JPH02297866A - Fuel cell power generating system - Google Patents

Fuel cell power generating system

Info

Publication number
JPH02297866A
JPH02297866A JP1116810A JP11681089A JPH02297866A JP H02297866 A JPH02297866 A JP H02297866A JP 1116810 A JP1116810 A JP 1116810A JP 11681089 A JP11681089 A JP 11681089A JP H02297866 A JPH02297866 A JP H02297866A
Authority
JP
Japan
Prior art keywords
pressure
exhaust gas
fuel cell
control valve
pressure control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1116810A
Other languages
Japanese (ja)
Other versions
JPH0812782B2 (en
Inventor
Hideo Nishigaki
英雄 西垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP1116810A priority Critical patent/JPH0812782B2/en
Publication of JPH02297866A publication Critical patent/JPH02297866A/en
Publication of JPH0812782B2 publication Critical patent/JPH0812782B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PURPOSE:To facilitate high efficiency operation by maintaining the gas pressure at a specified pressure level, wherein the gas pressure is sensed on the exhaust gas piping line of a fuel cell including a pressure control valve installed at the inlet to an exhaust gas turbine. CONSTITUTION:A pressure control system 10-14 is formed to maintain the gas pressure at a specified pressure level, wherein the gas pressure is sensed on the exhaust gas piping line of a fuel cell 1 including a pressure control valve 10 installed at the inlet to an exhaust gas turbine 4. This control system is composed of said pressure control valve 10 installed at the inlet to the exhaust gas turbine 4, pressure sensors 11, 12 mounted on the exhaust gas piping line of this fuel cell 1, and control parts 13, 14 therefore. These control parts are given a pressure setting value corresponding to a pressure curve depending upon the load or a constant pressure, and the pressure control valve 10 is controlled on the basis of the pressure sensing value, and thereby the fuel cell 1 operating pressure is maintained at a proper level at all times throughout the range of the rate of gas flow, that will accomplish high efficiency operation.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、加圧形燃料電池発電システム、特に改質器の
燃焼排ガス、および燃料電池の排ガスで駆動する熱回収
用の排ガスタービンを組合せた燃料電池発電システムに
関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention is a pressurized fuel cell power generation system, in particular, a combination of a combustion exhaust gas from a reformer and an exhaust gas turbine for heat recovery driven by the exhaust gas from the fuel cell. The present invention relates to a fuel cell power generation system.

〔従来の技術〕[Conventional technology]

頭記の燃料電池発電システムでは天然ガス、LPG、メ
タノールなどの燃料を改質器で水素リッチな燃料ガスに
改質して燃料電池のアノードに供給し、カソードには空
気ブロア、コンプレッサを通じて大気側から取り込んだ
空気を供給して発電するとともに、アノード側から排出
する燃料系の排ガス(水素を含む)を改質器のバーナに
送り込んで燃焼させ、その燃焼熱で燃料の改質を行うよ
うにしている。また、特にりん酸形燃料電池で動作圧力
を4kg/cd0.190℃程度にした加圧形燃料電池
発電システムでは、プラント効率の向上を狙いに改質器
から排出する燃焼排ガス、および燃料電池のカソードか
ら排出する空気排ガスで排ガスタービンを駆動し、燃焼
排ガスの保有する熱エネルギーを動力として回収する方
式が開発されている。
In the fuel cell power generation system mentioned above, a fuel such as natural gas, LPG, or methanol is reformed into hydrogen-rich fuel gas using a reformer and supplied to the anode of the fuel cell, and the cathode is connected to the atmosphere through an air blower and compressor. In addition to supplying air taken in from the anode to generate electricity, the exhaust gas (including hydrogen) from the fuel system discharged from the anode side is sent to the reformer burner and combusted, and the combustion heat is used to reform the fuel. ing. In addition, in pressurized fuel cell power generation systems that use phosphoric acid fuel cells at an operating pressure of approximately 4 kg/cd0.190°C, in order to improve plant efficiency, combustion exhaust gas discharged from the reformer and fuel cell A method has been developed in which the air exhaust gas discharged from the cathode drives an exhaust gas turbine and the thermal energy possessed by the combustion exhaust gas is recovered as power.

