JPH02295137A - Electrode separation method - Google Patents

Electrode separation method

Info

Publication number
JPH02295137A
JPH02295137A JP11651389A JP11651389A JPH02295137A JP H02295137 A JPH02295137 A JP H02295137A JP 11651389 A JP11651389 A JP 11651389A JP 11651389 A JP11651389 A JP 11651389A JP H02295137 A JPH02295137 A JP H02295137A
Authority
JP
Japan
Prior art keywords
polysilicon
electrode
resist
nitride
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11651389A
Other languages
Japanese (ja)
Inventor
Kiyohiko Sakakibara
清彦 榊原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP11651389A priority Critical patent/JPH02295137A/en
Publication of JPH02295137A publication Critical patent/JPH02295137A/en
Pending legal-status Critical Current

Links

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To enable an electrode such as CCD element electrode to be finely machined by implanting nitride ion, nitriding a conductive material part between electrodes, and forming an insulation part without providing a resist layer at a part other than that for forming the electrode on the conductive material which becomes the electrode. CONSTITUTION:A resist 5 is applied onto a polysilicon film 4 and machining is made to a specified pattern by using the photoengraving process. Then, a nitride ion 6 is implanted from the upper part of a substrate 1 by the ion- implantation method without performing etching process. Since there is resist on the polysilicon at a part to be kept remaining, nitride ion is implanted into the polysilicon other than it. After that, resist is eliminated, a proper heat treatment is performed, polysilicon at a region where nitride ion is impregnated changes into nitride silicon for turning from a conductor into an insulator, thus achieving the equivalent effect to etching of polysilicon. With this method, it becomes easy to separate an electrode such as a CCD element electrode.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は電極の分離方法に関し、特に基板表面の段差
を低減できる電極の分離方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for separating electrodes, and particularly to a method for separating electrodes that can reduce steps on the surface of a substrate.

〔従来の技術〕[Conventional technology]

第2図(g)は従来の電荷転送素子(以下CCD素子と
呼ぶ)のポリシリコンゲート電極の断面図であり、図に
おいて、(l)はp型シリコン基板、(2)はn型シリ
コン層、(3)はゲート絶縁膜、(4)は1層ポリシリ
コンゲート電極、(5)はフォトレジスト、(7)は2
層ポリシリコンゲート電極である。
FIG. 2(g) is a cross-sectional view of a polysilicon gate electrode of a conventional charge transfer device (hereinafter referred to as a CCD device). In the figure, (l) is a p-type silicon substrate, and (2) is an n-type silicon layer. , (3) is a gate insulating film, (4) is a single-layer polysilicon gate electrode, (5) is a photoresist, and (7) is a 2-layer polysilicon gate electrode.
layer polysilicon gate electrode.

次にCCD素子電極の作成フローについて説明する。第
2図(a)において、p型シリコン基板(1)にn一型
不純物層(2)を形成する。次に基板(1)表面を酸化
し表面に二酸化シリコン膜(3)を形成し、その上にC
VD法によりポリシリコン膜(4)を堆積する,次に、
レジストを塗布し写真製版工程を経て、レジスト(5)
を所定のパターンに加工する(第2図(C))。そして
ポリシリコンおよび酸化膜のエッチングを行ない1層ポ
リシリコンを加工する(第2図(d))。第2図(d)
を酸化することによって二酸化シリコン膜(3)を形成
後、CVD法により2層ポリシリコン膜(7)を堆積す
る(第2図(e))。次にレジストを塗布し写真製版工
程を経て、レジスト(8)を所定のパターンに加工する
(第2図(f))。そして、ポリシリコンエッチングを
行ない2層ポリシリコンを所定のパターンに加工する(
第2図位))。
Next, the flow of creating CCD element electrodes will be explained. In FIG. 2(a), an n-type impurity layer (2) is formed on a p-type silicon substrate (1). Next, the surface of the substrate (1) is oxidized to form a silicon dioxide film (3) on the surface, and a carbon dioxide film (3) is formed on the surface.
Deposit a polysilicon film (4) by VD method, then
After applying resist and photolithography process, resist (5)
is processed into a predetermined pattern (Fig. 2(C)). Then, the polysilicon and oxide film are etched to process the single layer polysilicon (FIG. 2(d)). Figure 2(d)
After forming a silicon dioxide film (3) by oxidizing the silicon dioxide film, a two-layer polysilicon film (7) is deposited by the CVD method (FIG. 2(e)). Next, a resist is applied and a photolithography process is performed to process the resist (8) into a predetermined pattern (FIG. 2(f)). Then, polysilicon etching is performed to process the two-layer polysilicon into a predetermined pattern (
2nd figure)).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来のポリシリコンゲート電極の加工は以上のような工
程を経ていたので、第2図億)のように加工後基板表面
にポリシリコンゲート電極の段差が生じ、後工程での上
層膜形成時に被覆性が悪化し、上層膜の絶縁性や導電性
が劣化するという欠点があり、また、2層目電極形成時
の酸化のために1層目ポリシリコンゲート電極も酸化さ
れ、電極の間隔を制御することが困難であるという問題
点があった。
Conventional processing of polysilicon gate electrodes involves the steps described above, so a step difference in the polysilicon gate electrode occurs on the surface of the substrate after processing, as shown in Figure 2 (B). This has the disadvantage that the insulation and conductivity of the upper layer film deteriorates, and the first layer polysilicon gate electrode is also oxidized due to oxidation during the formation of the second layer electrode, which controls the spacing between the electrodes. The problem was that it was difficult to do so.

