JPH02297095A - Hydrogen nuclear fusion method - Google Patents

Hydrogen nuclear fusion method

Info

Publication number
JPH02297095A
JPH02297095A JP1118129A JP11812989A JPH02297095A JP H02297095 A JPH02297095 A JP H02297095A JP 1118129 A JP1118129 A JP 1118129A JP 11812989 A JP11812989 A JP 11812989A JP H02297095 A JPH02297095 A JP H02297095A
Authority
JP
Japan
Prior art keywords
cathode
hydrogen
anode
nuclear fusion
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1118129A
Other languages
Japanese (ja)
Inventor
Haruyuki Nobunaga
延永 治志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP1118129A priority Critical patent/JPH02297095A/en
Publication of JPH02297095A publication Critical patent/JPH02297095A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

PURPOSE:To allow a hydrogen nuclear fusion reaction at a low temp. with the simple device by using an alloy contg. one of rare earth elements, Mg, Ni, Co, etc., as a cathode material which impresses voltage between a pair of electrodes immersed in heavy water. CONSTITUTION:The heavy water and a small amt. of metal salt 2 are filled in a vessel 1 and an anode 3 and cathode 4 consisting of gold are immersed at an adequate spaced interval therein. The voltage is impressed between the anode 3 and the cathode 4 from a constant voltage power source 5. Hydrogen appears on the surface of the cathode 4 and the deuterium ions having positive electricity are absorbed in the electrodes in an initial period if, for example, LaNi5 is first used for the cathode 4 of this constitution and, 20V is impressed between the anode 3 and the cathode 4. Neutrons, gamma rays and exothermic phenomenon are then observed. Any metals which can form a metal hydride are usable as the cathode 4 material. Alloys having a high hydrogen density when converted to a metal hydride, for example, Mg2Ni, FeTi, etc., are preferable for the above-mentioned material.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は水素核融合法に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a hydrogen fusion method.

〔従来の技術〕[Conventional technology]

従来の核融合法は、核融合を起させるために必要なエネ
ルギーを加速器を用いて与えることにより、原子核同士
のクーロン反発力に打ち勝って十分接近させ反応を実現
させていた。
Conventional nuclear fusion methods use accelerators to provide the energy necessary to cause nuclear fusion to overcome the Coulomb repulsion between atomic nuclei and bring them close enough to each other to cause a reaction.

また別の方法として、物質を高温に加熱することによっ
て熱エネルギーの形で原子に与え、原子核同士の衝突の
確率を高めて反応させるものがあった。
Another method was to heat a substance to high temperatures, giving the atoms heat energy in the form of heat to increase the probability that the nuclei would collide with each other, causing them to react.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、前述の従来技術では、加速器を用いる場
合、加速電圧は数+KV程度以上を必要とし、熱を用い
る場合、数億度以上の超高温を必要とするため、装置が
巨大な上、制約も多いという問題点を有する。
However, in the above-mentioned conventional technology, when an accelerator is used, an accelerating voltage of several + KV or more is required, and when heat is used, an extremely high temperature of hundreds of millions of degrees or more is required, so the equipment is huge and has restrictions. The problem is that there are too many.

そこで本発明はこのような問題点を解決するもので、そ
の目的とするところは、装置が容易でかつ低温で起こる
水素核融合法を提供するところにある。
The present invention is intended to solve these problems, and its purpose is to provide a hydrogen nuclear fusion method that is easy to use and can be carried out at low temperatures.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の水素核融合法は、重水中に浸された一対の電極
間に電圧を印加することにより陰極側で核融合させる水
素核融合法において、前記陰極として希土類元素、Mg
、、Ni、Co、Fe5Tiの少なくとも一つを含む合
金を用いることを特徴とする。
The hydrogen nuclear fusion method of the present invention is a hydrogen nuclear fusion method in which nuclear fusion is performed on the cathode side by applying a voltage between a pair of electrodes immersed in heavy water.
, , Ni, Co, and Fe5Ti.

〔実 施 例〕〔Example〕

以下、本発明の実施例を図面にもとづいて説明する。 Embodiments of the present invention will be described below based on the drawings.

第1図は本発明の実施例を示す水素核融合装置である。FIG. 1 shows a hydrogen fusion device showing an embodiment of the present invention.

容器1内に重水と少量の金属塩3を満たし、その中に金
の陽極3と陰極4を適当な間隔をおいて浸されている。
A container 1 is filled with heavy water and a small amount of metal salt 3, and a gold anode 3 and a gold cathode 4 are immersed therein at an appropriate interval.

そしてこの陽陰極間に電圧を印加するための定電圧電源
5を備えている。
A constant voltage power supply 5 is provided for applying a voltage between the anode and cathode.

まず陰極4としてLaNi5を用いた場合、陽陰極間に
電圧を20V印加すると、数分後からLaNi、陰電極
の表面に水素の泡が現れ、プラスの電気を帯びた重水素
イオンが初期に電極内に吸収されていることを示唆し、
そして中性子、ガンマ線、発熱現象が観測された。
First, when LaNi5 is used as the cathode 4, when a voltage of 20V is applied between the anode and cathode, hydrogen bubbles appear on the surface of LaNi and the cathode after a few minutes, and positively charged deuterium ions are initially introduced into the electrode. It suggests that it is absorbed into the
Neutrons, gamma rays, and heat generation phenomena were observed.

これに対して、陰極4としてステンレス鋼(SUS30
4)を用いた場合、L a N i 5と同様な条件で
陽陰極間に電圧を20V印加すると、直ちにステンレス
鋼陰電極の表面に水素の泡が現れ、中性子、ガンマ線は
観測されなかった。
On the other hand, the cathode 4 is made of stainless steel (SUS30
4), when a voltage of 20 V was applied between the anode and cathode under the same conditions as L a N i 5, hydrogen bubbles immediately appeared on the surface of the stainless steel cathode, and no neutrons or gamma rays were observed.

