JPH02294539A - Rotating speed control device - Google Patents

Rotating speed control device

Info

Publication number
JPH02294539A
JPH02294539A JP11651889A JP11651889A JPH02294539A JP H02294539 A JPH02294539 A JP H02294539A JP 11651889 A JP11651889 A JP 11651889A JP 11651889 A JP11651889 A JP 11651889A JP H02294539 A JPH02294539 A JP H02294539A
Authority
JP
Japan
Prior art keywords
amount
engine
rotating speed
control
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11651889A
Other languages
Japanese (ja)
Inventor
Setsuhiro Shimomura
下村 節宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP11651889A priority Critical patent/JPH02294539A/en
Priority to KR1019900006368A priority patent/KR900019335A/en
Priority to DE4014722A priority patent/DE4014722C2/en
Publication of JPH02294539A publication Critical patent/JPH02294539A/en
Priority to US07/799,723 priority patent/US5153446A/en
Priority to KR2019930018427U priority patent/KR940000897Y1/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To shift an engine rotating speed to a target value smoothly without lowering the speed even when a load on an engine is large by setting the amount of suction air larger than usual by a control means in moving to idling operation and reducing it gradually to the usual value, to make a feedback correction. CONSTITUTION:A control device 10 is composed of an input interface for receiving rotating speed signal ne, idle switch signal s, and temperature signal w, CPU, memory, output interface for amplifying the signal output in accordance with the calculation result of the CPU and outputting a driving signal to a bypass control valves, etc. When the operation comes in idle operating condition, the amount of basic control is set larger than that of the original amount of basic control, and the amount of feedback correction is increased or decreased so that the amount of basic control may be reduced gradually to the original amount of basic control as the time collapses and the engine rotating speed may be coincided with the target rotating speed. Accordingly, since the amount of intake air is increased or decreased by a bypass control valve 5, the rotating speed converges to the target rotating speed smoothly irrespectie of the appilcation of an electrical load 9 in shifting to idling operation.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はアイドル運転状態にある場合のエンジンを所望
の回転数に制御する回転数制御装置に関する. 〔従来の技術〕 従来、自動車用エンジンの吸入空気量を調整して、エン
ジンを所望の回転数に制1nする装置は周知である.し
かし、この装置では、エンジンによって付勢される発電
機に大きな電気的負荷が接続されて発電機の負荷が急変
すると、それに伴ってエンジンに急激なトルク負荷を課
し、回転数制御の遅れとあいまってエンジン回転数の低
下もしくは失速やハンチングに陥るといった課題があっ
た.この課題を改善するために電気的負荷の急増に際し
て発電機の出力の応答を遅延させ、エンジン負荷の急増
を防止することによりエンジン回転数を所望の値に維持
する装置が特開昭59−83600号公報,米国特許k
4459489等に開示されている.この装置は、発電
機の電圧レギュレーション装置において、発iuiの界
磁電流を可変にするための電流制御手段と、発電機の出
力電圧を検出して所望の値に維持するための電圧応答手
段と、界!ff ii流の大きさの関数である制御信号
を発生して記憶する手段と、発電機の出力電圧の低下に
応じて界磁電流を徐々に増加し、所望のレギュレーショ
ン電圧に収束させるように制j1する制御手段とからな
り、該制御手段は前記の記憶された制御信号に対応して
界磁電流を初期化し、そしてその値から徐hに界if!
電流を増加させるように動作する手段を含むものである
.これらの具体的な構成については前記公報に詳しく説
明されているのでその詳述は割愛する. 次にこの従来装置の動作について第4図の実線を参照し
て闇単に説明する.Mは電気的負荷の投入を示し、それ
に伴って発電機の出力電圧Vが一端低下し、徐々に元の
電圧に復帰する.従って、発電機の出力電流lが緩やか
に増加している.■はエンジンの実回転数と目標回転数
の誤差をOにするためのフィードバック補正量であって
、エンジンの負荷増加に応じて吸入空気量を増加させ、
エンジン回転数nを所望値に維持するように作用する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a rotation speed control device for controlling an engine to a desired rotation speed when the engine is in an idling operating state. [Prior Art] Conventionally, a device for adjusting the amount of intake air of an automobile engine to control the engine to a desired rotational speed is well known. However, with this device, when a large electrical load is connected to the generator energized by the engine and the load on the generator suddenly changes, a sudden torque load is imposed on the engine, resulting in a delay in rotation speed control. This also led to issues such as a drop in engine speed, stalling, and hunting. In order to improve this problem, Japanese Patent Laid-Open No. 59-83600 discloses a device that delays the response of the generator's output when the electrical load suddenly increases, and thereby maintains the engine speed at a desired value by preventing the sudden increase in the engine load. No. Publication, US Patent K
No. 4,459,489, etc. This device is a voltage regulation device for a generator, and includes a current control means for making the field current of the generator IUI variable, and a voltage response means for detecting the output voltage of the generator and maintaining it at a desired value. , Kai! ff ii means for generating and storing a control signal that is a function of the magnitude of the current; j1, the control means initializes the field current in response to the stored control signal, and gradually increases the field if! from that value.
It includes means operative to increase the current. These specific configurations are explained in detail in the aforementioned publication, so a detailed explanation will be omitted. Next, the operation of this conventional device will be briefly explained with reference to the solid line in Fig. 4. M indicates the application of an electrical load, and the output voltage V of the generator decreases for a while and gradually returns to the original voltage. Therefore, the output current l of the generator is increasing slowly. ■ is a feedback correction amount to reduce the error between the actual engine speed and the target engine speed to O, and increases the amount of intake air according to the increase in engine load.
It acts to maintain the engine speed n at a desired value.

