JPH02294464A - Ti material for use under hydrogen environment - Google Patents

Ti material for use under hydrogen environment

Info

Publication number
JPH02294464A
JPH02294464A JP11283089A JP11283089A JPH02294464A JP H02294464 A JPH02294464 A JP H02294464A JP 11283089 A JP11283089 A JP 11283089A JP 11283089 A JP11283089 A JP 11283089A JP H02294464 A JPH02294464 A JP H02294464A
Authority
JP
Japan
Prior art keywords
hydrogen
ion
implanted
corrosion resistance
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11283089A
Other languages
Japanese (ja)
Other versions
JPH0583629B2 (en
Inventor
Takashi Furuya
降矢 喬
Yasuaki Sugizaki
康昭 杉崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP11283089A priority Critical patent/JPH02294464A/en
Publication of JPH02294464A publication Critical patent/JPH02294464A/en
Publication of JPH0583629B2 publication Critical patent/JPH0583629B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To obtain a Ti material for use under hydrogen environment excellent in corrosion resistance and hydrogen embrittlement resistance by forming Ti compounds, such as boride, carbide, nitride, and oxide of Ti, in the part right under the surface layer of a Ti material by ion-implanting B, C, N, O, etc., into the Ti material. CONSTITUTION:One or more elements among B, C, N, and O are ion-implanted into a Ti material. The above ion implantation is carried out by ionizing the above elements, providing an energy as high as several KeV to several MeV to the above ions by means of an accelerator, and implanting the above ions into the base material surface. By the above operation, a dense hydrogen diffusion preventing layer consisting of at least one Ti compound among the boride, carbide, nitride, and oxide of Ti is formed in the part right under the surface layer of the above Ti material. By this method, the Ti material in which hydrogen absorption is prevented while maintaining superior corrosion resistance of Ti itself and which has excellent hydrogen embrittlement resistance can be obtained.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、金属Tiの特性である優れた耐食性を維持し
つつ、その欠点とされる水素脆化をなくし、永素環境下
でも優れた物性を長期間持続することのできるTi材に
関するものである.[従来の技術] Tiは軽量且つ高強度であり、しかもステンレス鋼より
も優れた耐食性(耐化学薬品性を含む)を有していると
ころから、様々の化学プラント構造材や機器部材等とし
てその用途は次第に拡大してきている. Tiの優れた耐食性は、その表面に形成される水素の存
在する雰囲気にさらすと水素を吸収して水素化物(TL
H,)を生成するが、この水素化物は脆弱であるので、
水素雰囲気中ではTi材料全体が脆化するという欠陥が
ある.こうした欠陥は、Tiを水素環境下で使用する場
合に問題となるほか、Tiを陰極部材として使用したり
、あるいはTiより卑な金属材料(鉄や銅等)と接触す
る部分に用いたとき(局部電池が形成される条件)にも
大きな問題となる.即ちTiを陰極材料として使用した
場合、次式で示される水の電気分解によって水素が発生
し、 82  04H”  +OH− 2H”  +2e−*H. この水素によりTiは短時間のうちに脆化する.[発明
が解決しようとする課題] 本発明はこの様なTi材に見られる欠陥に鑑みてなされ
たものであって、その目的は、金属TIの特性である耐
食性を損なうことなしに水素吸収に伴なう脆化を防止し
、水素が存在する系に適用した場合でも優れた機械的特
性を持続することので廿るTi材を提供しようとするも
のである.[課題を解決するための手段] 上記課題を解決することのできた本発明に係るTi材の
構成は、Ti材にB,C,N及び0よりなる群から選択
される少なくとも1種をイオン注入し、該Ti材の表層
直下部にTiの硼化物.炭化物.窒化物および酸化物よ
りなる群から選択されるTi化合物の少なくともill
からなる緻密な水素拡散防止層を形成し、高レベルの耐
食性を維持しつつ耐水素詭化性を高めたところに要旨を
有するものである. [作用] 本発明者らは、Ti材の水素吸収を阻止し、あるいは仮
に水素を吸収したとしてもその拡散を阻止することがで
きれば、水素脆化の問題を解消できるのではないかとい
う着想のもとで、Ti表層部に水素拡散防止層を形成す
べく研究を行なった.その結果、B,C,N及び0から
選択される元素をイオン注入法によってTi材表面から
侵入せしめ、表層部にTiの硼化物.炭化物.窒化物お
よび酸化物よりなるTi化合物層を形成してやれば、該
Ti化合物層によクて水素の拡散が阻止され、Ti材の
水素詭化が防止されることを知った. 即ちイオン注入法とは、元素をイオン化させると共に、
加速器で該イオンに数κeV〜数MeVの高エネルギー
を与えて基材表面へ注入させる方法であり、この操作に
よりイオンは基材内部へ打込まれる.従ってTi材にB
,C,NまたはOをイオン注入すると、これらのイオン
は表層部に打込まれた後Tiと結合し、夫々のTi化合
物よりなる緻密な水素拡散防止層を形成する.本発明者
らはこの様にしてイオン注入されたTi材の表層部にお
けるイオン注入元素の濃度分布を調べたところ、表面か
らある一定の深さ位置に当該元素濃度のピークが存在し
、表面にはTi材層が殆んどそのまま残されることを確
認した.たとえば第1図は、Ti板にBイオンを注入(
注入量:1×1 0 ”tons/ ca+” 、ビー
ム電流:320μA,注入エネルギー=180κeV)
して得た表層部のB濃度分布を、イオンマイクロアナラ
イザー(IMA)で調べた結果を示したものであって、
B濃度はガウス分布状に変化しており表面から約0。3
5μmの深さ位置にB濃度のピークが認められる.こう
した濃度分布は注入イオンの種類やイオン注入条件によ
フて異なるが、何れにしても最表層部における注入イオ
ンの濃度は極めて低く実質的にTiあるいは空気による
酸化に伴なうTi02だけであり、その直下部にTI化
合物層が形成されることになる. 即ちイオン注入処理されたTi材の表面はT1の特性で
ある高耐食性を示し、その直下部に水素拡散防止層が形
成された表層部構造となり、高耐食性と耐水素脆化性を
兼備したものとなる。
[Detailed Description of the Invention] [Industrial Application Field] The present invention maintains the excellent corrosion resistance that is a characteristic of metallic Ti, eliminates hydrogen embrittlement, which is said to be a drawback, and provides excellent corrosion resistance even in a permanent environment. This relates to a Ti material that can maintain its physical properties for a long period of time. [Prior art] Ti is lightweight and has high strength, and has better corrosion resistance (including chemical resistance) than stainless steel, so it is used as a structural material for various chemical plants and equipment components. Its uses are gradually expanding. The excellent corrosion resistance of Ti is due to its ability to absorb hydrogen and form hydrides (TL) when exposed to an atmosphere containing hydrogen formed on its surface.
