JPH02296147A - Method and apparatus for measuring acoustic anisotropy - Google Patents

Method and apparatus for measuring acoustic anisotropy

Info

Publication number
JPH02296147A
JPH02296147A JP1116994A JP11699489A JPH02296147A JP H02296147 A JPH02296147 A JP H02296147A JP 1116994 A JP1116994 A JP 1116994A JP 11699489 A JP11699489 A JP 11699489A JP H02296147 A JPH02296147 A JP H02296147A
Authority
JP
Japan
Prior art keywords
measured
anisotropy
sound speed
probe
acoustic anisotropy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1116994A
Other languages
Japanese (ja)
Inventor
Tetsuo Nakano
中野 哲男
Susumu Nakazawa
中沢 晋
Megumi Tanaka
恵 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP1116994A priority Critical patent/JPH02296147A/en
Publication of JPH02296147A publication Critical patent/JPH02296147A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PURPOSE:To make it possible to measure the acoustic anisotropy of a material to be measured simply and highly accurately at a low cost by measuring each transverse-wave sound speed in the rolling direction and the orthogonal direction of the material to be measured or each transverse-wave sound speed of the material to be measured and a standard comparing material. CONSTITUTION:The presence or absence of the acoustic anisotropy of a material to be measured 1 is measured by using a double-piezoelectric-transducer probe 2. Each transverse-wave sound speed in the rolling direction and the orthogonal direction of the material to be measured 1 or each transverse-wave sound speed of the material to be measured 1 and a standard comparing material is measured. The presence or absence of the acoustic anisotropy of the material to be measured 1 is judged based on the ratio between the transerse-wave sound speeds. At this time, the refractive angles of the piezoelectric transducers T and R of the probe 2 on the transmitting and receiving sides are made to be in the range of 35 deg. -70 deg.. An interval Yo at each incident point is arbitrarily set at a constant value corresponding to a measured thickness. Which method should be taken is set at a setting part 10. An ultrasonic wave beam is received with the probe 2, and the signal is amplified in a receiving amplifier 6. The transverse-wave sound speed is measured and amplified in a sound-wave measuring and operating part 8. The presence or absence of the acoustic anisotropy is judged in an anisotropy judging and operating part 9.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は鋼板等の被測定材の音響異方性を、簡便にかつ
安価にしかも精度良く測定し得るようにした音響異方性
測定方法および装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides an acoustic anisotropy measuring method that allows the acoustic anisotropy of a material to be measured, such as a steel plate, to be measured easily, inexpensively, and with high precision. and regarding equipment.

(従来の技術) 一般に、機械的性質を向上させた制御圧延鋼板やT、M
、C,Pfv4板等の鋼板の多くには、音響異h゛性が
発生する場合がある。これらの鋼板の89異方性を測定
する装置としては、従来から圧電効果素子を用いたYカ
ット型横波垂直探触子による音速4−1定や、電磁超音
波探触子を用いた音速測定が知られている。
(Prior art) In general, control rolled steel sheets with improved mechanical properties, T, M
Many steel plates, such as , C, and Pfv4 plates, may exhibit acoustic anomalies. Conventional devices for measuring the 89 anisotropy of these steel plates include measuring the sound velocity at a constant 4-1 using a Y-cut transverse wave vertical probe using a piezoelectric effect element, and measuring the sound velocity using an electromagnetic ultrasonic probe. It has been known.

[発明が解決しようとする課題] しかしながら、前者の圧電効果素子を用いたYカット型
横波垂直探触子によって音響異方性の711j定を行な
う場合、その測定結果を正確な信頼性のあるものとする
ためには、以下のような多くの測定条件が必要であった
[Problems to be Solved by the Invention] However, when performing 711j determination of acoustic anisotropy using the former Y-cut transverse wave vertical probe using a piezoelectric effect element, it is difficult to obtain accurate and reliable measurement results. In order to achieve this, many measurement conditions were required, such as the following.

(a)接触媒質(カッブラント) Yカットや横波垂直探触子は、その振動子から直接横波
モードの超音波振動を発生させるものである。このため
、接触媒質(カッブラント)として通常使用されるグリ
セリンおよび浦は、横波を液体中に伝播させることがで
きないため使用することができない。従っで、横波専用
の接触媒質、例えば非常に粘度の高い(水飴等)ものを
使用しなければならない。しかし、このような横波専用
の接触媒質(カッブラント)を使用するには、事前の鋼
板の表面手入れ、およびap1定後の接触媒質(カッブ
ラント)の除去等の後始末が必要であり、これらに費や
される工数、費用および繁雑さが大きな問題となってい
る。
(a) Couplant: A Y-cut or shear wave vertical probe generates ultrasonic vibration in a shear wave mode directly from its vibrator. For this reason, glycerin and ura, which are commonly used as couplants, cannot be used because they cannot propagate transverse waves into the liquid. Therefore, a couplant specialized for transverse waves must be used, for example one with a very high viscosity (such as starch syrup). However, in order to use such a couplant exclusively for transverse waves, it is necessary to clean up the surface of the steel plate in advance and remove the couplant after the AP1 process, which requires a lot of money. The number of man-hours, cost, and complexity involved are major problems.

(b)鋼板の表面の影響 Yカット型横波垂直探触子は、横波振動を振動子から接
触媒質(カッブラント)を介して被Apj定材たる鋼板
へ伝播させるため、その鋼板の表面性常、すなわち粗さ
、錆、スケール、塗料および汚・れ等の影響を、通常の
探触子よりも非常に多く受けやすい。従っで、」j定結
果の信頼性および誤差を無くすために、被測定材たる鋼
板の事前の表面の手入れを入念に実施しなければならな
い問題がある。
(b) Influence of the surface of the steel plate The Y-cut transverse wave vertical probe propagates transverse wave vibration from the vibrator to the steel plate to be Apjed through the couplant, so the surface properties of the steel plate, That is, they are much more susceptible to the effects of roughness, rust, scale, paint, dirt, etc. than normal probes. Therefore, there is a problem in that the surface of the steel plate to be measured must be carefully cleaned in advance in order to ensure reliability and eliminate errors in the determination results.

