JPH022945B2 - - Google Patents

Info

Publication number
JPH022945B2
JPH022945B2 JP14669282A JP14669282A JPH022945B2 JP H022945 B2 JPH022945 B2 JP H022945B2 JP 14669282 A JP14669282 A JP 14669282A JP 14669282 A JP14669282 A JP 14669282A JP H022945 B2 JPH022945 B2 JP H022945B2
Authority
JP
Japan
Prior art keywords
processing furnace
mixed gas
treated
auxiliary electrode
glow discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14669282A
Other languages
Japanese (ja)
Other versions
JPS5935672A (en
Inventor
Hirotsugu Takeuchi
Keiji Tamamoto
Junichi Nagasawa
Kyoji Imamura
Takehiro Shimomura
Goro Momotani
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NDK Inc
Original Assignee
Nihon Denshi Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Denshi Kogyo KK filed Critical Nihon Denshi Kogyo KK
Priority to JP14669282A priority Critical patent/JPS5935672A/en
Publication of JPS5935672A publication Critical patent/JPS5935672A/en
Publication of JPH022945B2 publication Critical patent/JPH022945B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/36Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases using ionised gases, e.g. ionitriding

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Description

【発明の詳細な説明】 本発明はイオン窒化処理方法に係る。詳しくは
窒化に先立つて被処理物表面の酸化皮膜を還元除
去する還元工程を含有するステンレスギア等凹凸
を有する形状のステンレス鋼製部品をイオン窒化
する方法に係る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an ion nitriding method. Specifically, the present invention relates to a method for ion nitriding stainless steel parts having uneven shapes, such as stainless steel gears, which includes a reduction step of reducing and removing an oxide film on the surface of the object to be treated prior to nitriding.

金属の表面処理法として、従来、イオン窒化処
理方法がある。
Conventionally, an ion nitriding method is known as a metal surface treatment method.

イオン窒化処理は、ステンレス鋼などのように
安定した酸化膜を有するものへの窒化には有向な
方法である。しかし、ステンレスギアのように凹
凸のある複雑な形状を有する被処理物を処理する
場合には、凸部から凹部まで連続した均一な窒化
層を得ることは甚だ困難であつた。
The ion nitriding process is a suitable method for nitriding materials having a stable oxide film such as stainless steel. However, when processing a workpiece having a complicated shape with unevenness, such as a stainless steel gear, it is extremely difficult to obtain a uniform nitrided layer that is continuous from the convex portions to the concave portions.

このような不連続窒化層が生成される原因は、
放電の際処理炉内の残留酸素、被処理物や処理炉
体に吸着しているガス及び被処理物に付着してい
る油分などの汚れから生成される酸化皮膜が特に
凹部では除去し難いためと考えられる。
The reason why such a discontinuous nitride layer is generated is
During discharge, it is difficult to remove the oxide film generated from residual oxygen in the processing furnace, gas adsorbed on the object to be processed and the processing furnace body, and dirt such as oil adhering to the object to be processed, especially in concave areas. it is conceivable that.

本発明は、イオン窒化処理方法に於ける上記の
如き欠点を解消し得るイオン窒化処理方法を提供
することを目的とする。即ち、本発明の目的は、
特に凹凸部を有する複雑な形状のステンレス鋼製
被処理物を処理し得るイオン窒化処理方法を提供
することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide an ion nitriding method that can eliminate the above-mentioned drawbacks of the ion nitriding method. That is, the purpose of the present invention is to
In particular, it is an object of the present invention to provide an ion nitriding method capable of treating a stainless steel workpiece having a complicated shape and having uneven parts.

本発明のイオン窒化処理方法は、被処理物表面
の酸化皮膜を還元除去するための還元工程と、実
質的窒化を行う窒化工程とから成る。
The ion nitriding method of the present invention comprises a reduction step for reducing and removing the oxide film on the surface of the object to be treated, and a nitriding step for substantially nitriding the object.