このフィードバック補正量夏の詳しい説明は後述する.
このような制御が行なわれる結果、エンジン回転数nは
電気的負荷の投入によりわずかに変動するが好ましい状
態に維持される.第4図中の破線は、発電機の出力に遅
延が与えられない場合の動作状態を図示したもので、発
電機の出力電流iが急増するためエンジン回転数nが急
激に低下し、フィードバック補正景■が遅れて応答する
ため、ハンチングしつつエンジン回転数nが目標回転数
に収束する模様が示されている.上記のとおり、従来装
置においては、回転数のフィードバック制御が行なわれ
ている時に電気的負荷が投入されてもエンジン回転数の
著るしい変動は防止可能である.しかしながら、自動車
用エンジンにおいては次に述べる現象が起る.第5図に
おいて、Sはエンジンのアイドル運転状態と非アイドル
運転状態を判別する信号であって、アイドル運転時に“
L″レベルに、非アイドル運転時に“H″レベルになる
.非アイドル運転中では、回転数のフィードバンク制御
は停止されているためにフィードバック補正量■は変化
しない.このときに電気的負荷Mが投入されると発電機
の出力電流iは緩やかに応答しているが、元々エンジン
の出力が大きい状態にあるので、回転数変動の抑制には
余り寄与していない.次いでアイドル運転状,l!!(
S−L)になったとき回転数のフィードバック制11が
開始される.このとき予め電気的負荷が投入され続けて
おり、発電機の出力電流iが大きい状態にあるためにエ
ンジン負荷が増大しており、目標回転数を維持する事が
できず、エンジン回転数nは実線に示すように大きく低
下する.エンジン回転数nの低下を回復するためフィー
ドバック補正量■は実線に示すように徐々に大きくなり
、エンジンの吸入空気量を増大させるように作用する.
しかし、フィードバック補正の遅れによりエンジン回転
数nはハンチング傾向を示しながら目標回転数に収束し
て行く.〔発明が解決しようとする課題) 従来の回転数制1′B装置は以上のように、回転数のフ
ィードバック制御を行なっている期間に電気的負荷が投
入されたときは回転数の変動を抑制できるが、予め電気
的負荷が投入されている状態から回転数のフィードバッ
ク制御を開始するような運転の仕方をするとエンジン回
転数が大きく変動してしまいエンジン回転数の低下もし
くは失速やハンチングに陥るなどの課題があった.本発
明は上記のような課題を解決するためになされたもので
、予め電気的負荷が投入されている状態から回転数のフ
ィードバック制御を開始しても回転数の低下をもたらさ
ずにエンジン回転数を円滑に所望値に移行することので
きる回転数制2B装置を得る事を目的とする. 〔課題を解決するための手段〕 本発明の回転数制御装置は、アイドル・非アイドルの運
転状態検出手段と、回転数検出手段と、アイドル時の回
転数誤差補正用の補正量を発生する補正量発生手段と、
基本制御量と補正量からエンジンの吸入空気量を制御し
かつアイドル状態への移行を検出した以降基本制御量を
通常値迄漸減させる制御手段と、エンジンに付勢され、
電気負荷の増加に際して出力の応答を遅延させる発電手
段を設けたものである. (作 用〕 本発明における回転数制御装置は、アイドル状態への移
行に際し制御手段により吸入空気量が通常の値より大き
く設定され、以後通常の値迄漸減させフィードバック補
正するためにエンジンの負荷が大きくても回転数を目標
値に円滑に移行させる. (実施例) 以下、本発明の一実施例を図について説明する.第1図
は本実施例による装置の概略構成を示す図であり、同図
において、1はエンジン、2はエンジンlの吸気管、3
は吸気管2に配設された吸気制II弁、21.22は吸
気制御弁3をバイパスするように各一端が吸気管2に接
続されたバイパス管で、各他端がバイパス制御弁5の出
・入口に接続され、バイパス制御弁5により流量を制御
された空気をエンジンlに供給する.40はエンジンl
の出力軸1aに取付けられたブーリで、ベルト43を介
して発電機6を付勢する.この発電機6はF述の特開昭
59−83600号公報に開示されたレギュレーション
装置を備えたものと同様のもので、電気的負荷の増大に
対して出力の応答遅れ性を有ずる。4lは例えば歯部が
磁極となっている歯車で、エンジン1の出力軸1aの回
転とともに回転し、その歯部に対向配置された回転数検
出器42とともにエンジン回転数の検出を行なうもので
ある.7はH極側が接地されたバッテリ、8は一端が接
地された電気的負荷9に直列接続されたスイッチである
.バンテリ7の01極側及びスイノチ8の遊端子は一端
が接地された発電機6の出力端子に接続されている,1
0は第2図にその構成を示す制御装置で、回転数検出器
42、吸気制御弁3が閉位置即ちエンジン1がアイドル
運転状態にあるときに閉じるアイドルスイノチ1l、エ
ンジンlの冷却水温を検出する温度センサ12から各信
号n# .s,wを人力して処理し、バイパス制御弁5
に駆動信号Cを出力する. 第2図において、制御装置lOは、回転数信号nj1+
 アイドルスイッチ信号S.温度信号Wを受ける入力イ
ンタフェース101,CPU102、メモリ103、及
びCPU102の演算結果に基づいて出力された信号を
増巾してバイパス制御弁5に駆動信号Cを出力する出力
インタフェース104等により構成されている. 第3図はかかる構成の装置の動作を説明するフローチャ
ートであり、これをプログラムにして記憶しているメモ
リ103の記憶内容に従がってCPU102により演算
が実行される.以下、第3図に基づいて本実施例の動作
、を説明する。まず、ステップl001では、水温信号
Wよりエンジン1の温度(本実施例では冷却水温)を読
取る.ステップ1002では、メモリ103に予め水温
信号Wに対応して記憶してある目標回転数nT及びこの
回転数を維持するための基本制御ffl C *。を続
出す.次いで、ステップ1003において、回転数信号
n.力1ら実際のエンジン回転数nを読取る.次にステ
ップ1004では、アイドルスイッチ信号Sからアイド
ルスイッチl1の状態を検出し、アイドル運転状態と判
定するとステップ1005に移り、フィードバック補正
1i1の前回値を読み出す.更にステップ1006にお
いて、前回の処理時にもアイドル運転状態であったか否
かの判定を行ない、前回迄非アイドル運転状態で今回ア
イドル運転状態になったと判断したときはステップl0
07に移行し、基本お目1量C.。に予めメモリ103
に記憶設定されている所定値c m +を加算した値を
基本制御Jet C *に設定してステンプ1008に
移る. 一方、ステップl006でアイドル運転状態が継続して
いると判定した場合はステップ1009に移り、実回転
数nと目標回転数nエとの大小を比較する.ここで、も
しn=nTのときステップ10l2においてフィードバ
ンク補正illは前回値が保持され、n>n,ならばス
テップ1010においてフィードバック補正量Iから補
正景ΔIを減算した値を新たなフィードバック補旧1と
して保持し.n<n.ならばステップ1011において
フィードバック補正量1に補正量ΔIを加算した値を新
たなフィード?ック補正IIとして保持する.次いでス
テップl013において基本制?IffiClから所定
値ΔC,を減じて基本制?11 量C mを更新する(
但し、更新後のC.≧C,。).この基本制御量C,は
ステップl007で加算された所定値C■が0即ちCm
−C■になるまで減算が続けられるので、基本制御量C
Iは時間とともにC we + C *+からC.ll
へ漸減する値をとる.このように算出したフィードバッ
ク補正量と基本制jn M C mをステップ1008
において加算して制m Wt Cを求め、この制御量C
はバイパス制御弁5の駆動信号Cとして使用される.し
たがって、アイドル運転状態に入ったときの基本制御量
C廊がまず元の基本制?311CI。より大きく設定さ
れ、時間の経過とともに基本制?Ill f C mは
元の基本制御1c.。へ向けて漸減しつつ、エンジン回
転数nが目標回転数ntに一致するようにフィードバッ
ク補正l+が増減される,これに応じて、バイパス−目
n弁5により吸入空気量が増減されるので、C.を適当
に定める事によりアイドル運転状態移行時の電気的負荷
9の投入時・非投入時に関係なくエンジン回転数nは目
標回転数17に円滑に収束していく.例えばこの様子は
第5図の一点鎖線に示す通りである. 次にアイドル運転状態から非アイドル運転状態になった
ときはステップ1004からステップ10I4に移り、
フィードバック補正量『を保持して次のアイドル運転状