(c ) AI定技術 Yカット型横波垂直探触子による測定は、(a)および
(b)に述べた特性を十分に理解した上で、探触子と被
測定材たる鋼板との接触圧を一定にする必要がある等、
その作業は経験を積んだものでないと行なえないという
問題がある。さらに、探触子の振動子の偏波方向を難度
も変化させて各角度毎に音速測定する必要があり、その
作業に非常に時間がかかるという問題がある。
(c) When performing measurements using an AI-defined technology Y-cut transverse wave vertical probe, it is important to fully understand the characteristics described in (a) and (b) before determining the contact pressure between the probe and the steel plate that is the material to be measured. need to be constant, etc.
The problem is that this work can only be done by experienced personnel. Furthermore, it is necessary to measure the sound velocity at each angle by changing the polarization direction of the transducer of the probe, and there is a problem in that it takes a very long time.

一方、後者の電磁超音波探触子を用いて音響異方性の測
定を行なうものでは、前述のような問題は解決できるも
のの、次のような問題があった。
On the other hand, in the latter method in which acoustic anisotropy is measured using an electromagnetic ultrasonic probe, although the above-mentioned problems can be solved, there are the following problems.

すなわち、電磁超音波探触子および測定器が、大型で高
価なものとなる。また、鋼板製造工程中やその工場内で
の′A−1定器としては最適であるものの、屋外の構造
物や建築物の溶接現場等では、その溶接部の斜角探傷を
行なう前に異方性の程度を予めapl定してその検査方
法を決める必要があり、このようなフィールドでの取扱
いが不便である。そのため、もっと部品的に安価に精度
良く測定を行なえる方法、あるいは装置の出現が強く要
望されてきている。
That is, the electromagnetic ultrasonic probe and measuring device become large and expensive. In addition, although it is most suitable as an 'A-1 measuring device during the steel plate manufacturing process or in the factory, it is necessary to use it at outdoor welding sites of structures and buildings before performing angle flaw detection of the welded part. It is necessary to determine the degree of tropism in advance and determine the inspection method, which is inconvenient to handle in the field. Therefore, there is a strong demand for a method or device that can perform measurements with higher accuracy at lower cost.

本発明の目的は、鋼板等の被測定材の音響異方性を、簡
便にかつ安価にしかも精度良く測定することが1’+l
能な音響異方性測定方法および装置を提供することにあ
る。
An object of the present invention is to easily and inexpensively measure the acoustic anisotropy of a material to be measured such as a steel plate with high accuracy.
An object of the present invention is to provide a method and apparatus for measuring acoustic anisotropy that can be used to measure acoustic anisotropy.

[課題を解決するための手段] 上記の目的を達成するために本発明では、鋼板等の被測
定材の音響異方性のa無を、二振動子斜角探触子を用い
て測定するものであり、その測定方法としで、鋼板等の
ICI定材の圧延方向とその直角方向の各々の横波音速
を計測し、この各横波音速の比により被71F1定材の
音響異方性のa無を判定するか、または鋼板等の被測定
材と標準比較材の各々の横波音速を計DI L、この各
横波音速の比により被ill定材の音響異方性の有無を
判定する方法においで、各々の振動子の屈折角が35°
〜70°の範囲で各々の入射点間隔が任意に設定された
一定の値の二振動子斜角探触子と、被測定材の厚さを包
含した既知の最小肉厚と最大肉厚のテストブロックを用
いで、予めビーム路程と肉厚の関係をキャリブレーショ
ンし、被測定材のビーム路程の計/I−1値と既知の肉
厚値から横波音速を計測するようにしている。
[Means for Solving the Problems] In order to achieve the above object, the present invention measures the acoustic anisotropy of a material to be measured such as a steel plate using a two-element angle probe. The measurement method is to measure the sound velocity of each transverse wave in the rolling direction and the direction perpendicular to the rolling direction of an ICI constant material such as a steel plate, and calculate the acoustic anisotropy a of the 71F1 constant material by the ratio of the respective shear wave sound velocities. Alternatively, the method is to determine the presence or absence of acoustic anisotropy in the constant material to be measured by measuring the shear wave sound velocity of each of the material to be measured such as a steel plate and the standard comparison material, and determining the presence or absence of acoustic anisotropy in the constant material to be measured based on the ratio of the sound velocities of each shear wave. Come on, the refraction angle of each vibrator is 35°
A two-element angle probe with a constant value of incident point spacing arbitrarily set in the range of ~70°, and a known minimum and maximum wall thickness that includes the thickness of the material to be measured. The relationship between the beam path length and the wall thickness is calibrated in advance using a test block, and the transverse sound velocity is measured from the total /I-1 value of the beam path length of the material to be measured and the known wall thickness value.

また、本方法を実現するための測定装置を、各々の振動
子の屈折角が35°〜70”の範囲で、各々の入射点間
隔が任意に設定された一定の値の二振動子斜角探触子と
、二振動子斜角探触子の送信側振動子から被測定材に対
して超音波ビームを入射させるように送信パルスを発生
する送信部と、被111定材の底面から反射された超音
波ビームを受信する二振動子斜角探触子の受信側振動子
からの出力信号を受信する受信増幅器と、受信増幅器か
らの出力を人力し、予めキャリブレーションされたビー
ム路程を基準として底面エコーまでのビーム路程を計測
して音速を求める音速計測演算部と、音速計−一1演算
部からの音速を一旦記憶し、この記憶値から被測定材の
圧延方向とその直角方向の各々の横波音速の比、または
被測定材と標準比較材の各々の横波音速の比を求め、か
つ当該音速比を異方性判定値と比較することにより被測
定材の音響異方性の有無を判定する異方性判定演算部と
を備えて構成している。
In addition, a measuring device for realizing this method is equipped with a two-oscillator oblique angle of a constant value in which the refraction angle of each transducer is in the range of 35° to 70'' and the interval between each incident point is arbitrarily set. a transmitter that generates a transmission pulse so that an ultrasonic beam is incident on the material to be measured from the transmitting side transducer of the two-element angle probe; A receiving amplifier receives the output signal from the receiving side transducer of the two-transducer angle probe that receives the ultrasonic beam, and a receiving amplifier that receives the output signal from the receiving amplifier and uses a pre-calibrated beam path as a reference. The sound velocity from the sound velocity measurement calculation unit that measures the beam path to the bottom echo to determine the sound velocity and the sound velocity meter-11 calculation unit is temporarily stored, and from this stored value, the rolling direction of the material to be measured and the direction perpendicular to it are calculated. The presence or absence of acoustic anisotropy in the material to be measured can be determined by determining the ratio of the sound speeds of each shear wave, or the ratio of the sound speeds of each shear wave of the material to be measured and the standard comparison material, and comparing the sound speed ratio with the anisotropy determination value. and an anisotropy determination calculation section for determining the anisotropy.

