JPH02295133A - Crystal structure and manufacture thereof - Google Patents

Crystal structure and manufacture thereof

Info

Publication number
JPH02295133A
JPH02295133A JP11492889A JP11492889A JPH02295133A JP H02295133 A JPH02295133 A JP H02295133A JP 11492889 A JP11492889 A JP 11492889A JP 11492889 A JP11492889 A JP 11492889A JP H02295133 A JPH02295133 A JP H02295133A
Authority
JP
Japan
Prior art keywords
layer
ingaas
growth
doped
crystal structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11492889A
Other languages
Japanese (ja)
Inventor
Yoko Uchida
陽子 内田
Tomoyoshi Mishima
友義 三島
Mitsuharu Takahama
高濱 光治
Tomonori Tagami
知紀 田上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP11492889A priority Critical patent/JPH02295133A/en
Publication of JPH02295133A publication Critical patent/JPH02295133A/en
Pending legal-status Critical Current

Links

Landscapes

  • Junction Field-Effect Transistors (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE:To enable dislocation to be entrapped into a buffer layer and to obtain an epitaxial growth with improved crystallizability whose grid constant being different from that of the lower layer on the upper layer, by a method wherein buffer layer growth is suspended when the layer has enough thickness to complete defect entrapping and the growth is resumed to form a buffer layer. CONSTITUTION:Semiconductor layers 21, 22, and 23 with different grid constants are piled up. Dislocation occurs within the semiconductor layer 22 due to the difference in the grid constant. In this case, if the difference in grid constant is large, dislocation is entrapped within several hundreds Angstrom width of the semiconductor layer 22. Then, when the growth is suspended temporarily, the entrapping effect becomes remarkably. At this time, the semiconductor layer 22 tends to be polycrystal due to generation of a large quantity of dislocation but the semiconductor layer 23 formed on it is subjected to the epitaxial growth. Then, when the InGaAs layer is formed by the manufacturing method including interruption of growth, an InGaAs layer 3 acts as an improved buffer layer.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体装置における基板と半導体層との間に挟
まれた緩衝層から形成される結晶構造及びその製造方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a crystal structure formed from a buffer layer sandwiched between a substrate and a semiconductor layer in a semiconductor device, and a method for manufacturing the same.

〔従来の技猪〕[Traditional boar technique]

従来から,基板と半導体層の間に緩衝層を導入し、半導
体装置の特性向上を計る方法は広く知られている.特に
、基板と半導体層の格子定数に大きな違いがある場合は
緩衝層の効果により,半導体層の結晶性、電気的特性、
光学的特性が著しく異なるため、種々の緩衝層が検討さ
れてきた.最近では、薄膜形成技術の向上により、歪超
格子が緩衝層として利用され、半導体装置の特性改善に
寄与している。歪超格子緩衝層は、ジャパニーズ、ジャ
ーナル・オブ・アプライド・ブイジツクス,ボリューム
26, (1987年)第エルl950頁からエルl9
52頁(Jpn.J.Appl.phys.vo1.2
6(1987)ppL1950−L1952)において
論じられている。
Conventionally, it is widely known that a buffer layer is introduced between a substrate and a semiconductor layer to improve the characteristics of a semiconductor device. In particular, when there is a large difference in lattice constant between the substrate and the semiconductor layer, the effect of the buffer layer may affect the crystallinity, electrical properties, etc. of the semiconductor layer.
Various buffer layers have been investigated because their optical properties are significantly different. Recently, with improvements in thin film formation technology, strained superlattices are being used as buffer layers, contributing to improving the characteristics of semiconductor devices. The strained superlattice buffer layer is described in Japanese Journal of Applied Physics, Volume 26, (1987) No. 1950 to 19
52 pages (Jpn.J.Appl.phys.vol.2
6 (1987) ppL1950-L1952).