態にそなえる. なお、上述の説明において、ステップ10lO及び同l
011のΔlは同一のものとしているが、エンジンの増
速時と減速時の惑度差に応じて異なる値を選定した方が
良い場合がある。また、n  nrの大きさに応じてΔ
Iを決めるとフィードバックの整定をより速かに行なう
ことができる.また、ステップ+007におけるCI+
はエンジンの温度や回転数の初期値に応じた値を予めプ
ログラムにより定めておくことにより常に最適な制御を
行なう事ができる. 〔発明の効果〕 以上のように、本発明によれば電気負荷の急増に対して
発電手段の出力の応答を遅延させるとともにアイドル運
転状態への移行時に基本制御量を通常の値より大きい値
に設定した後に通常の値迄漸減させてエンジンの吸入空
気量を調整して所望の回転数に制1ヰするように構成し
たので、非アイドル運転状態からアイドル運転状態に移
行した際の回転数の低下を防止でき、目標回転数に円滑
に移行できる効果がある.
A detailed explanation of this feedback correction amount will be given later.
As a result of such control, the engine speed n is maintained in a desirable state, although it fluctuates slightly due to the application of electrical load. The broken line in Fig. 4 illustrates the operating state when no delay is given to the output of the generator, in which the output current i of the generator rapidly increases, the engine speed n suddenly decreases, and the feedback correction Because the engine responds with a delay, the engine speed n appears to converge to the target speed while hunting. As mentioned above, with the conventional device, it is possible to prevent significant fluctuations in the engine speed even if an electrical load is applied while feedback control of the engine speed is being performed. However, the following phenomenon occurs in automobile engines. In FIG. 5, S is a signal that distinguishes between an idling state and a non-idling state of the engine;
During non-idling operation, it becomes "H" level. During non-idling operation, the feed bank control of the rotation speed is stopped, so the feedback correction amount ■ does not change.At this time, the electrical load M When the engine is turned on, the output current i of the generator responds slowly, but since the engine output is already high, it does not contribute much to suppressing the rotational speed fluctuation. !!(
S-L), the rotational speed feedback system 11 is started. At this time, the electrical load has been applied in advance, and the output current i of the generator is in a large state, so the engine load is increasing, and the target rotation speed cannot be maintained, and the engine rotation speed n is It decreases significantly as shown by the solid line. In order to recover from the drop in engine speed n, the feedback correction amount ■ gradually increases as shown by the solid line, and acts to increase the amount of air intake into the engine.
However, due to the delay in feedback correction, the engine speed n converges to the target speed while showing a hunting tendency. [Problems to be Solved by the Invention] As described above, the conventional rotational speed control 1'B device suppresses fluctuations in the rotational speed when an electrical load is applied during a period in which feedback control of the rotational speed is performed. However, if you start the engine speed feedback control from a state where an electrical load has been applied in advance, the engine speed will fluctuate significantly, resulting in a drop in engine speed, stalling, or hunting. There was a problem. The present invention has been made to solve the above-mentioned problems, and even if feedback control of the engine speed is started from a state where an electrical load is applied in advance, the engine speed can be increased without causing a decrease in the engine speed. The purpose of this invention is to obtain a rotation speed controlled 2B device that can smoothly shift to a desired value. [Means for Solving the Problems] The rotation speed control device of the present invention includes an idle/non-idle operating state detection means, a rotation speed detection means, and a correction unit that generates a correction amount for correction of rotation speed error during idling. A quantity generating means,
