備えた請求項2又は3に記載の潜熱蓄熱カプ
セル。 5、上記カプセルの表面に外方に突出した複数の突起部
を備えた請求項2、3、4項のいずれか1項に記載の潜
熱蓄熱カプセル。
[Scope of Claims] 1. A latent heat storage capsule having a phase change substance therein and stored in a latent heat storage tank in a substantially horizontal manner in a stacked manner, wherein the capsule has a substantially flat shape; A latent heat storage tank characterized in that the ratio of the average diameter of the main surface in the horizontal direction to the average thickness in the vertical direction of the capsule is 2:1 to 10:1, preferably 4:1 to 8:1. Latent heat storage capsule used. 2. The latent heat storage capsule according to claim 1, wherein the capsule is in the form of a rotating body. 3. The latent heat storage capsule according to claim 1, wherein the capsule has a rectangular parallelepiped shape. 4. The latent heat storage capsule according to claim 2 or 3, wherein the capsule is provided with at least one cylindrical through hole that communicates with the top and bottom. 5. The latent heat storage capsule according to any one of claims 2, 3, and 4, further comprising a plurality of protrusions projecting outward on the surface of the capsule.
JP1116133A 1989-05-11 1989-05-11 Latent heat storage capsule used for latent heat storage tank Expired - Lifetime JP2755422B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1116133A JP2755422B2 (en) 1989-05-11 1989-05-11 Latent heat storage capsule used for latent heat storage tank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1116133A JP2755422B2 (en) 1989-05-11 1989-05-11 Latent heat storage capsule used for latent heat storage tank

Publications (2)

Publication Number Publication Date
JPH02298759A true JPH02298759A (en) 1990-12-11
JP2755422B2 JP2755422B2 (en) 1998-05-20

Family

ID=14679540

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1116133A Expired - Lifetime JP2755422B2 (en) 1989-05-11 1989-05-11 Latent heat storage capsule used for latent heat storage tank

Country Status (1)

Country Link
JP (1) JP2755422B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101722384B1 (en) * 2016-09-21 2017-04-04 류상범 WTA-type Geothermal Heat Pump System with Recycling Tank

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56125524A (en) * 1979-08-18 1981-10-01 Kitagawa Tekkosho:Kk Hardening treatment apparatus for soft soil under water
JPS56125523A (en) * 1981-01-30 1981-10-01 Kyokado Eng Co Ltd Composite grouting work
JPS58109283A (en) * 1981-12-21 1983-06-29 富士通フアナツク株式会社 Industrial robot
JPS6266504A (en) * 1985-09-19 1987-03-26 日立化成工業株式会社 Insulated wire for multi-wiring board
JPS62135962A (en) * 1985-12-09 1987-06-18 Nec Corp Chinese sentence input device
JPS62210394A (en) * 1986-03-08 1987-09-16 Agency Of Ind Science & Technol Latent heat accumulator of capsule type

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56125524A (en) * 1979-08-18 1981-10-01 Kitagawa Tekkosho:Kk Hardening treatment apparatus for soft soil under water
JPS56125523A (en) * 1981-01-30 1981-10-01 Kyokado Eng Co Ltd Composite grouting work
JPS58109283A (en) * 1981-12-21 1983-06-29 富士通フアナツク株式会社 Industrial robot
JPS6266504A (en) * 1985-09-19 1987-03-26 日立化成工業株式会社 Insulated wire for multi-wiring board
JPS62135962A (en) * 1985-12-09 1987-06-18 Nec Corp Chinese sentence input device
JPS62210394A (en) * 1986-03-08 1987-09-16 Agency Of Ind Science & Technol Latent heat accumulator of capsule type

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101722384B1 (en) * 2016-09-21 2017-04-04 류상범 WTA-type Geothermal Heat Pump System with Recycling Tank

Also Published As

Publication number Publication date
JP2755422B2 (en) 1998-05-20

Similar Documents

Publication Publication Date Title
CN107144024A (en) A kind of solar vacuum heat-collecting pipe and system close to countercurrent flow effect
US4221259A (en) Process for storing calories
JPH02298759A (en) Latent heat accumulation capsule used for latent heat accumulation tank
CN106979626B (en) A kind of phase-change heat-storage solar energy evacuated collector tube and vacuum heat-collecting system
CN110360865A (en) A kind of finned multiple phase change materials heat-storing sphere
CN210004840U (en) phase change heat accumulator
JPS6022279B2 (en) heat storage device
US4738303A (en) Zone storage heat exchanger
JPH0120341B2 (en)
CN108981436A (en) Heat exchanger and water heater
JPH0579917B2 (en)
JPS61173085A (en) Latent heat storage device
JPH0578758B2 (en)
Mehta et al. Effect of orientation of shell and tube latent heat storage unit on melting phenomena of phase change material
JPS60149893A (en) Heat exchanger
CN110108143A (en) A kind of phase change heat accumulator
Ho Kon Tiat et al. Recent patents on phase change materials and systems for latent heat thermal energy storage
JPS58117993A (en) Heat accumulating device
JPS58195790A (en) Heat accumulating device
JPH0154638B2 (en)
JPH04278186A (en) Heat accumulator employing paraffin as heat accumulating material
JPH0288404A (en) Heat exchanger using metallic hydrogen compound
JP3583479B2 (en) Thermal storage capsule
JPH109782A (en) Heat storage element
JPS62149334A (en) Production of heat storage capsule