また,GaAs層上にInxGat−xAs層を成長し
た構造において、In組成Xが0.5以上になると両半
導体層の界面付近に発生していた転位が界面付近約30
0人に閉じ込められ、上の層には伝播しないという報告
がある.これは電子情報通信学会研究技術報告、イーデ
イ−87 − 123(198’/年)第85頁から9
0頁(信技報, E D87−123 (1987)p
p85−90)において論じられている. 〔発明が解決しようとする課題〕 上記従来技術で記載されているIn組成0.5以上のI
nGaAs層を緩衝層として用いることを試みた.Ga
As基板上に. InGaAs層を300人以上形成し
、その上にn型InA Q As層を電子供給層として
形成した.この場合、GaAsとInGaAg界面に発
生した転位は界面近傍300人以内のInGaAs層に
閉じ込められるため、その上のInGaAg層、inA
 jl As層は転位における結晶性の劣化は受けない
.しかし、この構造における電子移動度は約50000
l#/V・Sであった.この値は予測される移動度の半
分の値である. 本発明の目的は、InGaAs緩衡層の形成方法を改善
することにより,高い電子移動度を持つ結晶構造を得る
ことにある. また,上記従来技術で緩衝層として用いられている歪超
格子は熱や応力に弱いという欠点がある。
Furthermore, in a structure in which an InxGat-xAs layer is grown on a GaAs layer, when the In composition
There are reports that it is confined to 0 people and does not spread to upper layers. This is the Institute of Electronics, Information and Communication Engineers Research and Technical Report, E.D.-87-123 (198'/year), pages 85 to 9.
p. 0 (Shin Giho, E D87-123 (1987) p.
Discussed on pages 85-90). [Problem to be solved by the invention] I of the In composition described in the above-mentioned prior art is 0.5 or more.
An attempt was made to use an nGaAs layer as a buffer layer. Ga
on the As substrate. More than 300 InGaAs layers were formed, and an n-type InA Q As layer was formed thereon as an electron supply layer. In this case, dislocations generated at the interface between GaAs and InGaAg are confined in the InGaAs layer within 300 layers near the interface, so the dislocations generated at the interface between GaAs and InGaAg are
jl The crystallinity of the As layer does not suffer from deterioration due to dislocations. However, the electron mobility in this structure is about 50,000
It was l#/V・S. This value is half the predicted mobility. An object of the present invention is to obtain a crystal structure with high electron mobility by improving the method for forming an InGaAs buffer layer. Furthermore, the strained superlattice used as a buffer layer in the above-mentioned prior art has the disadvantage of being susceptible to heat and stress.

本発明の他の目的は、熱、応力に強い半導体結晶構造お
よびその製造方法を提供することにある.〔課題を解決
するための手段〕 上記目的を達成するために、本発明においてはInGa
Ag緩衝層を形成する際に、InGaAs層内に欠陥が
閉じ込められる膜厚数100人の1nGaAs層を形成
した後,成長を一時中断し,その後,InGaAs層を
再び成長し、緩衡層を形成したものである。
Another object of the present invention is to provide a semiconductor crystal structure that is resistant to heat and stress, and a method for manufacturing the same. [Means for solving the problem] In order to achieve the above object, the present invention uses InGa
When forming the Ag buffer layer, after forming a 1nGaAs layer with a thickness of several hundred layers in which defects are confined within the InGaAs layer, the growth is temporarily interrupted, and then the InGaAs layer is grown again to form a buffer layer. This is what I did.

上記他の目的を達成するために,緩衝層として転位の発
生している層を用いたものである。
In order to achieve the other objects mentioned above, a layer in which dislocations occur is used as a buffer layer.

〔作用〕[Effect]