A control means that controls the intake air amount of the engine from the basic control amount and the correction amount, and gradually decreases the basic control amount to a normal value after detecting a shift to an idle state;
It is equipped with a power generation means that delays the output response when the electrical load increases. (Function) In the rotation speed control device of the present invention, the intake air amount is set larger than the normal value by the control means when transitioning to the idle state, and thereafter the engine load is gradually reduced to the normal value for feedback correction. The rotational speed is smoothly shifted to the target value even if it is large. (Example) An example of the present invention will be described below with reference to the drawings. Fig. 1 is a diagram showing the schematic configuration of the device according to the present example, In the figure, 1 is the engine, 2 is the intake pipe of engine l, and 3 is the engine.
21 and 22 are bypass pipes each having one end connected to the intake pipe 2 so as to bypass the intake control valve 3, and each other end connected to the intake control valve 5. It is connected to the inlet and outlet, and supplies air whose flow rate is controlled by the bypass control valve 5 to the engine l. 40 is engine l
The generator 6 is energized via the belt 43 by a pulley attached to the output shaft 1a of the motor. This generator 6 is similar to the one equipped with a regulation device disclosed in Japanese Patent Application Laid-Open No. 59-83600 mentioned above, and has a delay in output response to an increase in electrical load. 4l is, for example, a gear whose teeth are magnetic poles, which rotates with the rotation of the output shaft 1a of the engine 1, and detects the engine rotational speed together with a rotational speed detector 42 disposed opposite to its teeth. .. 7 is a battery whose H pole side is grounded, and 8 is a switch connected in series to an electrical load 9 whose one end is grounded. The 01 pole side of the banteri 7 and the free terminal of the suinochi 8 are connected to the output terminal of the generator 6, one end of which is grounded.
0 is a control device whose configuration is shown in FIG. 2, which controls a rotation speed detector 42, an idle switch 1l that closes when the intake control valve 3 is in the closed position, that is, when the engine 1 is in an idling operating state, and a control device that measures the cooling water temperature of the engine 1. Each signal n# . s and w manually, and bypass control valve 5
Outputs drive signal C to. In FIG. 2, the control device lO outputs a rotational speed signal nj1+
Idle switch signal S. It is composed of an input interface 101 that receives a temperature signal W, a CPU 102, a memory 103, and an output interface 104 that amplifies the signal output based on the calculation result of the CPU 102 and outputs a drive signal C to the bypass control valve 5. There is. FIG. 3 is a flowchart illustrating the operation of the apparatus having such a configuration, and calculations are executed by the CPU 102 in accordance with the contents stored in the memory 103 in which this program is stored. The operation of this embodiment will be explained below based on FIG. First, in step l001, the temperature of the engine 1 (cooling water temperature in this embodiment) is read from the water temperature signal W. In step 1002, the target rotational speed nT and basic control ffl C * for maintaining this rotational speed are stored in advance in the memory 103 in correspondence with the water temperature signal