(作用) 従っで、本発明では以上のような手段としたことにより
、二振動子斜角探触子を用いたV透過法によっで、被測
定材の圧延方向とその直角方向の各々の横波音速、また
は被測定材と標準比較材の各々の横波音速が計alll
され、この各横波音速の比により被測定材のff音響異
方性有無が判定される。これにより、被測定材の音響異
方性を、部品に、安価に、精度良< ′Ap+定するこ
とが可能となる。
(Function) Therefore, in the present invention, by employing the above-mentioned means, each of the rolling direction and the perpendicular direction of the material to be measured can be measured by the V-transmission method using a dual-oscillator oblique probe. The transverse wave sound velocity, or each transverse wave sound velocity of the material to be measured and the standard comparison material, is calculated.
The presence or absence of ff acoustic anisotropy in the material to be measured is determined based on the ratio of the sound velocities of each transverse wave. This makes it possible to determine the acoustic anisotropy of the material to be measured on the component at low cost and with high accuracy.

(実施例) 本発明では、通常の斜角探傷と同様に通常の液体の接触
媒質を用い、鋼板等の被測定材の圧延方向とその直角方
向の各々の横波音速を計測し、この各横波音速の比によ
り被測定材の音響異方性の有無を判定するか、または鋼
板等の被測定材と標準比較材の各々の横波音速を計?#
1し、この各横波音速の比により披n1定材の音響・異
方性の有無を判定するに際しで、各々の振動子の屈折角
が35°〜70″の範囲で各々の入射点間隔が任意に設
定された一定の値の二振動子斜角探触子と、被Δllj
定材の厚さを包含した既知の最小肉厚と最大肉厚のテス
トブロックを用いで、予めビーム路程と肉厚の関係をキ
ャリブレーションし、被測定材のビーム路程の計測値と
既知の肉厚値から横波音速を計ap+する点に最大の特
徴を有するものである。
(Example) In the present invention, similar to normal angle flaw detection, a normal liquid couplant is used to measure the sound velocity of transverse waves in the rolling direction and the direction perpendicular to the rolling direction of a material to be measured such as a steel plate. Is it possible to determine the presence or absence of acoustic anisotropy in the material to be measured based on the ratio of sound velocities, or to measure the transverse sound velocity of each of the material to be measured, such as a steel plate, and a standard comparison material? #
1. When determining the presence or absence of acoustics and anisotropy in a constant material based on the ratio of the sound velocities of each transverse wave, the interval between each incident point is A two-element angle probe with an arbitrarily set constant value and a target Δllj
Calibrate the relationship between the beam path and wall thickness in advance using test blocks with known minimum and maximum wall thicknesses that include the thickness of the measured material, and then compare the measured value of the beam path of the material to be measured with the known thickness. The biggest feature is that the transverse wave sound velocity is measured from the thickness value.

以丁、上記のような考え方に基づいた本発明の一実施例
についで、図面を参照して詳細に説明する。
An embodiment of the present invention based on the above concept will now be described in detail with reference to the drawings.

第1図は、本発明による音響異方性測定装装置の構成例
を示すブロック図である。本実施例の音響異方性4P1
定装置は、被測定材1に配設した二振動子斜角探触子2
と、クロック発振部3と、タイミングクロック(PRF
)部4と、送信部5と、受信増幅器6と、零点調整部8
A・ゲート部8B・工1測演算部8C−音速演算部8D
よりなる音速=l測演算部8と、メモリ部9A・音速比
演算部9B・判定部9Cよりなる異方性判定演算部9と
、設定部10と、表示部11と、アラーム部12とから
構成している。
FIG. 1 is a block diagram showing an example of the configuration of an acoustic anisotropy measuring device according to the present invention. Acoustic anisotropy 4P1 of this example
The measuring device consists of a two-element angle probe 2 placed on a material to be measured 1.
, the clock oscillator 3, and the timing clock (PRF
) section 4, transmitting section 5, receiving amplifier 6, and zero point adjusting section 8
A・Gate section 8B・Mechanism calculation section 8C-Sound speed calculation section 8D
a sound speed=l measuring calculation section 8, an anisotropy judgment calculation section 9 consisting of a memory section 9A, a sound speed ratio calculation section 9B, and a judgment section 9C, a setting section 10, a display section 11, and an alarm section 12. It consists of

ここで、二振動子斜角探触子2は、各々の振動子すなわ
ち送信側振動子T、受信側振動子Rの屈折角θが35°
〜70°の範囲(本実施例では38°)で、各々の入射
点間隔Y。が測定厚さ(範囲)によって任意に設定され
た一定の値を有するものである。この入射点間隔Y。に
よって超音波ビームの焦点深さが決まり、その反射エコ
ーレベルも変化する。また、クロック発振部3は、ビー
ム路程計測用のクロックを発振するものである。さらに
、タイミングクロック部4は、クロック発振部3からの
クロックを人力して送信タイミング(超音波送信パルス
の繰り返し周波数P、R,F)を選択するものである。
Here, in the two-element oblique probe 2, the refraction angle θ of each transducer, that is, the transmitter transducer T and the receiver transducer R, is 35°.
˜70° (38° in this example), and the spacing Y of each incident point. has a constant value arbitrarily set depending on the measured thickness (range). This incident point interval Y. This determines the focal depth of the ultrasound beam, and its reflected echo level also changes. Further, the clock oscillator 3 oscillates a clock for beam path measurement. Further, the timing clock section 4 manually selects the transmission timing (repetition frequencies P, R, F of ultrasonic transmission pulses) using the clock from the clock oscillation section 3.