一方、燃料電池では内部のマトリクスを透過してアノー
ドとカソードとの極間でガスクロスが発生すると、電池
の出力特性が低下する他、局所加熱が生じて電池寿命が
低下する。そのために、アノード/カソードの極間差圧
をある限度(通常は50〜100 smHtO程度)以
内に抑える必要があリ、この差圧制御手段として、従来
では燃料電池の出口側でアノード、カソードの排ガス配
管系に差圧制御弁を介装して極間差圧を許容限度以内に
維持するようにした極間差圧制御方式が一般に採用され
ている。
On the other hand, in a fuel cell, if gas crosses through the internal matrix and occurs between the anode and cathode, not only will the output characteristics of the cell decrease, but local heating will occur, shortening the battery life. Therefore, it is necessary to suppress the pressure difference between the anode and cathode within a certain limit (usually about 50 to 100 smHtO). Conventionally, the pressure difference between the anode and cathode has been controlled at the exit side of the fuel cell. An inter-electrode differential pressure control method is generally employed in which a differential pressure control valve is interposed in the exhaust gas piping system to maintain the inter-electrode differential pressure within an allowable limit.

第3図は前記の極間差圧制御方式を採用した従来におけ
るりん酸型燃料電池発電システムのシステムフロー図で
あり、図において、1は加圧形の燃料電池、2は天然ガ
スなどの燃料を水素リンチな燃料ガスに改質する燃料改
質器、3は大気から取り込んだ空気を昇圧する空気ブロ
ア、4は排ガスの熱回収を行う排ガスタービン、5は発
電機、6.7は燃料電池1のアノード1 a + カソ
ード1bの出口より引出した燃料系、空気系の排ガス管
路に接続した差圧制御弁である。
Figure 3 is a system flow diagram of a conventional phosphoric acid fuel cell power generation system that employs the above-mentioned interelectrode pressure differential control method. 3 is an air blower that boosts the pressure of air taken in from the atmosphere, 4 is an exhaust gas turbine that recovers heat from exhaust gas, 5 is a generator, and 6.7 is a fuel cell. This is a differential pressure control valve connected to the exhaust gas pipes of the fuel system and air system drawn out from the outlet of the anode 1a + cathode 1b of No. 1.

かかる構成で、発電システムの運転時には、改質器2の
バーナ2aに燃料電池1のアノード排ガス(水素を含ん
でいる)と空気ブロア3から送気した空気を供給して燃
焼させ、その燃焼熱により燃料と改質触媒とを接触反応
させて燃料を水素リッチな燃料ガスに改質する。また、
改質器2より引出した燃焼排ガス配管8に燃料電池1の
カソード1bより引出した空気排ガス配管9を結合し、
改質器2の燃焼排ガスと空気系の排ガスとを合流させた
上で排ガスタービン4に導いて排ガスタービン4を駆動
し、その発電を例えば空気ブロア3の駆動モータ3aに
給電するようにしている。
With this configuration, when the power generation system is in operation, the anode exhaust gas (containing hydrogen) of the fuel cell 1 and the air sent from the air blower 3 are supplied to the burner 2a of the reformer 2 and combusted, and the combustion heat is generated. The fuel and the reforming catalyst undergo a catalytic reaction to reform the fuel into hydrogen-rich fuel gas. Also,
An air exhaust gas pipe 9 drawn out from the cathode 1b of the fuel cell 1 is connected to a combustion exhaust gas pipe 8 drawn out from the reformer 2,
The combustion exhaust gas of the reformer 2 and the exhaust gas of the air system are combined and guided to an exhaust gas turbine 4 to drive the exhaust gas turbine 4, and the generated power is supplied to, for example, a drive motor 3a of an air blower 3. .