以下、本発明のイオン窒化処理方法を添附図面
を参照して説明する。
Hereinafter, the ion nitriding method of the present invention will be explained with reference to the accompanying drawings.

第1図は、本発明のイオン窒化処理方法を実施
するための処理炉の1例を示す。
FIG. 1 shows an example of a processing furnace for carrying out the ion nitriding method of the present invention.

第1図の処理炉1は、補助電極2を有してお
り、この補助電極2と被処理物3とは夫々処理炉
体1から電気的に絶縁されている。更に第1図の
処理炉1はスパツタ防止板4,4′を有している。
尚第1図中補助電極2は第2図に示されているよ
うにカゴ型であるが、棒状、円筒状等他の形状で
あつてもよい。
The processing furnace 1 shown in FIG. 1 has an auxiliary electrode 2, and the auxiliary electrode 2 and the workpiece 3 are electrically insulated from the processing furnace body 1, respectively. Furthermore, the processing furnace 1 shown in FIG. 1 has spatter prevention plates 4, 4'.
Although the auxiliary electrode 2 in FIG. 1 has a cage shape as shown in FIG. 2, it may have other shapes such as a rod shape or a cylindrical shape.

本発明のイオン窒化処理方法を実施する際に
は、先ず被処理物例えばステンレスギア3を処理
炉1内に設置する。
When carrying out the ion nitriding method of the present invention, the object to be treated, for example, the stainless steel gear 3, is first placed in the processing furnace 1.

次に処理炉1内を約0.05Torr程度まで排気す
る。しかる後水素及び窒素を含有する混合ガスを
処理炉内に導入する。この混合ガスとしては、容
量比H2/N2=1/1〜4/1の水素と窒素とか
ら成るガスが好ましい。更に好ましくは容量比
H2/N2=3/1の水素と窒素の混合ガスが用い
られる。上記した混合ガスは更にアルゴン等の不
活性ガスを含有していてもよい。
Next, the inside of the processing furnace 1 is evacuated to about 0.05 Torr. Thereafter, a mixed gas containing hydrogen and nitrogen is introduced into the processing furnace. This mixed gas is preferably a gas consisting of hydrogen and nitrogen with a volume ratio of H 2 /N 2 =1/1 to 4/1. More preferably, the capacity ratio
A mixed gas of hydrogen and nitrogen with a ratio of H 2 /N 2 =3/1 is used. The above-mentioned mixed gas may further contain an inert gas such as argon.

還元工程中、処理炉内の圧力は0.1〜10Torrに
保たれる。
During the reduction process, the pressure inside the processing furnace is maintained at 0.1-10 Torr.

このような状態で、補助電極2を陰極、処理炉
体1を陽極とし、被処理物3は電気的に中立とし
てグロー放電を生起せしめる。グロー放電に伴つ
て熱が発生し、この熱により被処理物3を300乃
至450℃まで昇温する。
In this state, the auxiliary electrode 2 is used as a cathode, the processing furnace body 1 is used as an anode, and the object to be processed 3 is made electrically neutral to generate glow discharge. Heat is generated along with the glow discharge, and the temperature of the object 3 to be processed is raised to 300 to 450°C.