欠陥の閉じ込めが完了したと観察される膜厚以上で、緩
衝層の成長を一時中断することにより、中断表面上で緩
衝層を構成している原子、例えば、InGaAsではI
n,Ga,Asがエネルギ的に安定な位置に移動するこ
とができ、欠陥の閉じ込めがより完壁になる.それによ
って、その上に形成した緩衝層への転位伝播の抑制が強
められ,更にその上に形成される半導体層の結晶性の向
上が計られる. 緩衝層として1nGaAs.電子供給層としてn型ln
A Q As層を持つ構造の電子移動度はl0000a
J / V・Sを示し、従来の2倍高い値となる.また
、転位は格子歪みが緩和された後に発生するため、転位
の発住している緩衝層は熱や応力に対しても強い. さらに,転位発生により緩衝層は高抵抗となるため,基
板とその上に形成された半導体層との電気的遮断効果を
示す.それによって、漏れ電流低減等,この構造を持っ
た半導体装置の特性向上を計ることができる. 〔実施例〕 以下、本発明の一実施例を第1図により説明する. 半絶縁性GaAs基板l上にノンドープGaAs層2ノ
ンドープInGaAs層3、ノンドープInA Q A
sスペーサ層4,n型1nA Q As電子供給層5、
n型1nGaAsキャップ層6を順次形成する.本実施
例では分子線エビタキシャル成長法(MBE法)を用い
て、半導体層を形成する.上記のような構造を形成後,
キャップ層6の一部をエッチングにより除去し、ゲート
電極7を形成する。その後、キャップ層6上にソース・
ドレイン電極8を形成する.本実施例ではInGaAs
層3が緩衝層の役目を果たしているaln組成0.5 
以上、膜厚を500人以上とするが、InGaAs層を
300〜500人形成した後に、成長を一時中断し,5
秒〜3分後に成長を再開し、所定の膜厚のInGaAs
層3を成長する.ここでは、In組成0.8,膜厚10
00人とした.スペーサ層4の厚さは0〜150人とす
る。
By temporarily suspending the growth of the buffer layer above the film thickness at which defect confinement is observed, atoms constituting the buffer layer on the suspended surface, such as I in InGaAs, are
n, Ga, and As can be moved to energetically stable positions, and defects can be more completely confined. This strengthens the suppression of dislocation propagation to the buffer layer formed above it, and further improves the crystallinity of the semiconductor layer formed above it. As a buffer layer, 1nGaAs. n-type ln as electron supply layer
A Q The electron mobility of the structure with As layer is l0000a
J/V・S, which is twice as high as the conventional value. Furthermore, because dislocations occur after lattice strain is relaxed, the buffer layer in which dislocations reside is resistant to heat and stress. Furthermore, the buffer layer has a high resistance due to the generation of dislocations, and thus exhibits an electrically blocking effect between the substrate and the semiconductor layer formed on it. By doing so, it is possible to improve the characteristics of semiconductor devices with this structure, such as reducing leakage current. [Example] An example of the present invention will be described below with reference to FIG. Non-doped GaAs layer 2, non-doped InGaAs layer 3, non-doped InA Q A on semi-insulating GaAs substrate 1
s spacer layer 4, n-type 1nA Q As electron supply layer 5,
An n-type 1nGaAs cap layer 6 is sequentially formed. In this example, a semiconductor layer is formed using molecular beam epitaxial growth (MBE). After forming the above structure,
A portion of the cap layer 6 is removed by etching to form a gate electrode 7. After that, the source layer is placed on the cap layer 6.
Form the drain electrode 8. In this example, InGaAs
Aln composition 0.5 with layer 3 serving as a buffer layer
In the above, the film thickness is set to 500 layers or more, but after 300 to 500 layers of InGaAs are formed, the growth is temporarily interrupted, and
After a few seconds to 3 minutes, the growth is resumed and the InGaAs film is grown to a predetermined thickness.
Grow layer 3. Here, In composition is 0.8, film thickness is 10
00 people. The thickness of the spacer layer 4 is set to 0 to 150 layers.