一方、燃料電池1の通常運転時には、燃料電池1の圧力
容器(図示せず)に封入した窒素のガス圧を基準に差圧
制御弁6.7を制御し、燃料電池lにおけるアノード1
aとカソード1bとの極間差圧が許容限度圧填内に収ま
るように差圧制御を行っている。
On the other hand, during normal operation of the fuel cell 1, the differential pressure control valve 6.7 is controlled based on the nitrogen gas pressure sealed in the pressure vessel (not shown) of the fuel cell 1, and the anode 1 in the fuel cell 1 is controlled.
Differential pressure control is performed so that the interelectrode pressure difference between a and cathode 1b falls within the allowable limit pressure.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところで、前記した燃料電池発電システムは、負荷の増
減によって燃料電池に導入される燃料ガス、空気の流量
、および改質器の燃焼排ガス流量が変動し、このために
排ガスタービン(タービン出口が大気側に開放している
)に流入するガス量が変化する。しかも排ガスタービン
の特性から、タービンへの流入ガス流量が低下するとタ
ービンでのガス膨張比が小となって排ガスタービンの入
口側圧力が減少し、この結果として排ガスタービンから
見て上流側にある燃料電池の排気ガス配管系のガス圧が
低下する。
By the way, in the above-mentioned fuel cell power generation system, the flow rate of fuel gas and air introduced into the fuel cell and the flow rate of combustion exhaust gas of the reformer fluctuate depending on the increase or decrease in load. The amount of gas flowing into the area (which is open to the outside) changes. Moreover, due to the characteristics of the exhaust gas turbine, when the flow rate of gas flowing into the turbine decreases, the gas expansion ratio in the turbine decreases, and the pressure on the inlet side of the exhaust gas turbine decreases.As a result, the fuel on the upstream side of the exhaust gas turbine The gas pressure in the battery's exhaust gas piping system decreases.

つまり、燃料電池の排ガス配管系の圧力が排ガスタービ
ンへのガス流入量によって直接に影響を受け、ガス流量
の少ない軽負荷時には排ガス圧力が大きく低下し、逆に
ガス流量の多い高負荷時にはが多くその排ガス圧力が上
昇する。このために、実際の負荷範囲での最大負荷と最
小負荷との運転状態を比較すると、第3図で述べたよう
に改質器の燃焼排ガス、燃料電池の空気系排ガスをその
まま排ガスタービンに導入する従来方式の発電システム
では、燃料電池の排ガス配管系における圧力変動幅が極
めて大となる。
In other words, the pressure in the exhaust gas piping system of the fuel cell is directly affected by the amount of gas flowing into the exhaust gas turbine, and the exhaust gas pressure decreases significantly during light loads with low gas flow, and conversely increases under high loads with high gas flow. The exhaust gas pressure increases. For this purpose, when comparing the operating conditions between the maximum load and the minimum load in the actual load range, as shown in Figure 3, the combustion exhaust gas from the reformer and the air system exhaust gas from the fuel cell are directly introduced into the exhaust gas turbine. In conventional power generation systems, the range of pressure fluctuations in the exhaust gas piping system of the fuel cell is extremely large.

このことは燃料電池の排ガス配管系に介装した差圧制御
弁に対し、広範囲な圧力制御機能が要求されることを意
味する。しかして一般に差圧制御弁の実用的な制御範囲
は狭く、現状では前記のように最大負部運転から最小負
荷運転までの広い範囲な圧力変動に対応させて圧力制御
を行うことは殆ど不可能である。
This means that the differential pressure control valve installed in the exhaust gas piping system of the fuel cell is required to have a wide range of pressure control functions. However, the practical control range of differential pressure control valves is generally narrow, and currently it is almost impossible to perform pressure control in response to a wide range of pressure fluctuations from maximum negative section operation to minimum load operation as described above. It is.

一方、前記の問題に対処する対策として、燃料電池の運
転圧力を負荷変動に応じて変えるようにした運転方式が
考えられるが、燃料電池の発電特性は反応ガスである燃
料ガス、空気の水素、酸素の分圧に依存することから、
低負荷時に燃料電池の運転圧力を定格圧力よりも下げる
と燃料電池の発電効率が著しく低下してしまう。
On the other hand, as a countermeasure to deal with the above-mentioned problem, an operation method in which the operating pressure of the fuel cell is changed according to load fluctuations may be considered. Since it depends on the partial pressure of oxygen,
If the operating pressure of the fuel cell is lowered below the rated pressure during low load, the power generation efficiency of the fuel cell will drop significantly.