グロー放電に伴ない発生する熱により温度上昇
され被処理物3の表面に酸化皮膜が生成するが、
被処理物3にグロー放電が発生しないため、被処
理物3の表面において分子等の衝突によつて酸化
物となりやすいクロムがそれほど酸化されないで
酸化被膜の生成を抑制され、かつ、上述のように
昇温することにより、グロー放電で生成する水素
イオン及びアンモニアイオンが酸化皮膜を還元除
去する。このため、この酸化皮膜の生成速度は、
本発明方法に於いては、還元速度より小さいの
で、充分な時間(通常2〜3時間)上記工程を実
施することにより被処理物の酸化皮膜は以下の窒
化工程に於ける障害とならない程度まで除去され
る。尚、2〜3時間程度では窒化は殆んど生じな
い。又、被処理物若しくは処理炉体に吸着してい
たガス又は油などの汚れは処理炉外へ排気され
る。
The temperature rises due to the heat generated due to the glow discharge, and an oxide film is formed on the surface of the object to be treated 3.
Since glow discharge does not occur on the object to be treated 3, chromium, which tends to become oxides due to collisions with molecules on the surface of the object to be treated 3, is not oxidized as much, and the formation of an oxide film is suppressed, and as described above, By increasing the temperature, hydrogen ions and ammonia ions generated by glow discharge reduce and remove the oxide film. Therefore, the rate of formation of this oxide film is
In the method of the present invention, the rate of reduction is lower than the reduction rate, so by carrying out the above steps for a sufficient period of time (usually 2 to 3 hours), the oxide film on the object to be treated can be removed to the extent that it does not interfere with the nitriding step below. removed. In addition, nitriding hardly occurs after about 2 to 3 hours. Further, dirt such as gas or oil adsorbed on the object to be processed or the processing furnace body is exhausted to the outside of the processing furnace.

この還元工程の温度は300乃至450℃の範囲に保
たれるが、これより高い場合には工程初期に於い
て吸着ガス又は汚れによる酸化皮膜の生成が優先
するため後の酸化皮膜除去に長時間を要し好まし
くない。又、温度が上記範囲より低い場合には、
還元速度がおそくなるため不都合である。
The temperature in this reduction process is kept in the range of 300 to 450℃, but if it is higher than this, the formation of an oxide film due to adsorbed gas or dirt takes priority in the early stage of the process, so it takes a long time to remove the oxide film later. This is not desirable. Also, if the temperature is lower than the above range,
This is inconvenient because the rate of reduction becomes slow.

上述した還元工程が終了した後、被処理物3を
陰極、処理炉体1を陽極とし、補助電極を電気的
に中立としてグロー放電を生起させてイオン窒化
処理を行なう。このときの条件は、混合ガスの圧
力1〜10Torr、処理温度は500〜600℃である。
又、混合ガスとしては、容量比N2/H2=8/2
〜2/8の窒素と水素とから成るガスが使用でき
る。
After the above-mentioned reduction step is completed, the object to be treated 3 is used as a cathode, the processing furnace body 1 is used as an anode, and the auxiliary electrode is made electrically neutral to generate glow discharge and perform ion nitriding treatment. The conditions at this time are a mixed gas pressure of 1 to 10 Torr and a processing temperature of 500 to 600°C.
Also, as a mixed gas, the volume ratio N 2 /H 2 = 8/2
A gas consisting of ~2/8 nitrogen and hydrogen can be used.

上述した本発明方法によると、凹凸のある複雑
な形状の被処理物例えばステンレスギアでも、短
時間で全体に略一様な比較的大きな厚みの窒化層
が得られる。
According to the above-described method of the present invention, even on a workpiece having a complicated shape with unevenness, such as a stainless steel gear, a nitrided layer having a relatively large thickness and substantially uniform over the entire surface can be obtained in a short time.

以下に実施例をあげて本発明を更に詳述する。 The present invention will be explained in further detail by giving examples below.

実施例 第1図に示した処理炉と同様な処理炉を用い、
被処理物としてステンレスギア(SUS 316 PCD
30mmモジユール1)をイオン窒化処理した。
Example Using a processing furnace similar to the processing furnace shown in Fig. 1,
Stainless steel gear (SUS 316 PCD) is used as the workpiece.
The 30mm module 1) was subjected to ion nitriding treatment.

ステンレスギアを処理炉中央に設置し、処理炉
内を排気して0.05Torrとした。
A stainless steel gear was installed in the center of the processing furnace, and the inside of the processing furnace was evacuated to 0.05 Torr.