W. One after another. Next, in step 1003, the rotational speed signal n. Read the actual engine speed n from force 1. Next, in step 1004, the state of the idle switch l1 is detected from the idle switch signal S, and if it is determined that it is in the idle operating state, the process moves to step 1005, and the previous value of the feedback correction li1 is read out. Furthermore, in step 1006, it is determined whether or not it was in the idling state during the previous process. If it is determined that it was in the non-idling state until the previous time and has entered the idling state this time, the process proceeds to step 10.
Move to 07 and use 1 basic eye amount C. . memory 103 in advance
The basic control Jet C * is set to the value obtained by adding the predetermined value cm + stored and set in , and the process moves to step 1008 . On the other hand, if it is determined in step 1006 that the idling state continues, the process moves to step 1009, where the actual rotation speed n and the target rotation speed n are compared in magnitude. Here, if n=nT, the previous value of the feed bank correction ill is held in step 10l2, and if n>n, in step 1010, the value obtained by subtracting the corrected view ΔI from the feedback correction amount I is used as the new feedback correction value. Keep it as 1. n<n. Then, in step 1011, the value obtained by adding the correction amount ΔI to the feedback correction amount 1 is set as a new feed? This is retained as the correction correction II. Next, in step l013, the basic system? Basic system by subtracting a predetermined value ΔC from IffiCl? 11 Update the quantity C m (
However, the updated C. ≧C,. ). This basic control amount C is such that the predetermined value C added in step l007 is 0, that is, Cm
Since the subtraction continues until -C■ is reached, the basic control amount C
I changes over time from C we + C *+ to C. ll
It takes a value that gradually decreases to . The feedback correction amount calculated in this way and the basic control jnMCm are used in step 1008.
, to find the control m Wt C, and this control amount C
is used as the drive signal C of the bypass control valve 5. Therefore, the basic control amount C when entering the idle operating state is the original basic control? 311CI. Basic system set larger and over time? Ill f C m is the original basic control 1c. . The feedback correction l+ is increased or decreased so that the engine speed n matches the target rotation speed nt while gradually decreasing toward C. By appropriately determining the engine speed n, the engine speed n smoothly converges to the target speed 17, regardless of whether the electrical load 9 is turned on or not during the transition to the idle operating state. For example, this situation is shown by the dashed line in Figure 5. Next, when the idle operating state changes to a non-idling operating state, the process moves from step 1004 to step 10I4,
It maintains the feedback correction amount and prepares for the next idling operation state. In addition, in the above description, steps 10lO and 10lO
Although Δl of 011 is the same, it may be better to select a different value depending on the difference in perturbation when the engine speeds up and when it decelerates. Also, depending on the size of n nr, Δ
By determining I, the feedback can be settled more quickly. Also, CI+ at step +007