本発明は上記の点にかんがみなされたものであり、排ガ
スタービンを組合せた燃料電池発電システムを対象に、
低負荷から高負荷までの負荷変動範囲で燃料電池を常に
適正な運転圧力を維持して高効率運転を可能にし、同時
にその圧、力変動幅を差圧制御弁の実用的な制御範囲に
収めることができるようにした燃料電池発電システムを
提供することを目的とする。
The present invention has been made in consideration of the above points, and is aimed at a fuel cell power generation system combining an exhaust gas turbine.
Enables high-efficiency operation of the fuel cell by always maintaining appropriate operating pressure in the load fluctuation range from low load to high load, and at the same time keeping the pressure and force fluctuation range within the practical control range of the differential pressure control valve. The purpose of the present invention is to provide a fuel cell power generation system that enables the following.

C!!Inを解決するだめの手段〕 前記課題を解決するために、本発明の燃料電池発電シス
テムにおいては、排ガスタービン入口側に圧力制御弁を
設け、該圧力制御弁を含めて燃料電池の排ガス配管系で
検出したガス圧力を基に、該圧力を所定圧力に維持する
圧力制御系を構成するものとする。
C! ! [Means for Solving In] In order to solve the above problem, in the fuel cell power generation system of the present invention, a pressure control valve is provided on the exhaust gas turbine inlet side, and the exhaust gas piping system of the fuel cell including the pressure control valve is A pressure control system is configured to maintain the gas pressure at a predetermined pressure based on the detected gas pressure.

〔作用〕[Effect]

上記の構成で、制御系は排ガスタービンの入口側に設け
た圧力制御弁と、燃料電池の排ガス配管系に設けた圧力
検出器と、その制御部とからなるプロセス制御系として
構成したものである。
In the above configuration, the control system is configured as a process control system consisting of a pressure control valve provided on the inlet side of the exhaust gas turbine, a pressure detector provided in the exhaust gas piping system of the fuel cell, and its control section. .

ここで、制御部に一定圧もしくは負荷に依存した圧力曲
線に対応する圧力設定値を与え、圧力検出値を基に前記
圧力制御弁を制御することにより、ガス流量の少ない低
負荷からガス流量が多い高負荷までの範囲を通じて、燃
料電池の排ガス配管系のガス圧、したがって燃料電池の
運転圧力を常に適正な圧力に維持して高効率運転するこ
とができる。
Here, by giving a pressure set value corresponding to a constant pressure or a pressure curve depending on the load to the control unit and controlling the pressure control valve based on the detected pressure value, the gas flow rate can be increased from a low load with a small gas flow rate. The gas pressure in the exhaust gas piping system of the fuel cell, and therefore the operating pressure of the fuel cell, can always be maintained at an appropriate pressure throughout the range of high loads, and high efficiency operation can be achieved.

また、排ガスタービンの入口側で圧力制御することによ
り、低負荷から高負荷までの範囲で燃料電池の負荷変動
に伴う排ガス配管系の圧力変動幅を差圧制御弁の実用的
な制御範囲内に収める可能となり、これにより常に安定
した極間差圧制御が行える。
In addition, by controlling the pressure on the inlet side of the exhaust gas turbine, pressure fluctuations in the exhaust gas piping system due to fuel cell load fluctuations can be kept within the practical control range of the differential pressure control valve, from low to high loads. This allows stable interelectrode differential pressure control to be performed at all times.

〔実施例〕〔Example〕

第1図、第2図はそれぞれ異なる本発明実施例のシステ
ムフロー図であり、第3図に対応する同一機器には同じ
符号が付しである。
1 and 2 are system flow diagrams of different embodiments of the present invention, and the same equipment corresponding to FIG. 3 is given the same reference numeral.