電子供給層5はドナ不純物SiをIX101”(clm
−’)程度含有し,その厚さは100〜500人である
。キャップ層6はSjを3X10”δ(am−’)程度
含有する。I n G a A s層:3とスベーサ層
3との界面近傍に電子が蕎積され、電子走行層7として
働く. 格子定数の異なる半導体層を積み重ねた場合,上部の半
導体層はある膜厚(臨界膜厚)以内であると半導体層が
歪むことにより、転位の発生が抑えられる.この臨界膜
厚は格子定数の差の程度に依存し、lnGaAsの場合
、Inの組成に依存する.第2図に, (iaAs上に
lnGaAsを形成した場合のIn組成と臨界膜厚の依
存性を実線で示す.この図から明らかなように、転位無
しに利用できるlnGaAs層の膜厚(斜m)は制限さ
れる.臨界膜厚以上のlnGaAs層内では転位が発生
することになる.第3図は上記の様子を模式的に示した
半導体層の界而付近の断面図である.ここで,半導体層
11はGaAs、半導体層12はInGaAsである.
,1マスが1格子を表わしている.転位は半導体層11
と12の格子定数の差が大きいと界面付近に閉じ込めら
れ、上層へ伝播しない.この状況を第4図に模式的に示
す.互いに格子定数の違う半導体層21,22.23を
積み重ねている.格子定数の違いにより、半導体層22
中に転位が発生する.この際,格子定数の差が大きいと
転位は半導体層22の厚さが数100人内に閉じ込めら
れ,更に一時成長中断を行なうと、閉じ込めの効果が顕
著になる.この時、半導体層22は多量の転位の発生に
より多結晶的になっているが、この上に形成される半導
体M23はエビタキシャル成長する.そこで第2図中の
破線Lより上の領域のL n Ga A s層を成長中
断を含む製造方法により、形成すればInGaAs層は
良好な緩衝層として働《。
The electron supply layer 5 is made of donor impurity Si with IX101'' (clm
-'), and its thickness is 100 to 500 people. The cap layer 6 contains about 3×10”δ (am−′) of Sj. Electrons are accumulated near the interface between the InGaAs layer 3 and the sublayer 3, and it functions as the electron transit layer 7. When semiconductor layers with different constants are stacked, if the thickness of the upper semiconductor layer is within a certain thickness (critical thickness), the semiconductor layer will be distorted and the generation of dislocations will be suppressed.This critical thickness is determined by the difference in lattice constants. In the case of lnGaAs, it depends on the In composition. In Figure 2, the dependence of In composition and critical film thickness when lnGaAs is formed on iaAs is shown by a solid line. As such, the thickness (oblique m) of the lnGaAs layer that can be used without dislocations is limited.Dislocations will occur in the lnGaAs layer with a thickness greater than the critical thickness.Figure 3 schematically shows the above situation. 2 is a cross-sectional view of the semiconductor layer shown in FIG. 1. Here, the semiconductor layer 11 is made of GaAs, and the semiconductor layer 12 is made of InGaAs.
, one square represents one grid. Dislocations occur in the semiconductor layer 11
If the difference between the lattice constants of and 12 is large, it will be confined near the interface and will not propagate to the upper layers. This situation is schematically shown in Figure 4. Semiconductor layers 21, 22, and 23 with mutually different lattice constants are stacked. Due to the difference in lattice constant, the semiconductor layer 22
Dislocations occur inside. At this time, if the difference in lattice constant is large, dislocations will be confined within the thickness of the semiconductor layer 22 of several hundred layers, and if the growth is further temporarily interrupted, the effect of confinement will become noticeable. At this time, the semiconductor layer 22 has become polycrystalline due to the generation of a large amount of dislocations, but the semiconductor M23 formed thereon grows epitaxially. Therefore, if the LnGaAs layer in the region above the broken line L in FIG. 2 is formed by a manufacturing method that includes interruption of growth, the InGaAs layer will function as a good buffer layer.

本発明ではこの半導体層22を緩衝層として使う.実施
例1ではInGaAs層2がこの役割を果しでいる.こ
の手法を採用することにより、基板GaAsと電子走行
層との間に格t定数の差がある場合も、劣化の少ない電
子走行層を形成することかできる,また,緩衝層は高抵
抗であるため、基抜と屯子走行層との電気的遮断の役割
を果す.このため、漏れ電流を低減できる. 次に本発明を用いた別の実施例を第5図により説明する
.半絶縁性GaAs基板31上に、ノンドーブGaAs
層32,ノンドープlnGaAs層33,n型InGa
As能動層;34、ノンドープI.nA Q As 7
94 3 5を順次形成する.本実施例ではMBE法を
用いて、半導体層を形成する.上記のような構造を形成
後,lnA Q As層;35を一部を残してエッチン
グにより除去し、ゲート電極36を形成する.その後、
能動層3 4−1;にンース・ドレイン電極37を形成
する. ここでは、lnGaAs層33が緩衝層の役目を果たし
ている.In組成,膜厚,製造方法は実施例1と同様と
した,ここでは、能動層34のIn組成はInGaAs
層コ33と同様とし、その)績さはiooo人以上とし
た.この層は、ドナ不純物SiをI×1 0”〜I X
 1 0l8C!1″″8含有しテイる.実施例』,2
にボした結晶横造は,通常、InGaAsおよびfnA
 Q As層の組成を限定し、InP基板上に格子整合
させ、形成している.本発明を用いれば安価でプロセス
の確立しているGaAs基板を用いて同構造の半導体装
置を製造できる。
In the present invention, this semiconductor layer 22 is used as a buffer layer. In Example 1, the InGaAs layer 2 fulfills this role. By adopting this method, even if there is a difference in the t-constant between the GaAs substrate and the electron transport layer, it is possible to form an electron transport layer with little deterioration, and the buffer layer has a high resistance. Therefore, it plays the role of electrically interrupting the foundation and the tunnel running layer. Therefore, leakage current can be reduced. Next, another embodiment using the present invention will be explained with reference to FIG. On the semi-insulating GaAs substrate 31, non-doped GaAs
Layer 32, non-doped InGaAs layer 33, n-type InGa
As active layer; 34, non-doped I. nA Q As 7
Form 94 3 5 in sequence. In this example, a semiconductor layer is formed using the MBE method. After forming the structure as described above, the lnA Q As layer 35 is removed by etching leaving only a portion, and a gate electrode 36 is formed. after that,
Form a source/drain electrode 37 on active layer 3 4-1; Here, the lnGaAs layer 33 serves as a buffer layer. The In composition, film thickness, and manufacturing method were the same as in Example 1. Here, the In composition of the active layer 34 was InGaAs.
It is the same as layer 33, and its performance is set to be iooo people or higher. This layer contains the donor impurity Si from I×10” to I
1 0l8C! Contains 1″″8. Example”, 2
Bottled crystal horizontal structures are usually used for InGaAs and fnA
The Q As layer is formed by limiting its composition and lattice-matching it on the InP substrate. According to the present invention, a semiconductor device having the same structure can be manufactured using a GaAs substrate which is inexpensive and has an established process.

