JPH02293032A - Dehumidifying method with steam permselective membrane utilized therefor - Google Patents

Dehumidifying method with steam permselective membrane utilized therefor

Info

Publication number
JPH02293032A
JPH02293032A JP1114062A JP11406289A JPH02293032A JP H02293032 A JPH02293032 A JP H02293032A JP 1114062 A JP1114062 A JP 1114062A JP 11406289 A JP11406289 A JP 11406289A JP H02293032 A JPH02293032 A JP H02293032A
Authority
JP
Japan
Prior art keywords
membrane
water vapor
ion exchange
temperature
ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1114062A
Other languages
Japanese (ja)
Inventor
Makoto Nakao
真 中尾
Hirokazu Wakabayashi
浩和 若林
Yoshio Sugaya
良雄 菅家
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP1114062A priority Critical patent/JPH02293032A/en
Publication of JPH02293032A publication Critical patent/JPH02293032A/en
Pending legal-status Critical Current

Links

Landscapes

  • Drying Of Gases (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE:To obtain a dehumidifying method wherein permeation velocity of steam and permselective constant thereof are large by drying and treating a membrane made of a fluorine-contg. ion exchangeable polymer having the specified ion exchange capacity at the temp. not higher than the glass transition temp. of this polymer. CONSTITUTION:A fluorine-contg. copolymer which is made of resin having 0.6 to 2.5 milliequivalent/g-resin ion exchange capacity and especially incorporates the component shown in a general formula I ((m) shows 0 or 1, (n) shows integer of 2 to 5) is utilized as a fluorine-contg. ion exchange layer. Furthermore, the characteristics of a membrane are regulated to 1 to 6meq/g H2O concn. gamma of fixed ion, 20 to 250wt.% coefficient of water absorption and 0.1 to 100mum film thickness. Then the membrane is dried and treated at the temp. not higher than glass transition temp. especially at the temp. not higher than at least 25 deg.C for the glass transition temp. This membrane removes water not less than at least 30% of coefficient of water absorption of the ion exchange layer. Thereby, the membrane large in permeation velocity of steam and permselective constant thereof is obtained and dehumidification is performed by utilizing this membrane.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、′混合流体より水蒸気成分を、膜を用いて透
過分離せしめる方法、換言すれば除湿方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for permeating and separating water vapor components from a mixed fluid using a membrane, in other words, a dehumidification method.

更に詳しくは、建物の空調や計装用圧縮空気等の湿度を
低減させた空気の製造や、天然ガス中の水分除去、なら
びに化学工業をはじめ、電気.電子産業、精密機械工業
、食品工業、繊維工業等広い分野で使用される温度をコ
ン1・ロールざれた気体の製造において、水分を含有す
る気体をイオン交換膜を用いて、水、水蒸気を進択的に
透過分離する方法に関する。
More specifically, it is used in the production of air with reduced humidity such as compressed air for building air conditioning and instrumentation, the removal of moisture from natural gas, the chemical industry, and the electrical industry. Temperature control is used in a wide range of fields such as the electronics industry, precision machinery industry, food industry, and textile industry.In the production of filtrated gases, ion exchange membranes are used to convert water-containing gases into water and steam. This invention relates to a method for selective permeation separation.

[従来技術コ 気体中の水蒸気を除去する方法として大別して次の4法
が知られている。
[Prior Art] The following four methods are known as methods for removing water vapor from gas.

(1)圧縮法 (2)冷却法 (3)吸着法 (4)膜分離法 (1)の圧縮法では、圧縮により露点温度を高めた浚、
冷却等により水蒸気を凝集除去する方法であるが、相対
温度を低下せしめる為、再度加熱するか、または圧縮度
を低減させるため、過度のエネルギーが必要となる欠点
がある。
(1) Compression method (2) Cooling method (3) Adsorption method (4) Membrane separation method
This method involves condensing and removing water vapor by cooling, etc., but it has the disadvantage that excessive energy is required to lower the relative temperature by heating again or reducing the degree of compression.