まず、第1図の実施例は燃料電池1のアノードla、カ
ソード1bに対し、その排ガス配管系に差圧制御弁6.
7を備えて極間差圧制御を行っている場合の実施例であ
り、本発明により排ガスタービン4の入口側には圧力制
御弁10が設けである。さらに燃料電池1のアノード1
a+ カソード1bより引出した排ガス配管について差
圧制御弁6.7の下流側には圧力検出器としての圧力発
信器11.12が設置してあり、その検出信号は信号切
換器13を介して制御部14に与えられる。一方、制御
14は加圧形燃料電池1の運転圧に相応して定めた所定
の一定圧、もしくは負荷に依存する圧力曲線に対応した
圧力を設定値として与え、前記した圧力発信器11ない
し12の検出値を基に燃料電池の排ガス配管系のガス圧
が設定圧力を維持するようにフィードバック制御する。
First, in the embodiment shown in FIG. 1, a differential pressure control valve 6.
This is an embodiment in which a pressure control valve 10 is provided on the inlet side of the exhaust gas turbine 4 according to the present invention. Furthermore, the anode 1 of the fuel cell 1
A pressure transmitter 11.12 as a pressure detector is installed downstream of the differential pressure control valve 6.7 for the exhaust gas pipe led out from the cathode 1b, and its detection signal is controlled via the signal switch 13. Part 14 is given. On the other hand, the control 14 applies a predetermined constant pressure determined according to the operating pressure of the pressurized fuel cell 1 or a pressure corresponding to a pressure curve depending on the load as a set value, and outputs the pressure to the pressure transmitters 11 to 12. Based on the detected value, the gas pressure in the exhaust gas piping system of the fuel cell is feedback-controlled to maintain the set pressure.

なお、制御信号の切換器13は、圧力発信器11゜12
の検出値のいずれかを選択するものである。すなわち、
燃料電池1においてアノードla、カソード1bより引
出した排ガス配管系には、図示されてないが排ガスの保
有する熱エネルギーを回収するために、必要に応じて各
所に熱交換器を設けており、かつ燃料系と空気系とでは
配管系の圧力損失も異なる。したがって、図示例のよう
に圧力発信器11ないし12のいずれかを選択すること
で、システムとして最適な圧力制御を行うことができ。
The control signal switch 13 is connected to the pressure transmitter 11, 12.
This is to select one of the detected values. That is,
Although not shown in the exhaust gas piping system drawn out from the anode la and cathode 1b in the fuel cell 1, heat exchangers are installed at various locations as necessary in order to recover the thermal energy possessed by the exhaust gas. The pressure loss in the piping system is also different between the fuel system and the air system. Therefore, by selecting one of the pressure transmitters 11 and 12 as shown in the illustrated example, optimal pressure control can be performed as a system.

上記の構成により、低負荷から高負荷までの負荷変動に
対して、燃料電池1の排ガス配管系の圧力9 したがっ
て燃料電池自身の運転圧力を常に適正な圧力に維持して
運転することができる。また、差圧制御弁6.7に対し
てその下流側に配した圧力制御弁10で圧力制御を行う
ことにより、負荷変動に伴う排ガス配管系の圧力変動幅
を差圧制御弁6.7の実用的な制御範囲に収めて、最小
負荷から最大負荷までの食前変動に対応した極間差圧制
御を行うことが可能となる。
With the above configuration, the pressure 9 of the exhaust gas piping system of the fuel cell 1 can be maintained at an appropriate operating pressure at all times, even when the load fluctuates from low load to high load. In addition, by controlling the pressure with the pressure control valve 10 disposed downstream of the differential pressure control valve 6.7, the range of pressure fluctuation in the exhaust gas piping system due to load fluctuations can be reduced by the differential pressure control valve 6.7. It becomes possible to perform interelectrode differential pressure control that corresponds to pre-meal fluctuations from the minimum load to the maximum load within a practical control range.

第2図は本発明の別の実施例であり、第1図の実施例に
おける差圧制御弁を省略し、その代わりにカソード1b
から引出した排ガス配管9の途中に固定流路抵抗を与え
る絞り部材15を介装したものであり、他の構成は第1
図と同様である。
FIG. 2 shows another embodiment of the invention in which the differential pressure control valve in the embodiment of FIG.
A throttle member 15 that provides a fixed flow path resistance is interposed in the middle of the exhaust gas pipe 9 drawn out from the exhaust gas pipe 9.
It is similar to the figure.