〔発明の効果〕〔Effect of the invention〕

本発明は、以上説明したように構成されているので以下
に記載されているような効果を奏する。
Since the present invention is configured as described above, it produces the effects described below.

11衝層の導入により、緩衝層内に転位が閉じ込められ
るため,その上層に格子定数が下層と異なる結晶性のよ
いエビタキシャル成長ができる.また、転位の発生によ
り緩衝層は高抵抗となるため、基板と上部の半導体層の
間で優れた電気的遮断効果を示し、漏れ屯流を低減でき
る,
11 The introduction of a buffer layer confines dislocations within the buffer layer, allowing epitaxial growth with good crystallinity in the upper layer, where the lattice constant is different from the lower layer. In addition, since the buffer layer has high resistance due to the occurrence of dislocations, it exhibits an excellent electrical isolation effect between the substrate and the upper semiconductor layer, and can reduce leakage current.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例1の半導体装置の縦断面図,第
2図はC; a A s基板]一におけるlnGaAs
層のIn組成と臨界腺厚の関係曲線図,第3図は半趨体
層界面での転位発生機構を説明するための結晶格子の模
式断血図,第4図は転位発生層を持つ半導体層の模式的
所而図,第5図は本発明の実施例2の半4体装置の縦断
面図である。 1・・・半絶縁性(;aAs基扱、2・・・ノンドーブ
fjaAs層、3・・・ノンドープinfiaAs層、
4・・・ノントーブlnA Q As層、5 − n型
1nA Q As[、6 − n型InGaAs層,7
・・・ゲート電極,8・・・リース・ドレイン電極,1
1.12・・・半導体層、21.23・・・半導体エビ
タキシャル層,22・・・転位の発生している半導体層
、31・・・半絶縁性GaAs基板,32・・・ノンド
ープGaAs層、3 3 ・・・ノンドープlnGaA
s層,34・・・n型1nGaAs層、3 5−・・ノ
ンドープInA Q As層、3 B ・・・ゲート電
極、37・・・リース・ドレイン電極.1蜘阻氏
FIG. 1 is a vertical cross-sectional view of a semiconductor device according to Example 1 of the present invention, and FIG.
A curve diagram showing the relationship between the In composition of the layer and the critical thickness. Figure 3 is a schematic cross-section diagram of a crystal lattice to explain the mechanism of dislocation generation at the interface between half-layers. Figure 4 is a diagram of a semiconductor with a dislocation generation layer. FIG. 5, which is a schematic diagram of the layers, is a longitudinal sectional view of a half-four body device according to a second embodiment of the present invention. 1... Semi-insulating (; aAs-based treatment, 2... Non-doped fjaAs layer, 3... Non-doped infiaAs layer,
4...Nontobu lnA Q As layer, 5 - n-type 1nA Q As [, 6 - n-type InGaAs layer, 7
... Gate electrode, 8 ... Lease/drain electrode, 1
1.12...Semiconductor layer, 21.23...Semiconductor epitaxial layer, 22...Semiconductor layer in which dislocations have occurred, 31...Semi-insulating GaAs substrate, 32...Non-doped GaAs layer , 3 3 ... non-doped lnGaA
s layer, 34... n-type 1nGaAs layer, 3 5-... non-doped InA Q As layer, 3 B... gate electrode, 37... lease/drain electrode. Mr. 1 Spider

Claims (1)