水素3容量部、窒素1容量部から成る混合ガス
を処理炉内に流し圧力を4Torrに調整した。次に
処理炉体を陽極、補助電極を陰極としてグロー放
電を開始し、ステンレスギアの温度が350℃にな
つてから更に2時間放放電を続けた。
A mixed gas consisting of 3 parts by volume of hydrogen and 1 part by volume of nitrogen was flowed into the processing furnace and the pressure was adjusted to 4 Torr. Next, glow discharge was started using the processing furnace body as an anode and the auxiliary electrode as a cathode, and after the temperature of the stainless steel gear reached 350°C, discharge and discharge were continued for another 2 hours.

グロー放電をやめ、混合ガスの容量比を窒素
1:水素1に調整した。同時に、陰極を補助電極
からステンレスギアにかえてグロー放電を開始し
た。ステンレスギアの温度が570℃になつた時点
から15時間放電を続行した。この間炉内の圧力を
4Torrに保つた。
Glow discharge was stopped, and the volume ratio of the mixed gas was adjusted to 1:1 of nitrogen: 1:1 of hydrogen. At the same time, glow discharge was started by changing the cathode from the auxiliary electrode to a stainless steel gear. Discharge was continued for 15 hours from the time the temperature of the stainless steel gear reached 570°C. During this time, the pressure inside the furnace
It was kept at 4Torr.

このようにして処理したステンレスギアは、全
表面に厚さ100μの均一な窒化層を有しており、
硬度はHv=1000であつた。
The stainless steel gear treated in this way has a uniform nitride layer with a thickness of 100μ on the entire surface.
The hardness was Hv=1000.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明のイオン窒化処理方法を実施
するための処理炉の1例を示し、第2図は補助電
極の1例を示す。 1…処理炉本体、2…補助電極、3…被処理
物、4,4′…スパツタ防止板。
FIG. 1 shows an example of a processing furnace for carrying out the ion nitriding method of the present invention, and FIG. 2 shows an example of an auxiliary electrode. DESCRIPTION OF SYMBOLS 1... Processing furnace main body, 2... Auxiliary electrode, 3... Workpiece, 4, 4'... Spatter prevention plate.

Claims (1)

【特許請求の範囲】 1 補助電極を有する処理炉内に被処理物である
凹凸を有するステンレス鋼製部品を設置し、処理
炉内を排気した後水素及び窒素を含有する混合ガ
スを導入し、処理炉内の圧力を0.1〜10Torrに保
ち、補助電極を陰極、処理炉体を陽極、被処理物
を中立としてグロー放電を生起せしめ、グロー放
電に伴つて発生する熱により被処理物の温度を
300〜450℃にし、これにより被処理物表面の酸化
皮膜を還元除去する還元工程と、 続いて被処理物と陰極、処理炉体を陽極、補助
電極を中立として窒素及び水素含有混合ガス雰囲
気中でグロー放電を生起せしめ、500〜600℃でイ
オン窒化を行う窒化工程とから成るイオン窒化処
理方法。 2 被処理物がステンレスギアであることを特徴
とする特許請求の範囲第1項に記載の方法。 3 還元工程に於いて、混合ガスが水素、窒素及
びアルゴン等不活性ガスを含有することを特徴と
する特許請求の範囲第1項又は第2項に記載の方
法。 4 還元工程に於いて、混合ガスの容量比H2
N2が3/1であることを特徴とする特許請求の
範囲第1項に記載の方法。
[Scope of Claims] 1. A stainless steel part having unevenness as a workpiece is installed in a processing furnace having an auxiliary electrode, and after the inside of the processing furnace is evacuated, a mixed gas containing hydrogen and nitrogen is introduced, The pressure inside the processing furnace is maintained at 0.1 to 10 Torr, the auxiliary electrode is the cathode, the processing furnace body is the anode, and the object to be processed is neutral to generate glow discharge, and the temperature of the object to be processed is increased by the heat generated by the glow discharge.
The temperature is raised to 300 to 450°C, and the oxide film on the surface of the object to be treated is reduced and removed.Then, the object to be treated and the cathode, the processing furnace body is the anode, and the auxiliary electrode is the neutral, in a mixed gas atmosphere containing nitrogen and hydrogen. An ion nitriding treatment method consisting of a nitriding step in which a glow discharge is generated at 500 to 600 degrees Celsius. 2. The method according to claim 1, wherein the object to be treated is a stainless steel gear. 3. The method according to claim 1 or 2, wherein in the reduction step, the mixed gas contains hydrogen, nitrogen, and an inert gas such as argon. 4 In the reduction process, the volume ratio of the mixed gas H 2 /
A method according to claim 1, characterized in that N 2 is 3/1.
JP14669282A 1982-08-24 1982-08-24 Ionic nitriding treatment of stainless steel parts having ruggedness Granted JPS5935672A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14669282A JPS5935672A (en) 1982-08-24 1982-08-24 Ionic nitriding treatment of stainless steel parts having ruggedness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14669282A JPS5935672A (en) 1982-08-24 1982-08-24 Ionic nitriding treatment of stainless steel parts having ruggedness