一方、送信部5は、二振動子斜角探触子2の送fCi側
振動子Tから被測定材1に対して超音波ビームを入射さ
せるようにインパルス電圧を発生するものである。また
、受信増幅器6は、被測定材1の底面から反射された超
音波ビームを受信する二振動子斜角探触子2の受信側振
動子Rからの出力信号を受信するものである。すなわち
、この受信増幅器6は、二振動子斜角V透過の受信器で
、上述の焦点深さ(7iIII定深さ)による反射エコ
ーレベルの変化を抽圧する自動利得コントロール(AG
C)回路7を有している。第2図はその動作を示すもの
で、AGC動作範囲の厚さが測定可能範囲となる(おお
よそ、焦点深さα±30%程度)。
On the other hand, the transmitter 5 generates an impulse voltage so that the ultrasonic beam is made to enter the material to be measured 1 from the transducer fCi side transducer T of the two-transducer oblique probe 2 . Further, the receiving amplifier 6 receives an output signal from the receiving side transducer R of the two-transducer oblique probe 2, which receives the ultrasonic beam reflected from the bottom surface of the material to be measured 1. That is, this receiving amplifier 6 is a two-oscillator oblique angle V transmission receiver, and is equipped with an automatic gain control (AG
C) It has a circuit 7. FIG. 2 shows the operation, and the thickness of the AGC operating range is the measurable range (approximately the depth of focus α±30%).

一方、音速計/Iか1演算部8は、受信増幅器6からの
出力を人力し、rめキャリブレーションされたビーム路
程時間を基弗として底面エコーまでのビム路程時間T′
を計測し、これを厚さ時間Tに換算し、その披/111
1定材の横波音速Vと板厚tとの間のT−t/Vなる関
係を基に、厚さ時間Tから横波音速Vを求めるものであ
る。また、異方性判定演算部9は、音速計測演算部8か
らの横波音速Vをそのメモリ部9Aに一旦記憶し、この
記憶値からAI定モードに応じで、被測定材1の圧延方
向とその直角方向の各々の横波音速VLとV7の比α(
−VL/VT)  または被測定材1と標準比較材の各
々の横波音速v5とV STBの比β(−Vs/Vsy
n)を求め、かつ当該音速比αまたはβを異方性判定値
αSETまたはβ5ETl+β5ET2と比較すること
により、被測定材1の音唇異カ性の有無を判定するもの
である。
On the other hand, the sound velocity meter/I/1 calculation unit 8 manually inputs the output from the receiving amplifier 6, and calculates the beam path time T' to the bottom echo based on the rth calibrated beam path time.
, convert it into thickness time T, and calculate its value/111
The transverse sound velocity V is determined from the thickness time T based on the relationship T-t/V between the transverse sound velocity V and the plate thickness t of a constant material. In addition, the anisotropy determination calculation unit 9 temporarily stores the transverse wave sound velocity V from the sound velocity measurement calculation unit 8 in its memory unit 9A, and determines the rolling direction of the material to be measured 1 from this stored value according to the AI constant mode. The ratio α(
-VL/VT) or the ratio β (-Vs/Vsy
n), and by comparing the sound speed ratio α or β with the anisotropy determination value αSET or β5ETl+β5ET2, it is determined whether or not the material to be measured 1 has lip achromaticity.

一方、設定部10は、音速演算に必要な既知の値、異方
性判定値(ZSET(上限値)、β5Flt+ (下限
値)、βSET□(上限値)等のプリセット、測定モー
ドの設定等を行なうものである。また、表示部11は、
例えばCRT (Aスコープ)、LEDなどからなり、
計測値、演算値、プリセット値。
On the other hand, the setting unit 10 presets known values necessary for sound velocity calculations, anisotropy determination values (ZSET (upper limit), β5Flt+ (lower limit), βSET□ (upper limit), etc., measurement mode settings, etc. In addition, the display unit 11
For example, it consists of CRT (A scope), LED, etc.
Measured values, calculated values, preset values.

演算状況1判定結果等を表示するものである。さらに、
アラーム部12は、異方性判定演算部9で異方性有りと
判定された場合に、その旨のアラームを出力するもので
ある。
It displays the calculation status 1 judgment results, etc. moreover,
The alarm unit 12 outputs an alarm to that effect when the anisotropy determination calculation unit 9 determines that anisotropy exists.

次に、以上のように構成した音響異方性測定装置による
音響異方性の測定方法についで、第3図および第4図に
示すフロー図を用いて説明する。
Next, a method for measuring acoustic anisotropy using the acoustic anisotropy measuring apparatus configured as described above will be explained using the flowcharts shown in FIGS. 3 and 4.

先ず、第3図に示すフロー図にしたがって測定のための
事前準備を行なう。すなわち、被nJ定材1の厚さ(公
称)より、二振動子斜角探触子2の屈折角θ(本実施例
では38°)と、各々の入射点間隔Y。を決定する(特
に決められたeでY。
First, advance preparations for measurement are made according to the flowchart shown in FIG. That is, from the thickness (nominal) of the nJ constant material 1, the refraction angle θ (38° in this example) of the dual-oscillator oblique probe 2 and the interval Y of each incident point. (Y with a particular e determined.

が一定のため、第2図に示すように底面エコーレベルが
■透過の焦点深さにより振動するので、自動利得コント
ロール回路7を動作させるが、それでも測定スバーンが
限定される)。その後、既知の肉厚のT、B(テストブ
ロック:例えばJ l5GO901のRB−Eのような
もの)により、計測可能な最小板厚(jalm)と最大
板厚(t aax )のキャリブレーションを行なう。
is constant, and as shown in FIG. 2, the bottom echo level oscillates depending on the depth of focus of the transmission.Although the automatic gain control circuit 7 is operated, the measurement severance is still limited). After that, calibrate the measurable minimum plate thickness (jalm) and maximum plate thickness (t aax ) using T and B (test block: for example, RB-E of J15GO901) of known wall thickness. .

この意味は、肉厚が既知であるため、音速の基準となる
ものである。以上により、Δ−1定準備が完了する。
This means that since the wall thickness is known, it serves as a reference for the speed of sound. With the above steps, the Δ-1 constant preparation is completed.

次に、第4図に示すフロー図にしたがって音響異方性の
Mj定が行なわれる。、まず、設定部10により、Wl
定モード、t−1定条件等を入力設定する。
Next, Mj determination of acoustic anisotropy is performed according to the flowchart shown in FIG. , First, the setting unit 10 sets Wl
Input and set constant mode, t-1 constant condition, etc.