この発明は上記のような問題点を解消するためになされ
たもので、COD素子の電極のような電極の加工後に生
ずる基板表面の段差を低減でき、かつCCD素子電極の
ような電極の微細加工が可能な電極分離方法を得ること
を目的とする。
This invention was made to solve the above-mentioned problems, and it is possible to reduce the level difference on the substrate surface that occurs after processing electrodes such as those of COD elements, and to improve the microfabrication of electrodes such as CCD element electrodes. The purpose of this study is to obtain an electrode separation method that allows for

〔課題を解決するための手段〕[Means to solve the problem]

この発明に係る電極の分離方法は電極となる窒化物が絶
縁性を有する導電性材料上に、電極を形成する部分のみ
を覆うようなレジスト層を形成し、窒素イオンをレジス
ト層の上方から注入するようにして電極を形成するよう
にしたものである。
The electrode separation method according to the present invention involves forming a resist layer covering only the portion where the electrode is to be formed on a conductive material whose nitride is insulating, and injecting nitrogen ions from above the resist layer. The electrodes are formed in this manner.

〔作用〕[Effect]

この発明における電極の分離方法は、電極となる導電性
材料上の電極を形成する部分以外の部分にはレジスト層
を設けないため、その後の窒素イオン注入により電極間
の導電性材料部が窒化され絶縁部が形成され、レジスト
層で覆われた電極となる部分の間を窒化絶縁膜で分離し
得る,〔実施例〕 以下、この発明の一実施例を図について説明する。第1
図はこの発明の一実施例に係るCCD素子の電極の分離
を行なうフローを示す図である。
In the electrode separation method of this invention, a resist layer is not provided on the conductive material other than the part forming the electrode, so that the conductive material between the electrodes is nitrided by subsequent nitrogen ion implantation. An insulating part is formed and a portion to be an electrode covered with a resist layer can be separated by a nitride insulating film. [Embodiment] An embodiment of the present invention will be described below with reference to the drawings. 1st
The figure is a diagram showing a flow of separating electrodes of a CCD element according to an embodiment of the present invention.

第1図(C)において、(l)はp型シリコン基板、(
2)はn一拡散層、(3》はゲート絶縁膜、(4)はポ
リシリコン、(5)はフォトレジスト、(6月よ酸素イ
オンである。
In FIG. 1(C), (l) is a p-type silicon substrate, (
2) is an n-diffusion layer, (3) is a gate insulating film, (4) is polysilicon, (5) is a photoresist, and (June) is an oxygen ion.