(2)の冷却法は、気体を冷却することにより飽和水蒸
気圧を低下させ、過飽和水蒸気を水や氷に凝集除去する
方法である。気体の冷却と水蒸気の除去02つの■能が
要求される建物の冷房等空気調和装置として匝用されて
いるが、水分除去気体の川対温度は高いので、柑刻温度
の低減のため、使用前に気体の温度を高める必要があり
、この温度調整に過分なエネルギーを必要とする欠点が
ある。
The cooling method (2) is a method in which the saturated water vapor pressure is lowered by cooling the gas, and the supersaturated water vapor is removed by condensation into water or ice. It is used as an air conditioner for cooling buildings, etc., which requires two functions: gas cooling and water vapor removal. However, since the water temperature of the water removal gas is high, it is not used to reduce the temperature of the water vapor. It is necessary to raise the temperature of the gas beforehand, and this temperature adjustment has the disadvantage of requiring excessive energy.

(3)の吸着法は、シリカゲル、′モレキュラーシーブ
、濃硫酸、グリセリン等の水分吸着剤と気体を接触させ
ることにより、気体中の水分を除去する方法であるが、
吸着剤の吸湿砥には限界があり、一台の乾燥器では連続
操作を行うことは不可能であり、しかも吸着剤の再生操
作が必要となる。また、吸着剤が気体に混入し純度の低
下や再生時、処理気体の損失等の欠点もある。
The adsorption method (3) is a method of removing moisture from a gas by bringing the gas into contact with a moisture adsorbent such as silica gel, 'molecular sieve, concentrated sulfuric acid, or glycerin.
There is a limit to the hygroscopicity of the adsorbent, and continuous operation is not possible with one dryer, and furthermore, an operation for regenerating the adsorbent is required. Furthermore, there are also drawbacks such as a decrease in purity due to the adsorbent being mixed into the gas, and a loss of processing gas during regeneration.

(4)の膜分離法は、水蒸気を含有する気体を、隔膜の
一面に接触させ、もう−・面から水蒸気を選択的に透過
分雛せしめる方法であり、原理的に上記3法と比べ、ラ
ンニングコス1・が安価、装置溝造が簡単、気体を汚染
することなく連続的に乾燥気体が得られる等の利点をも
つが、従来、水蒸気透過性の優れた隔膜がないため、ほ
とんど実用1ヒされていない。
The membrane separation method (4) is a method in which a gas containing water vapor is brought into contact with one side of the diaphragm, and water vapor is selectively permeated from the other side.In principle, compared to the above three methods, It has advantages such as low running cost, easy construction of equipment grooves, and ability to continuously obtain dry gas without contaminating the gas. Not hit.

例えば、特開昭53−86684、特開昭53−972
46、特開昭54−11481、特開昭54−1528
79、特開昭60−261503、特開昭62−427
22、特開昭02−42723に吸水性高分子性薄膜や
、酸素分離、水素分離に使用された膜状素t才による除
湿膜が記載されているが、水蒸気透過量が小さく、また
水蒸気一気体との分vL係数も不充分である。
For example, JP-A-53-86684, JP-A-53-972
46, JP 54-11481, JP 54-1528
79, JP-A-60-261503, JP-A-62-427
22. Japanese Patent Application Laid-Open No. 02-42723 describes a water-absorbing polymeric thin film and a dehumidifying membrane based on a membrane material used for oxygen separation and hydrogen separation, but the amount of water vapor permeation is small, and the amount of water vapor permeation is small. The vL coefficient with gas is also insufficient.