【特許請求の範囲】 1、半絶縁性GaAs基板上にノンドープInGaAs
層、ノンドープInAlAsスペーサ層、n型InAl
As電子供給層、n型InGaAsキャップ層を順次形
成した結晶構造において、上記ノンドープのInGaA
s層を緩衝層としてIn組成を0.5以上、膜厚を50
0Å以上としたことを特徴とする結晶構造。 2、半絶縁性GaAs基板上にノンドープInGaA_
8層、n型InGaAs層、ノンドープInAlAs層
を順次形成した結晶構造において、ノンドープのlnG
aAs層を緩衝層としてIn組成を0.5以上、膜厚を
500Å以上としたことを特徴とする結晶構造。 3、請求項1、2記載の結晶構造において、基板上に第
1のInGaAs層を300〜500Å形成した後に、
成長を一時中断し、5秒〜3分後に成長を再開し、所定
の膜厚のInGaAs層を成長し、その後、順次ノンド
ープInAlAs、n型InAlAs、n型InGaA
s半導体層を形成することを特徴とする結晶構造の製造
方法。
[Claims] 1. Non-doped InGaAs on a semi-insulating GaAs substrate
layer, undoped InAlAs spacer layer, n-type InAl
In the crystal structure in which an As electron supply layer and an n-type InGaAs cap layer are sequentially formed, the above-mentioned non-doped InGaA
The s layer is used as a buffer layer, the In composition is 0.5 or more, and the film thickness is 50
A crystal structure characterized by having a thickness of 0 Å or more. 2. Non-doped InGaA on semi-insulating GaAs substrate
In a crystal structure in which 8 layers, an n-type InGaAs layer, and a non-doped InAlAs layer are sequentially formed, non-doped InG
A crystal structure characterized in that an aAs layer is used as a buffer layer, an In composition is 0.5 or more, and a film thickness is 500 Å or more. 3. In the crystal structure according to claims 1 and 2, after forming the first InGaAs layer with a thickness of 300 to 500 Å on the substrate,
The growth is temporarily interrupted and restarted after 5 seconds to 3 minutes to grow an InGaAs layer of a predetermined thickness, and then sequentially grow non-doped InAlAs, n-type InAlAs, and n-type InGaA.
1. A method for manufacturing a crystal structure, comprising forming a semiconductor layer.
JP11492889A 1989-05-10 1989-05-10 Crystal structure and manufacture thereof Pending JPH02295133A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11492889A JPH02295133A (en) 1989-05-10 1989-05-10 Crystal structure and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11492889A JPH02295133A (en) 1989-05-10 1989-05-10 Crystal structure and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH02295133A true JPH02295133A (en) 1990-12-06

Family

ID=14650134

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11492889A Pending JPH02295133A (en) 1989-05-10 1989-05-10 Crystal structure and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH02295133A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018511945A (en) * 2015-03-31 2018-04-26 ソウル バイオシス カンパニー リミテッドSeoul Viosys Co.,Ltd. UV light emitting element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018511945A (en) * 2015-03-31 2018-04-26 ソウル バイオシス カンパニー リミテッドSeoul Viosys Co.,Ltd. UV light emitting element

Similar Documents

Publication Publication Date Title
JP3372470B2 (en) Nitride III-V compound semiconductor device
US20070045639A1 (en) Semiconductor electronic device
JP2685030B2 (en) Semiconductor device and manufacturing method thereof
JPH06177037A (en) Silicon substrate compound semiconductor device
JP4912558B2 (en) Semiconductor structure
JPH07120790B2 (en) Semiconductor device
JPH07183494A (en) Heterojunction fet
JP2804041B2 (en) Field-effect transistor
JP2679396B2 (en) Field effect transistor
JPH10256154A (en) Semiconductor hetero-structure, manufacture thereof and semiconductor device
JP3470054B2 (en) Nitride III-V compound semiconductor device
JPH02295133A (en) Crystal structure and manufacture thereof
JP2530496B2 (en) Semiconductor heterostructure and manufacturing method thereof
US5773853A (en) Compound semiconductor device
Chu et al. In0. 30Al0. 70As/In0. 30Ga0. 70As quasi-insulating gate strained-layer field effect transistors grown by molecular beam epitaxy
JPH02130933A (en) Field effect transistor
JPH11261054A (en) Field effect transistor
JPH0684959A (en) High electron mobility field effect semiconductor device
JP2917719B2 (en) Field effect transistor
Keller et al. Ga x In1− x As/AlAs resonant tunneling diodes grown by atmospheric pressure metalorganic chemical vapor deposition
JP2708492B2 (en) Method for manufacturing semiconductor device
JPH088354B2 (en) Heterojunction field effect transistor
JPH0684958A (en) Inp field effect semiconductor device
JPS6344774A (en) Compound semiconductor device
JPH05166724A (en) Silicon substrate compound semiconductor device and its manufacture