H,), but since this hydride is brittle,
A drawback is that the entire Ti material becomes brittle in a hydrogen atmosphere. These defects not only become a problem when Ti is used in a hydrogen environment, but also when Ti is used as a cathode member or in a part that comes into contact with a metal material baser than Ti (such as iron or copper). The conditions under which local batteries are formed also pose a major problem. That is, when Ti is used as a cathode material, hydrogen is generated by electrolysis of water as shown by the following formula, 82 04H" +OH- 2H" +2e-*H. This hydrogen causes Ti to become brittle in a short time. [Problems to be Solved by the Invention] The present invention was made in view of the defects found in Ti materials, and its purpose is to improve hydrogen absorption without impairing the corrosion resistance, which is a characteristic of metallic Ti. The objective is to provide a durable Ti material that prevents the accompanying embrittlement and maintains excellent mechanical properties even when applied to systems where hydrogen is present. [Means for Solving the Problems] The structure of the Ti material according to the present invention that can solve the above problems is that at least one species selected from the group consisting of B, C, N, and 0 is ion-implanted into the Ti material. Ti boride is added directly below the surface layer of the Ti material. carbide. at least ill of a Ti compound selected from the group consisting of nitrides and oxides;
The gist of this technology is to form a dense hydrogen diffusion prevention layer consisting of 300% hydrogen, thereby increasing its resistance to hydrogen oxidation while maintaining a high level of corrosion resistance. [Function] The present inventors came up with the idea that the problem of hydrogen embrittlement could be solved if the Ti material could be prevented from absorbing hydrogen, or even if hydrogen was absorbed, its diffusion could be prevented. We conducted research to form a hydrogen diffusion prevention layer on the Ti surface layer. As a result, an element selected from B, C, N, and 0 was infiltrated from the surface of the Ti material by ion implantation, and boride of Ti was formed in the surface layer. carbide. It has been found that if a Ti compound layer made of nitride and oxide is formed, the diffusion of hydrogen will be inhibited by the Ti compound layer, and hydrogen deterioration of the Ti material will be prevented. In other words, the ion implantation method involves ionizing elements and
This is a method in which the ions are given high energy of several κeV to several MeV using an accelerator and then implanted into the surface of the base material, and by this operation, the ions are implanted into the interior of the base material. Therefore, B in Ti material
, C, N, or O, these ions are implanted into the surface layer and then combine with Ti to form a dense hydrogen diffusion prevention layer made of the respective Ti compound. The present inventors investigated the concentration distribution of the ion-implanted element in the surface layer of the Ti material implanted in this way, and found that the peak of the element concentration existed at a certain depth from the surface. It was confirmed that the Ti material layer remained almost intact. For example, in Figure 1, B ions are implanted into a Ti plate (
Implantation amount: 1×10 “tons/ca+”, beam current: 320μA, implantation energy = 180κeV)
This shows the results of examining the B concentration distribution in the surface layer obtained by using an ion microanalyzer (IMA),
The B concentration changes in a Gaussian distribution, starting at about 0.3 from the surface.
A peak of B concentration is observed at a depth of 5 μm. This concentration distribution varies depending on the type of implanted ions and ion implantation conditions, but in any case, the concentration of implanted ions in the outermost layer is extremely low and is essentially only Ti or Ti02 due to oxidation by air. , a TI compound layer is formed directly below it. In other words, the surface of the ion-implanted Ti material exhibits high corrosion resistance, which is a characteristic of T1, and has a surface layer structure with a hydrogen diffusion prevention layer formed directly below it, providing both high corrosion resistance and hydrogen embrittlement resistance. becomes.

尚、本発明でイオン注入される元素としてB.C,N及
び0を選択した理由は、これらの元素がTiと結合して
緻密な水素拡散防止層を形成するからであり、後記実施
例でも明らかにする様に他の元素、たとえばAr等をイ
オン注入しても水素拡散防止性を持ったTi化合物層が
形成されないため、水素脆化を阻止することはできない
.ところでTi材は、前述の如く酸化性雰囲気下で酸化
不働態皮膜を形成し、水素脆化も抑制すると考えられる
が、この皮膜は極めて薄肉であるため一旦傷つくとその
部分から水素の侵入が起こって水素詭化を起こす.とこ
ろが酸素のイオン注入によって形成されるTi酸化物層
は、前述の如く表面直下の若干深い位置に形成されるの
で、外部からの衝撃等によって損傷を受け難く、またイ
オン注入により形成されるTi酸化物層が非常に緻密で
あることとも相まって、優れた水素拡散防止効果が発揮
される。
Incidentally, the elements to be ion-implanted in the present invention include B. The reason why C, N and 0 were selected is that these elements combine with Ti to form a dense hydrogen diffusion prevention layer.As will be made clear in the examples below, other elements such as Ar etc. Even if ion implantation is performed, a Ti compound layer that prevents hydrogen diffusion is not formed, so hydrogen embrittlement cannot be prevented. By the way, as mentioned above, Ti materials form an oxidative passive film in an oxidizing atmosphere, which is thought to suppress hydrogen embrittlement, but since this film is extremely thin, once it is damaged, hydrogen can enter from that part. This causes hydrogen sophistry. However, since the Ti oxide layer formed by oxygen ion implantation is formed at a slightly deep position just below the surface, it is less likely to be damaged by external impacts, and the Ti oxide layer formed by ion implantation is Coupled with the fact that the material layer is very dense, it exhibits an excellent hydrogen diffusion prevention effect.

[実施例] 純Ti材(水素量: 2 1 ppm )に対し、80
C”,N”及びO0を夫々180κeV,IX1 0 
l7ions/cm’の条件でイオン注入し、表面直下
部にTiの硼化物.炭化物.窒化物および酸化物よりな
る水素拡散防止層を形成した.得られた各イオン注入処
理材の表層部における各注入元素濃度の分布をイオンマ
イクロアナライザーによって測定した結果を第2〜5図
に示す.この結果、いずれの処理材も、表面から約0.
1〜0.2μmの深さ位置に注入元素濃度のピークが存
在することを確認することがで幹る. 得られた各処理材を陰極とし、0.05そルの硫酸水溶
液中、60℃で1mA/c■2の電流密度で24時間電
気分解を行なった.その後、各陰極部材の水素分析を行
なって水素拡散状態を調べると共に、重量減少量から電
解液中における腐食速度を調べた。
[Example] For pure Ti material (hydrogen content: 21 ppm), 80
C”, N” and O0 are each 180κeV, IX1 0
Ions were implanted under the condition of 17 ions/cm', and boride of Ti was deposited directly below the surface. carbide. A hydrogen diffusion prevention layer made of nitride and oxide was formed. Figures 2 to 5 show the results of measuring the concentration distribution of each implanted element in the surface layer of each ion-implanted material obtained using an ion microanalyzer. As a result, all treated materials were approximately 0.0 mm from the surface.
It is possible to confirm that the peak of the implanted element concentration exists at a depth of 1 to 0.2 μm. Using each of the obtained treated materials as a cathode, electrolysis was carried out for 24 hours at 60° C. and a current density of 1 mA/c 2 in a 0.05 mol sulfuric acid aqueous solution. Thereafter, each cathode member was analyzed for hydrogen to determine the state of hydrogen diffusion, and the corrosion rate in the electrolyte was determined from the amount of weight loss.

また比較のため上記と同様の条件でAr”をイオン注入
したもの、及び未処理のものについても同様の試験を行
なった. 結果を第1表に一括して示す。
For comparison, similar tests were conducted on samples with Ar" ion implantation and samples without treatment under the same conditions as above. The results are summarized in Table 1.

(以 下 余 白) 第1表からも明らかである様に、B.C.Nまたは0で
イオン注入処理されたTi材の水素吸収量は未処理物に
比べて極端に小さく、元々Ti材に含まれていた水素量
(21ppm)を考慮すると、電解時における水素吸収
量は10ppm以下に抑えられていることが分かる.ま
たArをイオン注入したものでは、こうした水素吸収抑
制効果は殆んど得られていない.また第2〜5図からも
分かる様に、最表層部がほぼTi単独で構成されている
ため、耐食性も良好である. [発明の効果] 本発明は以上の様に構成されており、最表層部に薄肉の
Ti層あるいはTiの酸化物層(これは大気中の酸化に
よる)を残してその直下にイオン注入法による特定の緻
密な水素拡散防止層を形成したものであるから、Ti自
体の具備する優れた耐食性を維持しつつ水素吸収が阻止
され、耐水素脆化性の卓越したTi材を提供し得ること
になった.従って本発明のTi材は、水素雰囲気にさら
される化学プラント構造材や機器部材、陰極部材、分析
機器部材等として幅広く活用することができる.
(Left below) As is clear from Table 1, B. C. The amount of hydrogen absorbed by the Ti material treated with ion implantation with N or 0 is extremely small compared to the untreated material. Considering the amount of hydrogen originally contained in the Ti material (21 ppm), the amount of hydrogen absorbed during electrolysis is It can be seen that the concentration is kept below 10 ppm. Moreover, in the case of Ar ion implantation, such hydrogen absorption suppressing effect is hardly obtained. Furthermore, as can be seen from FIGS. 2 to 5, since the outermost layer is almost composed of Ti alone, the corrosion resistance is also good. [Effects of the Invention] The present invention is constructed as described above, and a thin Ti layer or a Ti oxide layer (this is due to oxidation in the atmosphere) is left on the outermost layer, and a thin Ti layer or a Ti oxide layer (this is due to oxidation in the atmosphere) is left immediately below it by ion implantation. Since a specific dense hydrogen diffusion prevention layer is formed, hydrogen absorption is prevented while maintaining the excellent corrosion resistance of Ti itself, making it possible to provide a Ti material with excellent hydrogen embrittlement resistance. became. Therefore, the Ti material of the present invention can be widely used as chemical plant structural materials, equipment parts, cathode parts, analytical equipment parts, etc. that are exposed to a hydrogen atmosphere.

【図面の簡単な説明】[Brief explanation of drawings]

第1〜5図は、本発明に係るイオン注入処理Ti材にお
ける表層部のイオンマイクロ分析結果を示す図である.
1 to 5 are diagrams showing the results of ion microanalysis of the surface layer of the ion-implanted Ti material according to the present invention.

Claims (1)

【特許請求の範囲】[Claims] (1)Ti材にB、C、N及びOよりなる群から選択さ
れる少なくとも1種をイオン注入し、該Ti材の表層直
下部にTiの硼化物、炭化物、窒化物および酸化物より
なる群から選択されるTi化合物の少なくとも1種から
なる緻密な水素拡散防止層を形成してなることを特徴と
する、耐食性及び耐水素脆化性の優れた水素環境下用T
i材。
(1) At least one kind selected from the group consisting of B, C, N, and O is ion-implanted into the Ti material, and the Ti material is made of boride, carbide, nitride, and oxide of Ti immediately below the surface layer. A T for use in a hydrogen environment with excellent corrosion resistance and hydrogen embrittlement resistance, characterized by forming a dense hydrogen diffusion prevention layer made of at least one Ti compound selected from the group consisting of:
i material.
JP11283089A 1989-05-06 1989-05-06 Ti material for use under hydrogen environment Granted JPH02294464A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11283089A JPH02294464A (en) 1989-05-06 1989-05-06 Ti material for use under hydrogen environment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11283089A JPH02294464A (en) 1989-05-06 1989-05-06 Ti material for use under hydrogen environment

Publications (2)

Publication Number Publication Date
JPH02294464A true JPH02294464A (en) 1990-12-05
JPH0583629B2 JPH0583629B2 (en) 1993-11-26

Family

ID=14596605

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11283089A Granted JPH02294464A (en) 1989-05-06 1989-05-06 Ti material for use under hydrogen environment

Country Status (1)

Country Link
JP (1) JPH02294464A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03100165A (en) * 1989-09-14 1991-04-25 Kobe Steel Ltd Wear resistant member
JPH03111555A (en) * 1989-09-26 1991-05-13 Kobe Steel Ltd Production of hydrogen absorption-controlled ti or ti-base alloy

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03100165A (en) * 1989-09-14 1991-04-25 Kobe Steel Ltd Wear resistant member
JPH03111555A (en) * 1989-09-26 1991-05-13 Kobe Steel Ltd Production of hydrogen absorption-controlled ti or ti-base alloy

Also Published As

Publication number Publication date
JPH0583629B2 (en) 1993-11-26

Similar Documents

Publication Publication Date Title
US10930940B2 (en) Stainless steel sheet for fuel cell separators, and production method therefor
KR102177522B1 (en) Stainless steel sheet production method for fuel cell separators
US11085120B2 (en) Stainless steel sheet for fuel cell separators and production method therefor
ES2176826T3 (en) METHOD FOR FORMING LAYERS OF METALS, METAL OXIDES AND METAL ALLOYS ON ION CONDUCTOR POLYMER MEMBRANES.
CN101841049A (en) The surface treatment method of titanium electrode material and titanium electrode material
JPH10506959A (en) Method for enhancing the corrosion resistance of metals and alloys by treatment with rare earth elements
JPH02294464A (en) Ti material for use under hydrogen environment
McCafferty et al. Ion beam processing of metal surfaces for improved corrosion resistance
Lo Russo et al. Fatigue‐life improvement by nitrogen‐ion implantation on steel: Dose dependence
Appleby et al. Reduction of oxygen on silver electrodes in ternary alkali carbonate eutectic melt
JP2504583B2 (en) Method for producing Ti or Ti-based alloy with controlled hydrogen absorption
Rajendran et al. Super austenitic stainless steels—a promising replacement for the currently used type 316L stainless steel as the construction material for flue-gas desulphurization plant
Latha et al. Versatility of superaustenitic stainless steels in marine applications
Bonora et al. The corrosion behaviour of nitrogen implanted ARMCO iron
Follstaedt et al. Binary and ternary amorphous alloys of ion-implanted Fe-Ti-C
Gleaves et al. The effects of ion-implanted impurities on the anodic oxidation of titanium
Agarwal et al. Interpretation of electrochemical behavior of nickel-implanted type-430 stainless steel using x-ray photoelectron spectroscopy and transmission electron microscopy
Rai et al. Corrosion resistant behavior of amorphous Mo− Ni> films formed by ion beam mixing
Sartwell et al. Applications of Ion Implantation to Metallic Corrosion
Lillard et al. Electrochemically-grown oxides on U-Nb alloy
Yaniv et al. Absorption of Hydrogen by Very Strong Steels During Cadmium Plating: Part II—Hydrogen Absorption during Electrodeposition from Cd-TiO3 Baths
Sastri et al. Studies on the determination of surface deuterium in AISI 1062, 4037, and 4140 steels by secondary ion mass spectrometry
Robinson et al. The Effects of Current Density and Recombination Poisons on Electrochemical Charging of Deuterium into an Iron‐Base Superalloy
Brown et al. Creation of tailored surfaces using selective oxidation of ion‐implanted materials
Wagener Note on the Ionic Conductivity of Oxide-Coated Cathodes

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term