Publications (2)

Publication Number Publication Date
JPS5935672A JPS5935672A (en) 1984-02-27
JPH022945B2 true JPH022945B2 (en) 1990-01-19

Family

ID=15413406

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14669282A Granted JPS5935672A (en) 1982-08-24 1982-08-24 Ionic nitriding treatment of stainless steel parts having ruggedness

Country Status (1)

Country Link
JP (1) JPS5935672A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006213997A (en) * 2005-02-07 2006-08-17 Honda Motor Co Ltd Nitriding method of ferrous alloy base material
WO2007110905A1 (en) * 2006-03-24 2007-10-04 Honda Motor Co., Ltd. Method of nitriding of iron group base alloy substrate

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8414710B2 (en) 2004-02-04 2013-04-09 Honda Motor Co., Ltd. Method for surface treatment of metal material
JP4575450B2 (en) * 2005-08-05 2010-11-04 本田技研工業株式会社 Ion nitriding method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006213997A (en) * 2005-02-07 2006-08-17 Honda Motor Co Ltd Nitriding method of ferrous alloy base material
WO2007110905A1 (en) * 2006-03-24 2007-10-04 Honda Motor Co., Ltd. Method of nitriding of iron group base alloy substrate

Also Published As

Publication number Publication date
JPS5935672A (en) 1984-02-27

Similar Documents

Publication Publication Date Title
EP0242089B1 (en) Method of improving surface wear resistance of a metal component
JPH0338339B2 (en)
JPS57205970A (en) Electrode employing fixed hemprotein
JPH08144088A (en) Surface treatment of vacuum chamber member made of aluminium or aluminum alloy
JPH022945B2 (en)
JP3379071B2 (en) Method of forming oxide passivation film containing chromium oxide as main component and stainless steel
EP0146115B1 (en) Process for producing aluminum material for use in vacuum
JPS60165370A (en) Nitriding treatment of stainless steel
JP3078853B2 (en) Oxide film formation method
JP2963169B2 (en) Electrodes for high frequency plasma generation
JP2868889B2 (en) Manufacturing method of aluminum powder press molded product
JPH01205085A (en) Method for cleaning metal
JPS62202071A (en) Ionic nitriding method for aluminum material
JPH0192354A (en) Aluminum composite material excellent in corrosion resistance and its production
JPH0478030B2 (en)
JP3262696B2 (en) Silica glass member having glassy carbon coating
JPH06136495A (en) Production of aluminum material for electrolytic capacitor electrode
JPH051365A (en) Surface treatment of metal
JPS56105473A (en) Surface treatment method of fabricated metal product
JPH08269670A (en) Production of metallic composite material
JP3226231B2 (en) Parts heat treatment container
JPS5881963A (en) Vacuum carburization method
JPH07116484B2 (en) Iron powder heat treatment container
JPS6350456A (en) Surface treatment for aluminum material
JPH10130811A (en) Jig for working electronic material and its production