By setting values in advance according to the initial values of engine temperature and rotation speed using a program, optimal control can always be performed. [Effects of the Invention] As described above, according to the present invention, the response of the output of the power generation means to a sudden increase in electrical load is delayed, and the basic control amount is set to a value larger than the normal value when transitioning to the idle operation state. After setting, the engine's intake air amount is adjusted by gradually reducing it to the normal value and controlling the desired rotation speed, so the rotation speed when transitioning from a non-idling operating state to an idling operating state can be adjusted. This has the effect of preventing the rotation speed from decreasing and allowing a smooth transition to the target rotation speed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例に係る回転数制御装置の概略
構成図、第2図は第1図中の制御装置の詳細な構成を示
すブロック図、第3図は前記制?1装置の動作を示すフ
ロー図、第4図はアイドル状態における各部の動作波形
図、第5図は非アイドル状態からアイドル状態に移行し
た際の各部の動作波形図である. 図中、1・・・エンジン、5・・・バイパス制御弁、6
・・・発電機、9・・・電気的負荷、lO・・・制御装
置、l1・・・アイドルスイッチ、41・・・歯車、4
2・・・回転数検出器、102・・・CPU,103・
・・メモリ.なお、図中同一符号は同一、又は相当部分
を示す.
FIG. 1 is a schematic configuration diagram of a rotation speed control device according to an embodiment of the present invention, FIG. 2 is a block diagram showing a detailed configuration of the control device in FIG. 1, and FIG. 3 is a block diagram showing the detailed configuration of the control device in FIG. FIG. 4 is a flowchart showing the operation of one device, FIG. 4 is an operating waveform diagram of each part in an idle state, and FIG. 5 is an operating waveform diagram of each part when transitioning from a non-idle state to an idle state. In the figure, 1...engine, 5...bypass control valve, 6
... Generator, 9... Electrical load, lO... Control device, l1... Idle switch, 41... Gear, 4
2... Rotation speed detector, 102... CPU, 103.
··memory. In addition, the same symbols in the figures indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】[Claims] エンジンのアイドル運転状態と非アイドル運転状態を検
出する運転状態検出手段と、前記エンジンの回転数を検
出する回転数検出手段と、アイドル運転状態が検出され
たときに前記エンジンの実回転数が目標回転数に一致す
る方向に補正量を発生する補正量発生手段と、アイドル
運転状態を維持するための基本制御量と前記補正量を合
成した量に基づいて前記エンジンの吸入空気量を制御す
るとともに、非アイドル運転状態からアイドル運転状態
への移行を検出した際に、前記基本制御量を通常の値よ
り大きく設定した後に漸減して前記通常の値に収束させ
る制御手段と、前記エンジンにより付勢され、少くとも
電気的負荷の増加に際して出力電流の応答を遅延するよ
うに構成された発電手段とを備えた回転数制御装置。
an operating state detection means for detecting an idling operating state and a non-idling operating state of the engine; a rotational speed detecting means for detecting a rotational speed of the engine; a correction amount generating means for generating a correction amount in a direction consistent with the rotational speed; and controlling an intake air amount of the engine based on an amount that is a combination of a basic control amount for maintaining an idling operating state and the correction amount; , a control means for setting the basic control amount to be larger than a normal value and then gradually decreasing it to converge to the normal value when a transition from a non-idling operating state to an idling operating state is detected; and energizing by the engine. and power generation means configured to delay the response of the output current at least when the electrical load increases.
JP11651889A 1989-05-09 1989-05-09 Rotating speed control device Pending JPH02294539A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP11651889A JPH02294539A (en) 1989-05-09 1989-05-09 Rotating speed control device
KR1019900006368A KR900019335A (en) 1989-05-09 1990-05-07 Speed controller
DE4014722A DE4014722C2 (en) 1989-05-09 1990-05-08 Control device for the engine idling speed
US07/799,723 US5153446A (en) 1989-05-09 1991-11-22 Control apparatus of rotational speed of engine
KR2019930018427U KR940000897Y1 (en) 1989-05-09 1993-09-15 Control apparatus for rotational speed of engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11651889A JPH02294539A (en) 1989-05-09 1989-05-09 Rotating speed control device

Publications (1)

Publication Number Publication Date
JPH02294539A true JPH02294539A (en) 1990-12-05

Family

ID=14689127

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11651889A Pending JPH02294539A (en) 1989-05-09 1989-05-09 Rotating speed control device

Country Status (1)

Country Link
JP (1) JPH02294539A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5983600A (en) * 1982-09-30 1984-05-15 ゼネラル モ−タ−ズ コ−ポレ−シヨン Voltage regulator
JPS6181546A (en) * 1984-09-28 1986-04-25 Honda Motor Co Ltd Feedback control method for number of idle revolutions of internal-combustion engine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5983600A (en) * 1982-09-30 1984-05-15 ゼネラル モ−タ−ズ コ−ポレ−シヨン Voltage regulator
JPS6181546A (en) * 1984-09-28 1986-04-25 Honda Motor Co Ltd Feedback control method for number of idle revolutions of internal-combustion engine

Similar Documents

Publication Publication Date Title
KR100328538B1 (en) A device for controlling the torque supplied by the drive unit of the vehicle
JPH0363659B2 (en)
KR940000897Y1 (en) Control apparatus for rotational speed of engine
JPS6181546A (en) Feedback control method for number of idle revolutions of internal-combustion engine
JP2001073848A (en) Controlling method and device for rotating speed of drive unit
JP3228137B2 (en) Throttle control device for internal combustion engine
JPH02294539A (en) Rotating speed control device
JP3454031B2 (en) Control device for hybrid vehicles
EP2236814A2 (en) Engine ignition control apparatus
JPH10220274A (en) Control method for engine of construction machine
JPH07123797A (en) Number-of-revolution change controller
JP3517981B2 (en) Idle speed control device
JP2841440B2 (en) Vehicle control device
JP2002138880A (en) Engine idle control method
JP3042946B2 (en) Idle speed control method
JP3648826B2 (en) Integrated control system for engine and power steering
JPH0914009A (en) Engine speed fluctuation preventive device
JP4092307B2 (en) Step motor control method for auxiliary air control valve
JP2004108355A (en) Control device for engine-driven generating device
JP2917062B2 (en) Engine idle speed control device
JP2737354B2 (en) Output control device for internal combustion engine
JPS6065241A (en) Engine speed controller
JPH0564498A (en) Generation controller for alternator
JPH02308941A (en) Rotational speed control device for internal combustion engine
JPH09105348A (en) Engine speed controller