一方、燃料電池用隔膜や電解用隔膜に使用されている側
鎖にスルホン酸基を含有するパーフルオロイオン交換膜
は、吸水性が高く、ボリマー中の水の透過速度が大きい
ことから、除湿膜素材として有効と考えられ、バーフル
オロスルホン酸の中空チューブを用いた除湿器がtJs
P3,735,558に記載されている。しかしながら
、これは水蒸気透過量が小さいため、多量の気体を処理
する工業用途では、従来の冷凍法や吸着法に代替できな
い欠点がある。
On the other hand, perfluoro ion exchange membranes containing sulfonic acid groups in their side chains, which are used in fuel cell membranes and electrolysis membranes, have high water absorption properties and a high water permeation rate in polymers, so they can be used as dehumidifying membranes. A dehumidifier using a hollow tube made of barfluorosulfonic acid, which is considered to be an effective material, is tJs.
P3,735,558. However, since this method has a small amount of water vapor permeation, it has the disadvantage that it cannot be used as a substitute for conventional refrigeration or adsorption methods in industrial applications that process large amounts of gas.

更に特開昭62−7417では、パーフルオロスルポン
酸中空糸を加熱処理することで、露点温度が低い気体を
製造する除湿膜が記載されているが、加熱処理により膜
内の水分が除去されるため水蒸気透過性が著しく低下す
る欠点がある。
Furthermore, JP-A-62-7417 describes a dehumidifying membrane that produces a gas with a low dew point temperature by heat-treating perfluorosulfonic acid hollow fibers; This has the disadvantage that water vapor permeability is significantly reduced.

また、特開昭[30−39014、特開昭50−151
558及び56−151559に、パーフルオ口イオン
交換膜、多孔性支持体との複合亭才料が記載されてるが
、これらは水蒸気選択透過性衣料の製造で、本発明の除
湿膜とは目的が異なり、また透湿性も大きくない。
In addition, Japanese Patent Application Publication No. 30-39014, Japanese Patent Application Publication No. 50-151
No. 558 and No. 56-151559 describe a composite material containing a perfluoro ion exchange membrane and a porous support, but these are for the production of water vapor selectively permeable clothing and have a different purpose from the dehumidifying membrane of the present invention. , moisture permeability is also not great.

[発明の解決しようとする問題点] 本発明は、従来技術が有していた前述の欠点を解消しよ
うとするものであり、水蒸気透過速度、水蒸気選択透過
係数の大きな除湿方法を1是供することを目的とする。
[Problems to be Solved by the Invention] The present invention aims to eliminate the above-mentioned drawbacks of the prior art, and provides a dehumidification method with a high water vapor transmission rate and high water vapor selective permeation coefficient. With the goal.

本発明は、従来技術による空気調和装置や計装用圧縮空
気の製造に代替できるほか、天然ガスの除湿、従来技術
では匝用出来ない[1性ガスの除湿等に使用できる除湿
方法を提洪することを目的とする。
The present invention can replace the production of compressed air for air conditioners and instrumentation using conventional techniques, and also provides a dehumidifying method that can be used for dehumidifying natural gas and for dehumidifying gases that cannot be used with conventional techniques. The purpose is to

[問題点を解決するための手段コ 本発明の上記目的は、イオン交換容量が0.6〜2,5
ミlJ当量/g樹脂を有する含フッ素イオン交換性重合
体からなる膜を該重合体のガラス転移温度以下で乾燥処
理せしめた膜を水蒸気選択透過膜として使用することに
よって達成せしめられることが児い出ざれた。
[Means for Solving the Problems] The above-mentioned object of the present invention is to achieve an ion exchange capacity of 0.6 to 2.5.
This can be achieved by using a membrane made of a fluorine-containing ion-exchangeable polymer having a milJ equivalent/g resin and dried at a temperature below the glass transition temperature of the polymer as a water vapor selective permeation membrane. I got out.

本発明で使用する水蒸気jx択性透過膜は、基本的には
上記特定のイオン交換膜をある特定な条件により水蒸気
の選択透過性を飛躍的に高めたものである。
The water vapor jx-selective permeable membrane used in the present invention is basically the above-mentioned specific ion exchange membrane whose water vapor selective permeability has been dramatically increased under certain specific conditions.