ポリシリコン膜上にレジストを塗布し、写真製版工程を
用いて所定のパターンに加工するのは従来の場合と同様
である。第1図((a).(b))。次にエッチング工
程を行なわず、基板(1)の上方より窒素イオン(6》
をイオン注入法により注入する(第1図(C))。残し
たい部分のポリシリコン上にはレジストがあるためそれ
以外のポリシリコン中に窒素イオンが注入される。この
とき、窒素イオンはできるだけポリシリコンを透過せず
、層全域に窒素イオンが分布するように行なうことが好
ましい。
As in the conventional case, a resist is applied onto the polysilicon film and processed into a predetermined pattern using a photolithography process. Figure 1 ((a).(b)). Next, without performing an etching process, nitrogen ions (6) are etched from above the substrate (1).
is implanted by ion implantation (FIG. 1(C)). Since there is a resist on the polysilicon in the portion to be left, nitrogen ions are implanted into the other polysilicon. At this time, it is preferable that the nitrogen ions do not penetrate the polysilicon as much as possible and the nitrogen ions are distributed throughout the layer.

その後、レジストを除去し、適当な熱処理を行なうこと
により、窒素イオンを注入した領域のポリシリコンが窒
化シリコンに変化し導電体から絶縁体となってポリシリ
コンをエッチングしたことと同等の効果を得ることがで
きる。
After that, by removing the resist and performing appropriate heat treatment, the polysilicon in the area where nitrogen ions were implanted changes to silicon nitride, changing from a conductor to an insulator, achieving an effect equivalent to etching polysilicon. be able to.

この適当な温度とはポリシリコンの場合900〜120
0℃の温度で行なう熱処理のことである。
This appropriate temperature is 900 to 120 for polysilicon.
This refers to heat treatment performed at a temperature of 0°C.

この実施例によるとポリシリコン(4)が窒化シリコン
に変化した部分は、約2倍体積膨脹をするため、ポリシ
リコン(4)の領域に比べやや膜厚が堝加するものの、
従来のものによる段差よりもかなり小さくすることがで
きる。したがって、ポリシリコン(4)の上にさらに絶
縁膜等を形成する場合、非常に平坦で膜厚の均一な膜を
形成することができる。また、この方法では、電極間隔
は、写真製版で決められる間隔で精密に制御でき、この
フローで示した様に加工工程も大幅に短縮できる。
According to this example, the volume of the area where polysilicon (4) has changed to silicon nitride expands approximately twice, so although the film thickness is slightly thicker than that of the area of polysilicon (4),
The difference in height can be made much smaller than that of the conventional method. Therefore, when an insulating film or the like is further formed on the polysilicon (4), a very flat film with a uniform thickness can be formed. In addition, with this method, the electrode spacing can be precisely controlled to the spacing determined by photolithography, and as shown in this flow, the processing steps can be significantly shortened.

なお、上記実施例ではポリシリコン(4)の場合につい
て示したが、導電性の薄膜としてアルミニウム、アルミ
シリコン、アルミシリコン銅、白金や高融点金属のモリ
ブデン、タングステン、チタンそしてそのシリサイド等
窒化物が絶縁性を持つ導電性材料のすべてについて適用
することができる。
Although the above example shows the case of polysilicon (4), aluminum, aluminum silicon, aluminum silicon copper, platinum, high melting point metals molybdenum, tungsten, titanium, and nitrides thereof such as silicides can be used as the conductive thin film. It can be applied to all conductive materials with insulating properties.