このことは、陰極に使用する合金がLaNi5の場合は
合金中に水素を吸蔵し金属水素化物を形成することがで
きるが、ステンレス鋼の場合は合金中に水素を吸蔵する
ことができないことに起因し、金属水素化物を形成しう
る合金のみが水素核融合反応を可能にする。
This is due to the fact that when the alloy used for the cathode is LaNi5, hydrogen can be stored in the alloy to form a metal hydride, but in the case of stainless steel, hydrogen cannot be stored in the alloy. However, only alloys that can form metal hydrides allow hydrogen fusion reactions.

尚、本発明では陰極としてLaNi、を使用したが、前
述したように、金属水素化物を形成しうる合金であれば
いかなる合金でも良いが、金属水素化物になった場合の
水素密度が高い合金、たとえば、Mg2Nf、FeTi
等が好ましい。
In the present invention, LaNi was used as the cathode, but as mentioned above, any alloy that can form metal hydrides may be used, but alloys with high hydrogen density when formed into metal hydrides, For example, Mg2Nf, FeTi
etc. are preferred.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明によれば、重水中に浸された一
対の電極間に電圧を印加することにより陰極側で核融合
させる水素核融合法において、陰極として金属水素化物
を形成しうる合金を用いることによって、従来では考え
られない低温で、しかも簡単な装置で水素核融合を起こ
すことが可能となる。
As described above, according to the present invention, an alloy capable of forming a metal hydride is used as a cathode in a hydrogen fusion method in which nuclear fusion is carried out on the cathode side by applying a voltage between a pair of electrodes immersed in heavy water. By using this, it becomes possible to generate hydrogen nuclear fusion at a low temperature that was previously unimaginable, and with a simple device.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の水素核融合装置の概略構成を示す断面
図。 ・容器 ・重水+金属塩 ・陽極 ・陰極 ・定電圧電源 以上 出願人 セイコーエプソン株式会社
FIG. 1 is a sectional view showing a schematic configuration of a hydrogen fusion device of the present invention.・Container ・Heavy water + metal salt ・Anode ・Cathode ・Constant voltage power supply and above Applicant: Seiko Epson Corporation

Claims (1)

【特許請求の範囲】[Claims] 重水中に浸された一対の電極間に電圧を印加することに
より陰極側で核融合させる水素核融合法において、前記
陰極として希土類元素、Mg、Ni、Co、Fe、Ti
の少なくとも一つを含む合金を用いることを特徴とする
水素核融合法。
In a hydrogen nuclear fusion method in which nuclear fusion is carried out on the cathode side by applying a voltage between a pair of electrodes immersed in heavy water, rare earth elements such as Mg, Ni, Co, Fe, Ti are used as the cathode.
A hydrogen fusion method characterized by using an alloy containing at least one of the following.
JP1118129A 1989-05-11 1989-05-11 Hydrogen nuclear fusion method Pending JPH02297095A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1118129A JPH02297095A (en) 1989-05-11 1989-05-11 Hydrogen nuclear fusion method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1118129A JPH02297095A (en) 1989-05-11 1989-05-11 Hydrogen nuclear fusion method

Publications (1)

Publication Number Publication Date
JPH02297095A true JPH02297095A (en) 1990-12-07

Family

ID=14728762

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1118129A Pending JPH02297095A (en) 1989-05-11 1989-05-11 Hydrogen nuclear fusion method

Country Status (1)

Country Link
JP (1) JPH02297095A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000025320A1 (en) * 1998-10-26 2000-05-04 Davies, Christopher, John Energy generation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000025320A1 (en) * 1998-10-26 2000-05-04 Davies, Christopher, John Energy generation

Similar Documents

Publication Publication Date Title
US20060088138A1 (en) Method and apparatus for the generation and the utilization of plasma solid
US5567303A (en) Hydrogen storing member and process for storing hydrogen into the hydrogen storing member
US20070280398A1 (en) Modified electrodes for low energy nuclear reaction power generators
EP0473681B1 (en) Production of fusion energy
EP0474724A1 (en) Improvements in materials
EP1266384A2 (en) Cold nuclear fusion under non-equilibrium conditions
JPH02297095A (en) Hydrogen nuclear fusion method
EP0392325A2 (en) Electrochemical nuclear fusion method
JPH02297094A (en) Hydrogen nuclear fusion method
WO1990015416A1 (en) Production of thermal energy
US20080205572A1 (en) Apparatus and process for generating nuclear heat
US20010019594A1 (en) Method and apparatus to control loaded isotopic fuel within a material
Whitley et al. Metallic materials as plasma facing components—A review
Kim New cold nuclear fusion theory and experimental tests
JPH0335193A (en) Cathode for exothermic reaction to form tritium by electrolysis method
Storms The status of''Cold Fusion''
Storms The nature of the nuclear-active-environment required for low energy nuclear reactions
Slovetskii et al. A plasma-electrolyte metal heating mechanism
JPH0378691A (en) Method for energy generation
JPH07318672A (en) Electrolytic low temperature fusion reactor
JPH03107791A (en) Low-temperature nuclear fusion reactor
Cerofolini et al. Can binuclear atoms solve the cold fusion puzzle?
Kim Fission-induced inertial confinement hot fusion and cold fusion with electrolysis
JPH0472593A (en) Nuclear fusion method
JPH0484797A (en) Low temperature nuclear fusion device