すなわち、上記2つのうちいずれの方法で異方性測定を
行なうかのモード、および音速測定に必要な標準比較材
と披7111J定材1の既知の肉厚(マイクロメータ等
による実7Illl vl)等がプリセットされる。
In other words, the mode of performing anisotropy measurement among the above two methods, the known wall thickness of the standard comparison material and the 7111J constant material 1 (actual 7Illl vl measured with a micrometer, etc.) necessary for sound velocity measurement, etc. is preset.

次に、標準比較材の横波音速測定点に二振動子斜角探触
子2をセットしで、図示しない測定スイッチをONする
と、二振動子斜角探触子2の送信側振動子Tから標章比
較材に超音波ビームが入射され、標僧比較材の底面から
反射された超音波ビームが受信側振動子Rで受信され、
受信増幅器6に人力して受信される。この受信増幅器6
からの出力は音速計1i1111演算部8に人力され、
ここで予めキャリブレーションされたビーム路程時間を
基■として底面エコーまでのビーム路程時間T′が計測
され、これが厚さ時間Tに換算され、さらに横波音速V
と板厚tとのT−t/Vなる関係を基に、厚さ時間Tか
ら測定モードに応じて横波音速V7またはVST[Iが
求められる。そしで、この横波音速VTまたはV ST
Bは、異方性判定演算部9のメモリ部9Aに一旦記憶さ
れると共に、表示部11に表示される。
Next, set the dual-element bevel probe 2 at the transverse sound velocity measurement point of the standard comparison material and turn on the measurement switch (not shown). An ultrasonic beam is incident on the mark comparison material, and the ultrasonic beam reflected from the bottom of the mark comparison material is received by the receiving side transducer R.
The signal is manually received by the receiving amplifier 6. This receiving amplifier 6
The output from the sound velocity meter 1i1111 is manually inputted to the calculation unit 8,
Here, the beam path time T' to the bottom echo is measured based on the previously calibrated beam path time, and this is converted to the thickness time T.
Based on the relationship Tt/V between and plate thickness t, the transverse wave sound velocity V7 or VST[I is determined from the thickness time T depending on the measurement mode. Then, this transverse wave sound speed VT or V ST
B is temporarily stored in the memory section 9A of the anisotropy determination calculation section 9 and displayed on the display section 11.

次に、同様にして被A11定材1の横波音速allJ定
点に二振動子斜角探触子2をセットしで、図示しない測
定スイッチをONすると、二振動子斜角探触子2の送信
側振動子Tから披1111定材1に超音波ビームが入射
され、彼71!1定材1の底面から反射された超音波ビ
ームが受信側振動子Rで受信され、受信増幅器6に人力
して受信される。この受信増幅器6からの出力は音速計
測演算部8に人力され、ここで)めキャリブレーション
されたビーム路程時間を基準として底面エコーまでのビ
ーム路程時間T′が計測され、これが厚さ時間Tに換算
され、さらに横波音速Vと板厚tとのT−t/Vなる関
係を基に、厚さ時間Tから測定モードに応じて横波音速
ν、または■、が求められる。そしで、この横波音速V
LまたはV5も同様に、異方性判定演算部9のメモリ部
9Aに一旦記憶されると共に、表示部11に表示される
Next, in the same manner, the dual-element bevel probe 2 is set at the transverse sound velocity allJ fixed point of the fixed material 1 of A11, and when the measurement switch (not shown) is turned on, the dual-element bevel probe 2 is transmitted. An ultrasonic beam is input from the side transducer T to the 1111 constant material 1, and the ultrasonic beam reflected from the bottom surface of the 1111 constant material 1 is received by the receiving side transducer R, and is manually transmitted to the receiving amplifier 6. received. The output from the reception amplifier 6 is inputted to the sound speed measurement calculation unit 8, where the beam path time T' to the bottom echo is measured based on the calibrated beam path time, and this is converted into the thickness time T. This is converted, and further, based on the relationship Tt/V between the shear wave sound speed V and the plate thickness t, the shear wave sound speed ν or ■ is determined from the thickness time T depending on the measurement mode. Then, this transverse wave sound velocity V
Similarly, L or V5 is temporarily stored in the memory section 9A of the anisotropy determination calculation section 9 and displayed on the display section 11.

次に、異方性判定演算部9においては、そのメモリ部9
Aの記憶値から1llJ定モードに応じで、被;Ip+
定材1の圧延方向とその直角方向の各々の横波音速Vl
 とV7の比α(−VL/VT)、または被A11定材
1と標準比較材の各々の横波音速■5とV STl’l
の比β(−vs/vsta)が求められる。
Next, in the anisotropy determination calculation section 9, the memory section 9
From the stored value of A, depending on the 1llJ constant mode,
Transverse wave sound velocity Vl in the rolling direction of constant material 1 and in the direction perpendicular to it
and V7 ratio α (-VL/VT), or the transverse wave sound velocity ■5 and V STl'l of each of A11 constant material 1 and standard comparison material
The ratio β (-vs/vsta) is calculated.