かかる構成では、前記の絞り部材15でアノード1aの
排ガス配管系に接続した改質器2のバーナ2aの圧力損
失分に相応する流路抵抗を設定することにより、燃料電
池の燃料系、空気系における排ガス配管の圧力損失がほ
ぼ同じになるよう整合し、燃料電池内部でのアノード1
aとカソードlbとの間の極間差圧を許容圧力限度内に
抑えることができる。また、差圧制御弁を省略した分だ
け系内での圧力損失が少なくて済み、排ガスタービン4
での動力回収が改善される。
In this configuration, by setting a flow path resistance corresponding to the pressure loss of the burner 2a of the reformer 2 connected to the exhaust gas piping system of the anode 1a using the throttle member 15, the fuel system and air system of the fuel cell can be adjusted. The anode 1 inside the fuel cell is matched so that the pressure loss in the exhaust gas piping is almost the same.
The interpolar pressure difference between a and the cathode lb can be suppressed within the permissible pressure limit. In addition, the pressure loss within the system can be reduced by omitting the differential pressure control valve, and the exhaust gas turbine 4
Improved power recovery.

しかも、第1図の実施例と同様に圧力検出器11゜ない
し12を選択して排ガスタービン4の入口側に設けた圧
力制御弁10を制御することで、最小負荷から最大負荷
までの負荷変動範囲で燃料電池1の運転圧力を適正圧力
に維持することが可能になる。
Moreover, as in the embodiment shown in FIG. 1, by selecting the pressure detectors 11 or 12 and controlling the pressure control valve 10 provided on the inlet side of the exhaust gas turbine 4, load fluctuations from the minimum load to the maximum load can be controlled. It becomes possible to maintain the operating pressure of the fuel cell 1 at an appropriate pressure within this range.

これにより、低負荷運転時でも燃料電池1の高効率運転
が実現できる。
Thereby, high efficiency operation of the fuel cell 1 can be realized even during low load operation.

なお、発明者が試算したところによれば、排ガスタービ
ンの入口側に圧力制御弁を設けて燃料電池の運転圧力の
維持を図ることにより、燃料電池単体としての発電効率
が約5%改善することができる。
According to the inventor's calculations, by providing a pressure control valve on the inlet side of the exhaust gas turbine to maintain the operating pressure of the fuel cell, the power generation efficiency of the fuel cell alone can be improved by approximately 5%. I can do it.

〔発明の効果〕〔Effect of the invention〕

本発明の燃料電池発電システムは、以上説明したように
構成されているで、次記の効果を奏する。
The fuel cell power generation system of the present invention is configured as described above, and provides the following effects.

+1)低負荷から高負荷までの負荷変動に対して、排ガ
スタービン入口に設けた制御弁を制御することにより、
燃料電池の運転圧を常に適正圧に維持して高効率運転が
実現できる。
+1) By controlling the control valve installed at the exhaust gas turbine inlet in response to load fluctuations from low load to high load,
Highly efficient operation can be achieved by always maintaining the operating pressure of the fuel cell at an appropriate pressure.

(2+特に、燃料電池の排ガス配管系に差圧制御弁を接
続して燃料電池の極間差圧制御を行っている場合には、
広範囲な負荷変動に伴う排ガス配管系の圧力変動幅を縮
小して差圧制御弁の実用的な制御範囲に収めて安定した
極間差圧制御を行うことができる。
(2+ In particular, if a differential pressure control valve is connected to the exhaust gas piping system of the fuel cell to control the differential pressure between the electrodes of the fuel cell,
It is possible to perform stable interelectrode differential pressure control by reducing the range of pressure fluctuations in the exhaust gas piping system due to wide-ranging load fluctuations and keeping them within the practical control range of the differential pressure control valve.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図はそれぞれ異なる本発明実施例のシステ
ムフロー図、第3図は従来における燃料電池発電システ
ムのフロー図である0図において、1:燃料電池、la
ミニアノード1b:カソード、2:改質器、4:排ガス
タービン、6.7:差圧制御弁、lO:圧力制御弁、1
1.128圧力検出器、13:制御部。 イリ人弁理士 山 口  JL’ 第3図
1 and 2 are system flow diagrams of different embodiments of the present invention, and FIG. 3 is a flow diagram of a conventional fuel cell power generation system.
Mini anode 1b: cathode, 2: reformer, 4: exhaust gas turbine, 6.7: differential pressure control valve, lO: pressure control valve, 1
1.128 pressure detector, 13: control section. Illian patent attorney Yamaguchi JL' Figure 3