〔発明の効果〕〔Effect of the invention〕

以上のようにこの発明によれば、CCD素子電極のよう
な電極の分離を、電極となる窒化物が絶縁性を有する導
電性材料上に電極を形成する部分のみを覆うようなレジ
スト層を形成し、このレジスト層の上から窒素イオンを
注入して電極間を窒化物によって分離するように形成し
たので、電極の加工後に生ずる基板表面の段差を低減で
き、かつ電極の微細加工が可能となるという効果がある
As described above, according to the present invention, an electrode such as a CCD element electrode is separated by forming a resist layer such that the nitride that becomes the electrode covers only the part where the electrode is to be formed on the insulating conductive material. However, by implanting nitrogen ions from above this resist layer and forming the electrodes so that they are separated by nitride, it is possible to reduce the level difference on the substrate surface that occurs after electrode processing, and it is possible to microfabricate the electrodes. There is an effect.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例によるCCD素子電極の作
成フローを示す断面図、第2図は従来のCCD素子電極
の作成フローを示す断面図である。 図において、(1)はp型基板、(2月よn一拡散層、
(3)は絶縁膜、(4)はポリシリコン、(5)はフォ
トレジスト、(6)は窒素イオンである。 なお、図中、同一符号は同一、または相当部分を示す。
FIG. 1 is a sectional view showing a manufacturing flow of a CCD element electrode according to an embodiment of the present invention, and FIG. 2 is a sectional view showing a manufacturing flow of a conventional CCD element electrode. In the figure, (1) is a p-type substrate, (February n-diffusion layer,
(3) is an insulating film, (4) is polysilicon, (5) is a photoresist, and (6) is a nitrogen ion. In addition, in the figures, the same reference numerals indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】[Claims] 基板を準備し、この基板上に第1の導電型の拡散層を形
成し、この拡散層上に絶縁膜を形成し、この絶縁膜上に
電極となるべき、かつその窒化物が絶縁性を有するよう
な導電性材料を形成し、この導電性材料上の電極となる
部分を覆い、かつ、電極間の分離領域となるべき部分を
露出するようにレジスト層を形成し、このレジスト層に
覆われない開口部を通して窒素イオンを前記レジスト層
の上方から注入し、前記導電性材料の電極となる部分同
志の間に窒化物を形成して電極の分離を行なうことを特
徴とする電極の分離方法。
A substrate is prepared, a first conductivity type diffusion layer is formed on this substrate, an insulating film is formed on this diffusion layer, and the nitride that is to be an electrode is formed on this insulating film, and the nitride has an insulating property. A resist layer is formed to cover the portions of the conductive material that will become the electrodes, and expose the portions that will be the separation regions between the electrodes. A method for separating electrodes, characterized in that nitrogen ions are injected from above the resist layer through an opening that is not covered by the conductive material, and nitride is formed between the portions of the conductive material that will become electrodes, thereby separating the electrodes. .
JP11651389A 1989-05-09 1989-05-09 Electrode separation method Pending JPH02295137A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11651389A JPH02295137A (en) 1989-05-09 1989-05-09 Electrode separation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11651389A JPH02295137A (en) 1989-05-09 1989-05-09 Electrode separation method

Publications (1)

Publication Number Publication Date
JPH02295137A true JPH02295137A (en) 1990-12-06

Family

ID=14689006

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11651389A Pending JPH02295137A (en) 1989-05-09 1989-05-09 Electrode separation method

Country Status (1)

Country Link
JP (1) JPH02295137A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009531205A (en) * 2006-03-30 2009-09-03 サントル・ナシオナル・ドゥ・ラ・ルシェルシュ・シアンティフィーク(セーエヌエールエス) Method for producing multilayer structure with controlled properties

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009531205A (en) * 2006-03-30 2009-09-03 サントル・ナシオナル・ドゥ・ラ・ルシェルシュ・シアンティフィーク(セーエヌエールエス) Method for producing multilayer structure with controlled properties

Similar Documents

Publication Publication Date Title
EP0130736A2 (en) Processes for making integrated circuit single FET and storage capacitor memory cells
JP2001509637A (en) Self-aligned power field effect transistor on silicon carbide
JPH06260497A (en) Semiconductor device and manufacture thereof
US4181537A (en) Method of fabricating an insulated gate field effect device
US4520553A (en) Process for manufacturing an integrated insulated-gate field-effect transistor
JPH02295137A (en) Electrode separation method
JP3273989B2 (en) Method of manufacturing MIS transistor
JPS63293818A (en) Isolation of electrode
JP2603088B2 (en) Semiconductor device
JPH03147339A (en) Separator of electrode
JPS5892265A (en) Manufacture of semiconductor device
JPH0527995B2 (en)
JP2629792B2 (en) Method for manufacturing MOS type semiconductor device
JPH0431193B2 (en)
JP2623647B2 (en) Method for manufacturing semiconductor device
JP3147374B2 (en) Semiconductor device
JPS59197174A (en) Mis type semiconductor device
JPH0832063A (en) Manufacture of semiconductor device
JPH01276668A (en) Manufacture of semiconductor device
JPH02224273A (en) Mos semiconductor element and manufacture thereof
JPS63204654A (en) Manufacture of mos-type semiconductor device
JPH02244619A (en) Manufacture of semiconductor device
JPH05136366A (en) Semiconductor memory
JPS60249372A (en) Manufacture of fet
JPH06310721A (en) Fabrication of semiconductor element