そしで、この音速比αまたはβが、設定部10により予
め設定している異方性判定値αSETまたはβS、!T
++  β5ET2と比較されることにより、披711
11定材1の音響異方性の有無が判定される。すなわち
、例えば披tpl定材1の圧延方向とその直角方向の各
々の横波音速V l、とV7の比α(−v 1. / 
V T )により音ツ異方性の有無を判定する場合には
、算出した横波音速比αが、異方性判定値αsat  
(上限値:例えば1.02)以下であるか否かが比較さ
れ、その結果αがαSET以下であれば音響異方性無し
と判定され、αがαSETを超えていれば音響異方性a
りと判定される。また一方、披」j定材1と標準比較材
の各々の横波音速V、とV STBの比β(=Vs/V
sta)により音響異方性の有無を判定する場合には、
算出した横波音速比βが、異方性判定値βSET! (
下限値:例えば0.98)以上でかつβ5ET2 (上
限値:例えば1.02)以下であるか否かが比較され、
その結果βSET!以上でかつβ5ET2以下であれば
音響異方性無しと判定され、βSET+以下あるいはβ
S[:T2を超えていれば音響異方性有りと判定される
。そしで、以上の判定結果は表示部11に表示され、ま
た異方性有りと判定された場合にはその旨のアラームが
アラーム部12から出力されることになる。なお、−旦
+m定が終了するとリセットされ、再び測定を行なうこ
とができる。
Then, this sound speed ratio α or β corresponds to the anisotropy determination value αSET or βS, which is preset by the setting unit 10! T
++ By comparing with β5ET2, 711
11 The presence or absence of acoustic anisotropy in the constant material 1 is determined. That is, for example, the ratio α(-v 1. /
When determining the presence or absence of sound anisotropy based on V T ), the calculated transverse wave sound speed ratio α is the anisotropy determination value αsat
(Upper limit: e.g. 1.02) or less is compared, and as a result, if α is less than αSET, it is determined that there is no acoustic anisotropy, and if α exceeds αSET, acoustic anisotropy a
It is determined that the On the other hand, the ratio β (=Vs/V
When determining the presence or absence of acoustic anisotropy by sta),
The calculated transverse wave sound speed ratio β is the anisotropy determination value βSET! (
It is compared whether the lower limit value: e.g. 0.98) or more and β5ET2 (upper limit value: e.g. 1.02) or less,
The result is βSET! If it is above and β5ET2 or less, it is determined that there is no acoustic anisotropy, and if it is less than βSET+ or β
If S[:T2 is exceeded, it is determined that acoustic anisotropy exists. The above determination results are then displayed on the display section 11, and if it is determined that anisotropy exists, an alarm to that effect is output from the alarm section 12. Note that when the -1+m constant is completed, it is reset and measurement can be performed again.

上述したように、本実施例においては、二振動子斜角探
触子2を用いたV透過法によっで、被測定材1の圧延方
向とその直角方向の各々の横波音速、または被測定材と
標準比較材の各々の横波音速を計測し、この各横波音速
の比により披fipl定材1のB ’II異方性の有無
を判定するようにしているので、屋外や建築現場等で鋼
溶接部の斜角探傷を行なう場合に、その検査方法を決め
る音響異方性のap+定を、通常の斜角探傷と同様に液
体の接触媒質(機械油、グリセリン等)を使用しで、極
めて簡便にかつ精度良く行なうことが可能となる。また
、装置も単能機としで、軽量、コンパクト、安価なもの
とすることが可能となる。
As described above, in this embodiment, the transverse wave sound velocity in the rolling direction and the direction perpendicular to the rolling direction of the material 1 to be measured, or the measured object The shear wave sound speed of each material and standard comparison material is measured, and the presence or absence of B'II anisotropy of the fipl constant material 1 is determined based on the ratio of each shear wave sound speed, so it can be used outdoors or at construction sites. When conducting angle angle flaw detection of steel welds, the acoustic anisotropy ap+ constant, which determines the inspection method, is determined by using a liquid couplant (machine oil, glycerin, etc.) as in normal angle angle flaw detection. This can be done extremely easily and with high precision. Furthermore, the device can be made lightweight, compact, and inexpensive as a single-function device.

尚、上記実施例では、音速計測演算部8においで、予め
キャリブレーションされたビーム路程時間を基弗として
底面エコーまでのビーム路程時間T′を31 alll
 しで、これを厚さ時間Tに換算し、横波音速Vと板厚
tとのT−t/Vなる関係を基に、厚さ時間Tから横波
音速を求めたが、これに限らず横波音速Vが既知の場合
には、厚さ時間Tから板厚tを求める機能を音速計al
l演算部8に持たせるようにしてもよい。またこの場合
には、肉厚を求める機能を異方性判定演算部9に持たせ
ると共に、肉厚判定値を設定部10にプリセットするよ
うにする。
In the above embodiment, the sound velocity measurement calculation unit 8 calculates the beam path time T' to the bottom echo based on the beam path time calibrated in advance by 31 all.
Then, this was converted into thickness time T, and the shear wave sound velocity was calculated from thickness time T based on the relationship T-t/V between shear wave sound velocity V and plate thickness t. If the sound speed V is known, the sound speed meter can be used to calculate the plate thickness t from the thickness time T.
It may also be provided in the l calculation unit 8. Further, in this case, the anisotropy determination calculating section 9 is provided with a function of determining the wall thickness, and the thickness determination value is preset in the setting section 10.

以上のような音響異方性〃1定装置を用いで、7〜14
 m+s (1mmステップ)の厚さ標準比較材を使用
し、7III11と14mmで校正してそのn1定範囲
について基準値と測定厚さの関係の一例を第5図に示す
。図示のように、計算値と測定値との間には良い相関関
係がある。
Using the above-mentioned acoustic anisotropy device, 7 to 14
An example of the relationship between the reference value and the measured thickness for the n1 constant range is shown in FIG. 5 using a standard comparison material with a thickness of m+s (1 mm step) and calibrated with 7III11 and 14 mm. As shown, there is a good correlation between the calculated values and the measured values.

[発明の効果] 以上説明したように本発明によれば、二振動子斜角探触
子を用いたV透過法によっで、被測定材の圧延方向とそ
の直角方向の各々の横波音速、または被測定材と標準比
較材の各々の横波音速を計測し、この各横波音速の比に
より被測定材の音響異方性の有無を判定するようにした
ので、鋼板等の被測定材の音響異方性を、簡便にかつ安
価にしかも精度良<t−1定することが可能な音響異方
性dジノ定方法および装置が提供できる。
[Effects of the Invention] As explained above, according to the present invention, by the V-transmission method using a two-oscillator oblique probe, the transverse wave sound velocity in the rolling direction of the material to be measured and in the direction perpendicular thereto, Alternatively, the shear wave sound velocity of each of the material to be measured and the standard comparison material was measured, and the presence or absence of acoustic anisotropy in the material to be measured was determined based on the ratio of the sound velocities of each shear wave. It is possible to provide a method and apparatus for determining acoustic anisotropy d-Gino that can easily and inexpensively determine anisotropy with high accuracy <t-1.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による音響異方性測定装置の一実施例を
示すブロック図、第2図は同実施例における0動利得コ
ントロール機能を説明するための図、第3図および第4
図は同実施例における作用を説明するためのフロー図、
第5図は本発明の他の実施例における厚さ測定結果の一
例を示す図である。 1・・・被a1定材、2・・・二振動子斜角探触子、3
・・・クロック発振部、4・・・タイミングクロック(
PRF)部、5・・・送信部、6・・・受信増幅器、7
・・・自動利得コントロール(AGC)回路、8・・・
音速:lJ演算部、8A・・・零点調整部、8B・・・
ゲート部、8C・・・計測演算部、8D・・・音速演算
部、9・・・異方性判定演算部、9A・・・メモリ部、
9B・・・音速比演算部、9C・・・判定部、10・・
・設定部、11・・・表示部、12・・・アラーム部。 出願人代理人 弁理士 鈴江武彦 =72 罵 笥 [4 厚 六 −一一一一一
FIG. 1 is a block diagram showing an embodiment of the acoustic anisotropy measuring device according to the present invention, FIG. 2 is a diagram for explaining the zero dynamic gain control function in the same embodiment, and FIGS.
The figure is a flow diagram for explaining the operation in the same embodiment,
FIG. 5 is a diagram showing an example of thickness measurement results in another embodiment of the present invention. 1...A1 fixed material to be covered, 2...Two-element angle probe, 3
... Clock oscillation section, 4 ... Timing clock (
PRF) section, 5... Transmission section, 6... Reception amplifier, 7
... Automatic gain control (AGC) circuit, 8...
Sound velocity: lJ calculation section, 8A...zero point adjustment section, 8B...
Gate section, 8C...Measurement calculation section, 8D...Sound velocity calculation section, 9...Anisotropy determination calculation section, 9A...Memory section,
9B... Sound speed ratio calculation section, 9C... Judgment section, 10...
- Setting section, 11...display section, 12...alarm section. Applicant's agent Patent attorney Takehiko Suzue = 72 Abusive insults [4 Atsuroku -11111

Claims (4)

【特許請求の範囲】[Claims] (1)鋼板等の被測定材の圧延方向とその直角方向の各
々の横波音速を計測し、この各横波音速の比により被測
定材の音響異方性の有無を判定する方法において、 各々の振動子の屈折角が35°〜70°の範囲で各々の
入射点間隔が任意に設定された一定の値の二振動子斜角
探触子と、被測定材の厚さを包含した既知の最小肉厚と
最大肉厚のテストブロックを用いて、予めビーム路程と
肉厚の関係をキャリブレーションし、被測定材のビーム
路程の計測値と既知の肉厚値から横波音速を計測するよ
うにしたことを特徴とする音響異方性測定方法。
(1) In a method of measuring the sound velocity of transverse waves in the rolling direction and the direction perpendicular to the rolling direction of a material to be measured such as a steel plate, and determining the presence or absence of acoustic anisotropy in the material to be measured based on the ratio of the respective transverse sound velocities, each A two-element angle probe with a refraction angle of a fixed value in the range of 35° to 70° and an arbitrarily set distance between each incident point, and a known probe that includes the thickness of the material to be measured. The relationship between the beam path and wall thickness is calibrated in advance using test blocks with the minimum and maximum wall thicknesses, and the shear wave sound speed is measured from the measured value of the beam path of the material to be measured and the known wall thickness value. A method for measuring acoustic anisotropy characterized by the following.
(2)鋼板等の被測定材と標準比較材の各々の横波音速
を計測し、この各横波音速の比により被測定材の音響異
方性の有無を判定する方法において、 各々の振動子の屈折角が35°〜70°の範囲で各々の
入射点間隔が任意に設定された一定の値の二振動子斜角
探触子と、被測定材の厚さを包含した既知の最小肉厚と
最大肉厚のテストブロックを用いて、予めビーム路程と
肉厚の関係をキャリブレーションし、被測定材のビーム
路程の計測値と既知の肉厚値から横波音速を計測するよ
うにしたことを特徴とする音響異方性測定方法。
(2) In the method of measuring the sound velocity of each transverse wave of a material to be measured such as a steel plate and a standard comparison material, and determining the presence or absence of acoustic anisotropy of the material to be measured based on the ratio of the sound speed of each shear wave, the A two-element angle probe with a refraction angle in the range of 35° to 70° and a constant interval between incident points, and a known minimum wall thickness that includes the thickness of the material to be measured. The relationship between the beam path and wall thickness was calibrated in advance using a test block with the maximum wall thickness, and the transverse sound velocity was measured from the measured value of the beam path of the material to be measured and the known wall thickness value. Characteristic acoustic anisotropy measurement method.
(3)鋼板等の被測定材の音響異方性を測定する装置に
おいて、 各々の振動子の屈折角が35°〜70°の範囲で、各々
の入射点間隔が任意に設定された一定の値の二振動子斜
角探触子と、 前記二振動子斜角探触子の送信側振動子から被測定材に
対して超音波ビームを入射させるように送信パルスを発
生する送信部と、 前記被測定材の底面から反射された超音波ビームを受信
する前記二振動子斜角探触子の受信側振動子からの出力
信号を受信する受信増幅器と、前記受信増幅器からの出
力を入力し、予めキャリブレーションされたビーム路程
を基準として底面エコーまでのビーム路程を計測して音
速を求める音速計測演算部と、 前記音速計測演算部からの音速を一旦記憶し、この記憶
値から前記被測定材の圧延方向とその直角方向の各々の
横波音速の比を求め、かつ当該音速比を異方性判定値と
比較することにより被測定材の音響異方性の有無を判定
する異方性判定演算部と、 を備えてなることを特徴とする音響異方性測定装置。
(3) In a device for measuring the acoustic anisotropy of a material to be measured such as a steel plate, the refraction angle of each transducer is in the range of 35° to 70°, and the interval between each incident point is set arbitrarily. a two-oscillator bevel probe of the same value; a transmitter that generates a transmission pulse to cause an ultrasonic beam to be incident on a material to be measured from a transmitting-side transducer of the two-oscillator bevel probe; a receiving amplifier that receives an output signal from a receiving side transducer of the dual-oscillator angle probe that receives the ultrasonic beam reflected from the bottom surface of the material to be measured; , a sound speed measurement calculation unit that calculates the sound speed by measuring the beam path to the bottom echo based on a pre-calibrated beam path length; Anisotropy determination that determines the presence or absence of acoustic anisotropy in the material to be measured by determining the ratio of the sound speed of transverse waves in the rolling direction of the material and the direction perpendicular to the rolling direction, and comparing the sound speed ratio with the anisotropy determination value. An acoustic anisotropy measuring device comprising: a calculation section;
(4)鋼板等の被測定材の音響異方性を測定する装置に
おいて、 各々の振動子の屈折角が35°〜70°の範囲で、各々
の入射点間隔が任意に設定された一定の値の二振動子斜
角探触子と、 前記二振動子斜角探触子の送信側振動子から被測定材に
対して超音波ビームを入射させるように送信パルスを発
生する送信部と、 前記被測定材の底面から反射された超音波ビームを受信
する前記二振動子斜角探触子の受信側振動子からの出力
信号を受信する受信増幅器と、前記受信増幅器からの出
力を入力し、予めキャリブレーションされたビーム路程
を基準として底面エコーまでのビーム路程を計測して音
速を求める音速計測演算部と、 前記音速計測演算部からの音速を一旦記憶し、この記憶
値から前記被測定材と標準比較材の各々の横波音速の比
を求め、かつ当該音速比を異方性判定値と比較すること
により被測定材の音響異方性の有無を判定する異方性判
定演算部と、 を備えてなることを特徴とする音響異方性測定装置。
(4) In an apparatus for measuring the acoustic anisotropy of a material to be measured such as a steel plate, the refraction angle of each transducer is in the range of 35° to 70°, and the interval between each incident point is arbitrarily set. a two-oscillator bevel probe of the same value; a transmitter that generates a transmission pulse to cause an ultrasonic beam to be incident on a material to be measured from a transmitting-side transducer of the two-oscillator bevel probe; a receiving amplifier that receives an output signal from a receiving side transducer of the dual-oscillator angle probe that receives the ultrasonic beam reflected from the bottom surface of the material to be measured; , a sound speed measurement calculation unit that calculates the sound speed by measuring the beam path to the bottom echo based on a pre-calibrated beam path length; an anisotropy determination calculation unit that determines the presence or absence of acoustic anisotropy in the material to be measured by determining the ratio of the sound speed of each transverse wave of the material and the standard comparison material, and comparing the sound speed ratio with an anisotropy determination value; An acoustic anisotropy measuring device comprising:
JP1116994A 1989-05-10 1989-05-10 Method and apparatus for measuring acoustic anisotropy Pending JPH02296147A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1116994A JPH02296147A (en) 1989-05-10 1989-05-10 Method and apparatus for measuring acoustic anisotropy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1116994A JPH02296147A (en) 1989-05-10 1989-05-10 Method and apparatus for measuring acoustic anisotropy

Publications (1)

Publication Number Publication Date
JPH02296147A true JPH02296147A (en) 1990-12-06

Family

ID=14700844

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1116994A Pending JPH02296147A (en) 1989-05-10 1989-05-10 Method and apparatus for measuring acoustic anisotropy

Country Status (1)

Country Link
JP (1) JPH02296147A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002022711A (en) * 2000-07-06 2002-01-23 Nkk Corp Ultrasonic characteristic measurement method, acoustic anisotropy measurement method, and acoustic anisotropy measurement device
JP4686648B1 (en) * 2010-09-02 2011-05-25 株式会社日立製作所 Ultrasonic inspection method
JP2012053027A (en) * 2010-11-30 2012-03-15 Hitachi Ltd Ultrasonic inspection method
JP2012053026A (en) * 2010-11-30 2012-03-15 Hitachi Ltd Ultrasonic inspection method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002022711A (en) * 2000-07-06 2002-01-23 Nkk Corp Ultrasonic characteristic measurement method, acoustic anisotropy measurement method, and acoustic anisotropy measurement device
JP4686648B1 (en) * 2010-09-02 2011-05-25 株式会社日立製作所 Ultrasonic inspection method
JP2012052963A (en) * 2010-09-02 2012-03-15 Hitachi Ltd Ultrasonic inspection method
JP2012053027A (en) * 2010-11-30 2012-03-15 Hitachi Ltd Ultrasonic inspection method
JP2012053026A (en) * 2010-11-30 2012-03-15 Hitachi Ltd Ultrasonic inspection method

Similar Documents

Publication Publication Date Title
JPS5987311A (en) Double element ultrasonic probe and pulse echo ultrasonic measuring meter
JPS6156450B2 (en)
JPH02296147A (en) Method and apparatus for measuring acoustic anisotropy
JPH1048009A (en) Ultrasound temperature current meter
US7617738B2 (en) Method and apparatus for measuring flow rate of fluid
JPH0313859A (en) Method for measuring compressive strength of concrete using ultrasonic wave
JPH03167418A (en) Clad-thickness measuring apparatus
JPH0740020B2 (en) Ceramic Judgment Strength Evaluation Method
JPH0271146A (en) Accurate measuring method of reciprocating time of ultrasonic wave utilizing pulse reflection method
JPH068728B2 (en) Measuring method of ultrasonic wave propagation distance
JP2824488B2 (en) Method of measuring plate thickness of concrete structure by ultrasonic pulse reflection method
JPH02278106A (en) Measuring apparatus for clad thickness of cladding material
JPH0749944B2 (en) Simultaneous measurement of material thickness and sound velocity
JPS63175712A (en) Ultrasonic thickness meter
JPH04269615A (en) Apparatus for measuring thickness of clad
JP3088614B2 (en) Array flaw detection method and device therefor
JPH03289560A (en) Incident-angle adjusting method in measurement using surface wave
JP2001124747A (en) Calibration system for time base of digital ultrasonic testing apparatus
JPH0961145A (en) Method and apparatus for measurement of thickness or sound velocity
RU2034236C1 (en) Ultrasound echo thickness gage
JPH0194281A (en) Apparatus for measuring rising position of ultrasonic receiving wave
JPS5842919Y2 (en) stress measuring device
JP2000249534A (en) Method and device for measuring coating thickness by ultrasonic wave
JPH026743A (en) Ultrasonic flaw detector
JPH01118790A (en) Ultrasonic distance measuring instrument