Claims (1)

【特許請求の範囲】[Claims] 1)加圧形の燃料電池と、燃料改質器と、燃料電池の排
ガス、および改質器の燃焼排ガスで駆動する熱回収用の
排ガスタービンとを組合せた燃料電池発電システムにお
いて、排ガスタービン入口側に圧力制御弁を設け、該圧
力制御弁を含めて燃料電池の排ガス配管系で検出したガ
ス圧力を基に、該圧力を所定圧力に維持する圧力制御系
を構成したことを特徴とする燃料電池発電システム。
1) In a fuel cell power generation system that combines a pressurized fuel cell, a fuel reformer, and an exhaust gas turbine for heat recovery driven by the exhaust gas of the fuel cell and the combustion exhaust gas of the reformer, the exhaust gas turbine inlet A pressure control system comprising a pressure control valve provided on the side and maintaining the pressure at a predetermined pressure based on the gas pressure detected in the exhaust gas piping system of the fuel cell including the pressure control valve. Battery power generation system.
JP1116810A 1989-05-10 1989-05-10 Fuel cell generator Expired - Fee Related JPH0812782B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1116810A JPH0812782B2 (en) 1989-05-10 1989-05-10 Fuel cell generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1116810A JPH0812782B2 (en) 1989-05-10 1989-05-10 Fuel cell generator

Publications (2)

Publication Number Publication Date
JPH02297866A true JPH02297866A (en) 1990-12-10
JPH0812782B2 JPH0812782B2 (en) 1996-02-07

Family

ID=14696212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1116810A Expired - Fee Related JPH0812782B2 (en) 1989-05-10 1989-05-10 Fuel cell generator

Country Status (1)

Country Link
JP (1) JPH0812782B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112310447A (en) * 2019-07-24 2021-02-02 株式会社丰田自动织机 Fuel cell system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60208063A (en) * 1984-04-02 1985-10-19 Hitachi Ltd Fuel cell power generating system
JPS6180761A (en) * 1984-09-26 1986-04-24 Shimadzu Corp Control system of fuel cell power generation system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60208063A (en) * 1984-04-02 1985-10-19 Hitachi Ltd Fuel cell power generating system
JPS6180761A (en) * 1984-09-26 1986-04-24 Shimadzu Corp Control system of fuel cell power generation system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112310447A (en) * 2019-07-24 2021-02-02 株式会社丰田自动织机 Fuel cell system
CN112310447B (en) * 2019-07-24 2023-09-12 株式会社丰田自动织机 fuel cell system

Also Published As

Publication number Publication date
JPH0812782B2 (en) 1996-02-07

Similar Documents

Publication Publication Date Title
US4923768A (en) Fuel cell power generation system
US6306532B1 (en) Vehicular mountable fuel cell system
JPS6260791B2 (en)
JPS6356672B2 (en)
KR20020031686A (en) Apparatus and method of efficiency improvement for Fuel Cell generation of electric power sysytem
JPH02297866A (en) Fuel cell power generating system
JPS6356673B2 (en)
JP3208970B2 (en) Fuel cell temperature control method and apparatus
JP2001015134A (en) Combined power generating device of fuel cell with gas turbine
JPH07123050B2 (en) Molten carbonate fuel cell power plant
JPS60157163A (en) Fuel cell system
JPH04284365A (en) Fuel cell power generating device
JPH02213056A (en) Fuel cell power generating plant
JPS6340269A (en) Cooling line control device of fuel cell power generating plant
JPH0261099B2 (en)
JPH1092451A (en) Fuel cell power generation device
JPH03266367A (en) Fuel system control unit of fuel cell system
JPH0824054B2 (en) Fuel cell power plant and control method thereof
JPS61140071A (en) Fuel cell plant
JPH01134869A (en) Fuel cell power generating facility and its operating method
JPS6180767A (en) Fuel supply system for fuel cell electric power generating plant
JPH02273466A (en) Fuel cell power generating system
JP3536323B2 (en) Differential pressure controller for fuel cell power plant
JPH087910A (en) Fuel cell power generating system
JPS6372072A (en) Control method of fuel cell power generating plant

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees