JPH02294463A - Production of nitrified-steel member - Google Patents

Production of nitrified-steel member

Info

Publication number
JPH02294463A
JPH02294463A JP11662889A JP11662889A JPH02294463A JP H02294463 A JPH02294463 A JP H02294463A JP 11662889 A JP11662889 A JP 11662889A JP 11662889 A JP11662889 A JP 11662889A JP H02294463 A JPH02294463 A JP H02294463A
Authority
JP
Japan
Prior art keywords
nitriding
steel member
ion
treatment
nitriding treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11662889A
Other languages
Japanese (ja)
Inventor
Yoshihisa Miwa
能久 三輪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP11662889A priority Critical patent/JPH02294463A/en
Publication of JPH02294463A publication Critical patent/JPH02294463A/en
Pending legal-status Critical Current

Links

Landscapes

  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Abstract

PURPOSE:To produce a nitrided-steel member increased in effective nitriding depth and surface hardness by applying nitriding treatment by means of ion nitriding or ion soft nitriding at and for specific temp. and time and further applying nitriding treatment to the above while changing temp. and time. CONSTITUTION:Primary nitriding treatment is applied to a steel member by means of ion nitriding or ion soft nitriding at a temp. as high as 550-600 deg.C for a time as long as 5-15hr, by which a nitrided diffusion hardened layer is formed down to the innermost in the steel member. Subsequently, the above steel member is subjected to secondary nitriding treatment by means of ion nitriding or ion soft nitriding at a relatively low temp. of 450-530 deg.C for a relatively short time of 0.5-3hr, by which the diffusion power of nitrogen is weakened and nitrogen stagnates on the surface layer and forms nitride and, as a result, the hardness of the surface layer can be remarkably improved. By this method, the nitrided-steel member having >= about 0.3mm effective nitriding depth and >=about Hv700 surface hardness and excellent in fatigue strength and wear resistance can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は窒化鋼部材の製造方法に関し、特にイオン窒化
又はイオン軟窒化の窒化処理を温度を変えて2工程で施
し有効硬化深さ及び表面硬さを著しく改善し得る方法に
関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a method for manufacturing nitrided steel members, and in particular, the nitriding treatment of ion nitriding or ion soft nitriding is performed in two steps at different temperatures to improve the effective hardening depth and surface. The present invention relates to a method that can significantly improve hardness.

〔従来技術〕[Prior art]

従来、鋼部材を用いて疲労強度に優れる歯車などの鋼部
材を製造する技術として、鋼部材に浸炭処理を施す技術
と、鋼部材に窒化処理や軟窒化処理を施す技術が広く実
用化されている。
Conventionally, as a technology for manufacturing steel parts such as gears with excellent fatigue strength using steel parts, the technology of carburizing the steel parts and the technology of applying nitriding or nitrocarburizing to the steel parts have been widely put into practical use. There is.

上記窒化処理や軟窒化処理は約500〜600℃程度の
低温で処理する関係上熱処理歪が僅少であり精密機械部
品に適用するのに適しているが、硬化層が浅いことから
疲労強度向上の面で改善の余地が残されている。
The above-mentioned nitriding and soft-nitriding treatments are performed at a low temperature of about 500 to 600°C, so the heat treatment distortion is small, so they are suitable for application to precision mechanical parts, but because the hardened layer is shallow, it is difficult to improve fatigue strength. There is still room for improvement in this respect.

上記窒化処理や軟窒化処理を施すと、鋼部材の表層に窒
化鉄(Fe2N−.Fe=N,Fe4N)からなる憂硬
度の窒化物被膜が形成され、同時に鋼部材の内部にも窒
化物(拡散硬化層)が形成され、疲労寿命が著しく向上
する。
When the above-mentioned nitriding treatment or soft nitriding treatment is performed, a hard nitride film consisting of iron nitride (Fe2N-.Fe=N, Fe4N) is formed on the surface layer of the steel member, and at the same time, nitride ( diffusion hardening layer) is formed, significantly improving fatigue life.

上記表層の窒化物被膜の内側の拡散硬化層を極力深く形
成することが重要であるとの観点から、窒化処理に際し
綱組織を最適化し、表面近傍の金属組織をフエライト+
バーライト組織にすることも提案されている(特公昭6
1−31184号公報参照)。
From the viewpoint that it is important to form the diffusion hardened layer inside the surface nitride coating as deep as possible, we optimized the steel structure during the nitriding process and changed the metal structure near the surface to ferrite +
It has also been proposed to make it a barite organization (Special Public Relations Act
1-31184).

一方、通常、軟窒化用の合金鋼部材に窒化処理や軟窒化
処理を施した場合、第1図の曲線Aに示すようにHV5
00となる有効硬化深さは0.1fl程度また表面硬さ
はHv650程度である。上記有効硬化深さ及び表面硬
さを改善する為、一般に採用される対策は、窒化処理温
度を高くし且つ処理時間を長くすることである。
On the other hand, when an alloy steel member for nitrocarburizing is subjected to nitriding treatment or nitrocarburizing treatment, the HV5
The effective hardening depth of 0.00 is about 0.1 fl and the surface hardness is about Hv650. In order to improve the effective hardening depth and surface hardness, a commonly adopted measure is to increase the nitriding temperature and lengthen the treatment time.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記のように窒化処理温度を高め、処理時間を長くした
場合に、次のような種々の問題が生じる.+11  窒
化処理温度を高くすると泪部材中の基材の焼戻し作用が
大となり、基材の硬さが低下してしまう。また、窒化物
の生成が不十分となり窒化層の硬さが低下する。
When the nitriding temperature is increased and the treatment time is increased as described above, the following various problems occur. +11 When the nitriding temperature is increased, the tempering effect of the base material in the tear member increases, and the hardness of the base material decreases. Furthermore, the hardness of the nitride layer decreases due to insufficient formation of nitrides.

(2)  −31に採用されるガス軟窒化や塩浴窒化の
場合、処理時間を長くしても、有効硬化深さが略一定値
(0.2〜0.3mm)で飽和する。これは、鋼部材の
表面に形成される窒化鉄化合物層(FezN、FezN
,Fe4N)が時間経過とともに成長して厚くなり、窒
素の侵入が遮断されるためであると考えられる。
(2) In the case of gas soft nitriding or salt bath nitriding employed in -31, the effective hardening depth saturates at a substantially constant value (0.2 to 0.3 mm) even if the treatment time is increased. This is an iron nitride compound layer (FezN, FezN) formed on the surface of a steel member.
, Fe4N) grows and becomes thicker over time, blocking the intrusion of nitrogen.

そこで、本発明の発明者は、窒素の侵入力に優れるイオ
ン窒化処理を採用し、その処理時間を長くして実験した
結果、Hv500となる有効硬化深さ0. 3 mを実
現することが出来たけれども、第1図の曲線Bに示すよ
うに表面硬さが低下してしまうという問題が生じた。鋼
部材の表面硬さは強度及び疲労強度及び耐摩耗性等に大
きく影響することから、表面硬さを向上させることが必
要である。
Therefore, the inventors of the present invention adopted ion nitriding treatment which has excellent nitrogen penetration power, and as a result of experimenting by increasing the treatment time, they found that the effective hardening depth was 0.5 mm, which resulted in Hv500. 3 m was achieved, but a problem arose in that the surface hardness decreased, as shown by curve B in Figure 1. Since the surface hardness of a steel member greatly affects its strength, fatigue strength, wear resistance, etc., it is necessary to improve the surface hardness.

本発明の目的は、有効硬化深さ約0. 3 as以上及
び表面硬さHv700以上となるような窒化鋼部材の製
造方法を提供することである。
It is an object of the present invention to have an effective hardening depth of about 0. It is an object of the present invention to provide a method for manufacturing a nitrided steel member having a hardness of 3 as or more and a surface hardness of Hv700 or more.

〔課題を解決するための手段〕[Means to solve the problem]

本発明に係る窒化鋼部材の製造方法は、鋼部材に窒化処
理を施して窒化鋼部材を製造する窒化鋼部材の製造方法
において、鋼部材に、550〜600℃の温度で5〜1
5時間の間イオン窒化又はイオン軟窒化による第1窒化
処理を施し、次に上記鋼部材に、450〜530℃の温
度で0. 5〜3時間の間イオン窒化又はイオン軟窒化
による第2窒化処理を施すものである。
The method for manufacturing a nitrided steel member according to the present invention is a method for manufacturing a nitrided steel member in which the steel member is subjected to a nitriding treatment to produce a nitrided steel member.
A first nitriding treatment by ion nitriding or ion soft nitriding was performed for 5 hours, and then the steel member was subjected to a 0. A second nitriding treatment is performed by ion nitriding or ion soft nitriding for 5 to 3 hours.

〔作用〕[Effect]

本発明に係る窒化鋼部材の製造方法においては、第2図
又は第3図に示すように、鋼部材に、550〜600℃
の温度で5〜15時間の間イオン窒化又はイオン軟窒化
による第1窒化処理を施し、次に上記鋼部材に450〜
530℃の温度で0. 5〜3時間の間イオン窒化又は
イオン軟窒化による第2窒化処理を施す。
In the method for manufacturing a nitrided steel member according to the present invention, as shown in FIG. 2 or 3, the steel member is heated to 550 to 600°C.
The steel member is then subjected to a first nitriding treatment by ion nitriding or ion soft nitriding at a temperature of 450 to 15 hours.
0.0 at a temperature of 530°C. A second nitriding treatment using ion nitriding or ion soft nitriding is performed for 5 to 3 hours.

先ず、第1窒化処理について説明すると、イオン窒化や
イオン軟窒化はイオンの侵入力が強力なので窒化による
拡散硬化層が深くまで形成され易く、550〜600℃
の比較的高い温度まで鋼部材を加熱して窒化処理するの
でまた5〜15時間の比較的長時間の間窒化処理するの
で、窒化による拡散硬化層が深くまで形成されることに
なる。
First, to explain the first nitriding treatment, ion nitriding and ion soft nitriding have a strong ion penetration force, so it is easy to form a deep diffusion hardened layer due to nitriding.
Since the nitriding treatment is performed by heating the steel member to a relatively high temperature of , and the nitriding treatment is performed for a relatively long time of 5 to 15 hours, a diffusion hardened layer due to nitridation is formed deep.

第1窒化処理をイオン窒化又はイオン軟窒化により行な
うのは、ガス軟窒化や塩浴窒化では窒素原子の鋼部材中
への十分な侵入力が得られないからである。
The reason why the first nitriding treatment is performed by ion nitriding or ion soft nitriding is that gas soft nitriding or salt bath nitriding cannot provide sufficient penetration force of nitrogen atoms into the steel member.

処理温度を550〜600℃とするのは、500℃未満
では深い拡散硬化層を形成するのに長時間を要し実用性
に欠けること、また600℃より高いと窒化物が析出し
に<<シかも鋼基材の焼戻し作用が過大となって鋼基材
の硬さが低下してしまうこと、などの理由によるもので
ある。
The reason why the treatment temperature is set at 550 to 600°C is that if it is less than 500°C, it will take a long time to form a deep diffusion hardened layer, which is impractical, and if it is higher than 600°C, nitrides will precipitate. This is probably due to the fact that the tempering action of the steel base material becomes excessive and the hardness of the steel base material decreases.

処理時間を5〜15時間とするのは、5時間未満では拡
散硬化層を余り深くまで形成できないこと、15時間よ
り長くしても処理時間長期化の効果が飽和してしまうこ
と、などの理由によるものである. ところで、上記第1窒化処理のみでは、有効硬化深さは
0. 3 w以上となるが、表面硬さがHv700未満
になってしまう。
The reason why the treatment time is set to 5 to 15 hours is that if it is less than 5 hours, the diffusion hardened layer cannot be formed very deeply, and if it is longer than 15 hours, the effect of prolonging the treatment time will be saturated. This is due to By the way, with only the first nitriding treatment, the effective hardening depth is 0. 3 W or more, but the surface hardness becomes less than Hv700.

その理由について考察してみると、処理温度を高め処理
時間を長くすると、窒素原子の鋼部材内部への拡散は進
行し、これと並行して鋼部材の表面の窒化鉄などの窒化
物層が厚くなってい《。その結果、窒化物層により窒素
の侵入が妨げられ窒素の侵入量が減少していって、ある
時点において窒素の侵入量が内部への拡散量よりも少な
くなり、これにより表面層の窒素量が不足して表面層の
硬さが内部よりも低下するものと考えられる。
When we consider the reason for this, when we raise the processing temperature and lengthen the processing time, the diffusion of nitrogen atoms into the steel parts progresses, and at the same time, the nitride layer such as iron nitride on the surface of the steel parts progresses. It's getting thicker《. As a result, the nitride layer prevents nitrogen from entering and the amount of nitrogen entering decreases.At a certain point, the amount of nitrogen entering becomes less than the amount of diffusion into the interior, which causes the amount of nitrogen in the surface layer to decrease. It is thought that the hardness of the surface layer is lower than that of the inside due to insufficient hardness.

上記のように窒素量が不足した表面層へ窒素を補充する
為、本発明特有の第2窒化処理を施すのである。
In order to replenish nitrogen to the surface layer where the amount of nitrogen is insufficient as described above, the second nitriding treatment unique to the present invention is performed.

この第2窒化処理を第1窒化処理よりも低い温度(45
0〜530℃)で行なうので、窒素の鋼部材の内部への
拡散力が第1窒化処理のときの拡散力よりも弱くなり、
侵入窒素の大部分は表面層に留まって窒化物を形成し、
第1図の曲線Cに示すように表面層の硬さが大幅に向上
する。
This second nitriding treatment is carried out at a temperature lower than that of the first nitriding treatment (45
0 to 530°C), the diffusion force of nitrogen into the interior of the steel member is weaker than that during the first nitriding treatment,
Most of the invading nitrogen remains in the surface layer and forms nitrides,
As shown by curve C in FIG. 1, the hardness of the surface layer is significantly improved.

第2窒化処理をイオン窒化又はイオン軟窒化により行な
うのは、第1窒化処理の場合と同じ理由による。
The second nitriding process is performed by ion nitriding or ion soft nitriding for the same reason as the first nitriding process.

処理温度を450〜530℃とするのは、450℃未満
では窒化反応が有効に進行しないこと、また530℃よ
り高《なると鋼部材の内部への窒素の拡散が促進されて
表面層に窒素を留めることができないこと、などの理由
によるものである。
The reason why the treatment temperature is set at 450 to 530°C is because the nitriding reaction does not proceed effectively below 450°C, and when it is higher than 530°C, the diffusion of nitrogen into the interior of the steel member is promoted and nitrogen is deposited in the surface layer. This is due to reasons such as the inability to keep it in place.

処理時間を0.5〜3時間とするのは、0.5時間未満
では十分な窒化反応が得られないこと、また3時間より
長くしてもその効果が飽和してしまうこと、などの理由
によるものである。
The reason why the treatment time is set to 0.5 to 3 hours is that a sufficient nitriding reaction cannot be obtained if the treatment time is less than 0.5 hours, and the effect is saturated if the treatment time is longer than 3 hours. This is due to

上記第2窒化処理を施すことにより、鋼部材の表面層に
窒素を補充して十分な窒化物を形成することが出来、表
面層の硬さをHV700以上まで高めることが出来る。
By performing the second nitriding treatment, the surface layer of the steel member can be supplemented with nitrogen to form sufficient nitrides, and the hardness of the surface layer can be increased to HV700 or higher.

尚、第2図に示すように第1窒化処理に引き続いて第2
窒化処理を施してもよいし、或いは第3図に示すように
第1窒化処理後鋼部材の温度が十分低下してから且つ必
要に応じて任意の時間経過後に第2窒化処理を施しても
よい。
Furthermore, as shown in Fig. 2, the second nitriding treatment is carried out following the first nitriding treatment.
The nitriding treatment may be performed, or the second nitriding treatment may be performed after the temperature of the steel member has sufficiently decreased after the first nitriding treatment and after an arbitrary period of time has elapsed as necessary, as shown in Fig. 3. good.

尚、本発明は鋼全般に亙って適用し得るが、特に窒化物
を形成しやすい元素(Cr、■、A1、Tiなど)を適
量含有する合金鋼が望ましい6〔発明の効果〕 本発明に係る窒化鋼部材の製造方法によれば、上記〔作
用〕の項で詳述したように、第1窒化処理と第2窒化処
理とを施すことにより、窒化鋼部材の有効硬化深さが0
. 3 w以上まで大きくなり、且つ表面硬さがHV7
00以上まで高くなることから、特に疲労強度と耐摩耗
性に優れた窒化鋼部材を製造することが出来る。
Although the present invention can be applied to steels in general, alloy steels containing appropriate amounts of elements that easily form nitrides (Cr, ■, A1, Ti, etc.) are particularly desirable6 [Effects of the Invention] The present invention According to the method for manufacturing a nitrided steel member, as detailed in the [Operation] section above, by performing the first nitriding treatment and the second nitriding treatment, the effective hardening depth of the nitrided steel member is reduced to 0.
.. 3W or more, and the surface hardness is HV7.
00 or higher, it is possible to manufacture nitrided steel members with particularly excellent fatigue strength and wear resistance.

〔実施例〕〔Example〕

以下、本発明の実施例について図面を参照し乍ら説明す
る。
Embodiments of the present invention will be described below with reference to the drawings.

第4図に示すように、下記の第1表の組成の合金鋼の畑
材を所定サイズに切断し、その鋼材に熱間鍛造を施して
20wφの丸棒を多数製作し、それら丸棒を900℃ま
で加熱して焼準を施した。
As shown in Fig. 4, we cut the field materials of alloy steel with the composition shown in Table 1 below into a predetermined size, hot forged the steel material to produce a large number of 20wφ round bars, and then It was heated to 900°C and normalized.

それら焼準後の丸棒の表面部の硬さはHv270であっ
た。
The surface hardness of the round bars after normalization was Hv270.

次に、それら丸捧を機械加工し、第5図のような回転曲
げ疲労試験片Pを製作した。
Next, these round pieces were machined to produce rotating bending fatigue test pieces P as shown in FIG.

(本頁以下余白) 第1表 〔単位:重量%〕 次に、上記多数の試験片の夫々に対して第2表に示すよ
うに第1窒化処理を施し、次に第2窒化処理を施した。
(Margin below this page) Table 1 [Unit: Weight %] Next, each of the above-mentioned large number of test pieces was subjected to the first nitriding treatment as shown in Table 2, and then the second nitriding treatment was performed. did.

尚、第1窒化処理と第2窒化処理には同種の窒化処理を
施し、比較例の試験No. 1及び4のものには第2窒
化処理を施していない。
Note that the same type of nitriding treatment was performed for the first nitriding treatment and the second nitriding treatment, and test No. 1 of the comparative example was used. Nos. 1 and 4 were not subjected to the second nitriding treatment.

但し、ガス軟窒化処理にはNH.:RX(吸熱型変成ガ
ス)=1:1のガスを用い、イオン窒化処理にはNz 
 :H2 =1 : 1のガスを用いた。
However, NH. :RX (endothermic metamorphic gas) = 1:1 gas is used, and Nz is used for ion nitriding treatment.
:H2=1:1 gas was used.

次に、上記のように窒化処理を施した試験片の夫々につ
いて表面下50μm位置の断面硬さの測定及びビソカー
ス硬さHv500以上の有効硬化深さを測定した。
Next, for each of the test pieces subjected to the nitriding treatment as described above, the cross-sectional hardness at a position of 50 μm below the surface and the effective hardening depth at a viscous hardness of Hv500 or more were measured.

更に、上記の測定と並行して、各試験片と同一条件で製
作した試験片について50kgf/1m”の試験応力に
て回転曲げ疲労試験を実施し、破損するまでの負荷サイ
クル数を疲労寿命とした(第2表参照)。
In addition, in parallel with the above measurements, a rotating bending fatigue test was conducted on test pieces manufactured under the same conditions as each test piece at a test stress of 50 kgf/1 m'', and the number of load cycles until failure was determined as the fatigue life. (See Table 2).

(本頁以下余白) 次に、第2表の内容について説明する。(Margins below this page) Next, the contents of Table 2 will be explained.

ml及び患2では、ガス軟窒化を施したので、窒素の侵
入力が低いため十分な拡散硬化層が得られない。
In cases ml and 2, gas nitrocarburizing was performed, so a sufficient diffusion hardened layer could not be obtained because the nitrogen penetration force was low.

11h3では、イオン窒化による第1窒化処理の処理時
間が短かいので十分な拡散硬化層が得られないが、第2
窒化処理を施したので断面硬さが向上している。
In 11h3, the treatment time of the first nitriding treatment using ion nitriding is short, so a sufficient diffusion hardened layer cannot be obtained.
The nitriding treatment improves cross-sectional hardness.

患4では、イオン窒化による第1窒化処理の処理時間を
十分長くしたので有効硬化深さが著しく向上しているけ
れども、第2窒化処理を施さないので表面付近の窒素量
が不足し断面硬さが改善されていない。
In Case 4, the treatment time of the first nitriding treatment using ion nitriding was made sufficiently long, so the effective hardening depth was significantly improved, but since the second nitriding treatment was not performed, the amount of nitrogen near the surface was insufficient and the cross-sectional hardness decreased. has not been improved.

患5では、イオン窒化処理による第1及び第2窒化処理
を施したが、第2窒化処理の温度が高すぎるので内部へ
の窒素の拡散により表面付近の窒素量が不足した結果断
面硬さが改善されない。
In case No. 5, the first and second nitriding treatments using ion nitriding were performed, but since the temperature of the second nitriding was too high, the amount of nitrogen near the surface was insufficient due to the diffusion of nitrogen into the interior, resulting in a decrease in cross-sectional hardness. No improvement.

阻6では、イオン窒化による第1及び第2窒化処理を施
したが、第2窒化処理の温度が低いため表面付近におけ
る窒化反応が不十分となり断面硬さが殆んど改善されな
い。
In case No. 6, first and second nitriding treatments using ion nitriding were performed, but since the temperature of the second nitriding treatment was low, the nitriding reaction near the surface was insufficient and the cross-sectional hardness was hardly improved.

N117、隘8及びIlil9のものは、イオン窒化に
よる第1及び第2窒化処理の温度と処理時間とを夫々適
切に設定したので、0.34mm以上もの有効硬化深さ
及びHv750以上もの断面硬さとなっている。その理
由は、〔作用〕の項に記載した通りであるので省略する
For N117, No. 8, and Ilil 9, the temperature and treatment time of the first and second nitriding treatments using ion nitriding were appropriately set, respectively, resulting in an effective hardening depth of 0.34 mm or more and a cross-sectional hardness of Hv 750 or more. It has become. The reason for this is the same as described in the [Operation] section, so it will be omitted.

尚、実用に供する窒化鋼部材を製造する際には、前記焼
準処理は省略してもよいし、また第4図に示すように必
要に応じて第2窒化処理を施してから窒化鋼部材にショ
ットビーニング処理を施して疲労強度の向上を図ること
も有る。
In addition, when manufacturing nitrided steel members for practical use, the normalization treatment may be omitted, or, as shown in FIG. Shot beaning may also be applied to improve fatigue strength.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来技術と本発明に係る窒化鋼部材の硬さの特
性図、第2図及び第3図は夫々本発明における窒化処理
の熱処理サイクルの説明図、第4図は実施例に係る窒化
鋼部材の製造工程説明図、第5図は実施例に係る試験片
の説明図である。
Fig. 1 is a characteristic diagram of the hardness of nitrided steel members according to the prior art and the present invention, Figs. 2 and 3 are explanatory diagrams of the heat treatment cycle of nitriding treatment in the present invention, respectively, and Fig. 4 is a diagram according to an example. FIG. 5 is an explanatory diagram of a manufacturing process of a nitrided steel member, and FIG. 5 is an explanatory diagram of a test piece according to an example.

Claims (1)

【特許請求の範囲】[Claims] (1)鋼部材に窒化処理を施して窒化鋼部材を製造する
窒化鋼部材の製造方法において、鋼部材に、550〜6
00℃の温度で5〜15時間の間イオン窒化又はイオン
軟窒化による第1窒化処理を施し、 次に上記鋼部材に、450〜530℃の温度で0.5〜
3時間の間イオン窒化又はイオン軟窒化による第2窒化
処理を施すことを特徴とする窒化鋼部材の製造方法。
(1) In a method for manufacturing a nitrided steel member, in which the steel member is subjected to nitriding treatment to produce a nitrided steel member, the steel member is
A first nitriding treatment using ion nitriding or ion soft nitriding is performed at a temperature of 0.00°C for 5 to 15 hours, and then the steel member is subjected to a nitriding treatment of 0.5 to
A method for manufacturing a nitrided steel member, comprising performing a second nitriding treatment by ion nitriding or ion soft nitriding for 3 hours.
JP11662889A 1989-05-10 1989-05-10 Production of nitrified-steel member Pending JPH02294463A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11662889A JPH02294463A (en) 1989-05-10 1989-05-10 Production of nitrified-steel member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11662889A JPH02294463A (en) 1989-05-10 1989-05-10 Production of nitrified-steel member

Publications (1)

Publication Number Publication Date
JPH02294463A true JPH02294463A (en) 1990-12-05

Family

ID=14691905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11662889A Pending JPH02294463A (en) 1989-05-10 1989-05-10 Production of nitrified-steel member

Country Status (1)

Country Link
JP (1) JPH02294463A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03204479A (en) * 1989-12-29 1991-09-06 Nippon Piston Ring Co Ltd Piston ring and its manufacture
US5176760A (en) * 1991-11-22 1993-01-05 Albert Young Steel article and method
JP2006077315A (en) * 2004-09-13 2006-03-23 Juki Corp Thread cutter of sewing machine
JP2006216443A (en) * 2005-02-04 2006-08-17 Hitachi Ltd Metal sheath magnesium diboride superconducting wire rod and its manufacturing method
JP2007056368A (en) * 2005-07-29 2007-03-08 Showa Denko Kk Surface treatment method for aluminum extruding die, and aluminum extruding die

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03204479A (en) * 1989-12-29 1991-09-06 Nippon Piston Ring Co Ltd Piston ring and its manufacture
US5176760A (en) * 1991-11-22 1993-01-05 Albert Young Steel article and method
JP2006077315A (en) * 2004-09-13 2006-03-23 Juki Corp Thread cutter of sewing machine
JP4546793B2 (en) * 2004-09-13 2010-09-15 Juki株式会社 Sewing machine thread trimming device
JP2006216443A (en) * 2005-02-04 2006-08-17 Hitachi Ltd Metal sheath magnesium diboride superconducting wire rod and its manufacturing method
JP2007056368A (en) * 2005-07-29 2007-03-08 Showa Denko Kk Surface treatment method for aluminum extruding die, and aluminum extruding die

Similar Documents

Publication Publication Date Title
US3765954A (en) Surface-hardened titanium and titanium alloys and method of processing same
JPH02294463A (en) Production of nitrified-steel member
US2342104A (en) Manufacture of light armor plate
JP2906996B2 (en) Method for producing nitrided steel member excellent in cold forgeability and fatigue characteristics
JP3193320B2 (en) Heat treatment method for machine parts
JP2741222B2 (en) Method for manufacturing a nitrided steel member
JPS599622B2 (en) Surface hardening method for aluminum alloys
US2365956A (en) Thermally hardening steel
JP2885061B2 (en) Method for producing nitrided steel member excellent in fatigue characteristics
JPS5916948A (en) Soft-nitriding steel
JPH0280539A (en) Steel for nitriding
JP2724456B2 (en) Carbonitriding method for steel members
JPS6233757A (en) Method for carburizing and nitriding steel member containing chromium
US3802928A (en) Method for surface hardening steel and cemented carbides
JP2921235B2 (en) Carburizing and quenching method
JP3109146B2 (en) Manufacturing method of low strain high strength member
JPS6024172B2 (en) Nitriding steel with high core hardness after nitriding without preheat treatment
US1747549A (en) Hardening process
RU2048547C1 (en) Low-carbon secondary hardening martensite class steels gear wheels working method
US2048748A (en) Method of heat treating metal
JPS61147814A (en) Heat treatment of endless belt made of maraging steel
JP3448608B2 (en) Nitriding method
Broglie et al. Gear hardness technology
JPH0762492A (en) Steel for nitriding treatment
JPH10280031A (en) Method for hardening carburized surface of carbon steel