本発明者は、除湿膜として、気体中の水蒸気を選択的に
透過しろる膜の研究開発を鋭意努力した結果、従来とは
全く逆の方法により水蒸気の選択透過性を向上せしめる
ことを見いだし本発明を完成せしめたものである。
As a result of intensive research and development of a membrane that selectively permeates water vapor in gas as a dehumidifying membrane, the inventor discovered that the selective permeability of water vapor could be improved by a method completely opposite to the conventional method. This completes the invention.

即ち、除湿膜に使用ざれる水蒸気選択性透過膜としては
露点温度が低い高度に乾燥した気体を得るには、水蒸気
含有迅が小さい気体から効率よく水蒸気を透過せしめる
必要がある。かかる方法として特開昭62−74 17
においてパーフルオロスルボン酸膜を70から220゜
(;にて加熱処理する方法が記載ざれているが、加熱処
理により、膜内の含水率が低下するため水蒸気透過性が
著しく低下してしまう。
That is, in order to obtain a highly dry gas with a low dew point temperature as a water vapor selective permeable membrane used in a dehumidification membrane, it is necessary to efficiently permeate water vapor from a gas with a low water vapor content. Such a method is disclosed in JP-A-62-74-17.
describes a method of heat-treating a perfluorosulfonic acid membrane at a temperature of 70 to 220°; however, the heat treatment lowers the water content within the membrane, resulting in a significant decrease in water vapor permeability.

その結果、空気調和v2置や計装用圧縮空気などの水蒸
気含有量が大きな気{本を高度に乾燥するには適してい
ない。
As a result, air with a large water vapor content, such as compressed air for air conditioners and instrumentation, is not suitable for highly drying books.

本発明者は、水蒸気含有量が大きくても、また、水蒸気
含有量が極めて小さい気体においても高い選択透過性を
有する除湿膜の研究開発を進めた結果、イオン交換体層
のガラス転移温度以下で乾燥することにより、かかる目
的が達成せしめられろことを見いだした。
The present inventor has carried out research and development of a dehumidifying membrane that has high selective permselectivity even in gases with a large water vapor content and even in gases with an extremely small water vapor content. It has been found that drying may accomplish this purpose.

イオン交換体層の低温乾燥処理が何故,水蒸電の透過性
を高めるかは解明されていないが、おそらく以下の理由
と考えられる。
Although it is not clear why the low-temperature drying treatment of the ion exchanger layer increases the permeability of water vapor electricity, it is probably due to the following reasons.

パーフルオ口イオン交換膜は、バーフル才ロカーボン層
とイオン交換基部かミクロ川分離し、所謂クラスターを
形成しており水はクラスター内に存在する。このクラス
ター溝造は、バーフルオロイオン交換膜が線状ボリマー
から成り立っていることから、安定な構造ではなく、外
#?!2 濃度や外気温度、外気の湿度により変わるこ
とが知られている。このためイオン交換体届を乾燥処理
すると、膜内の水分が除去されるが、そのとき、膜内を
水分が移動するため水分の通路が形成される。このとき
の乾燥温度が高い場合には、水分が除去された後、ポリ
マー層が流動し水分の通路を閉寒するため、吸水率の低
下や水蒸気の透過速度が低下するが、乾燥温度がガラス
転移温度以下ではボリマー層が固定される結果、水分の
通路が存在するため、水蒸気の透過速度が増加すると説
明される。
In the perfluorocarbon ion exchange membrane, the perfluorocarbon layer and the ion exchange base are separated by microscopic rivers, forming so-called clusters, and water exists within the clusters. This cluster groove structure is not a stable structure because the barfluoro ion exchange membrane is composed of linear polymers, but has an outer #? ! 2 It is known that it changes depending on the concentration, outside temperature, and outside humidity. For this reason, when the ion exchanger is subjected to a drying process, the moisture within the membrane is removed, but at that time, the moisture moves within the membrane, forming a moisture passage. If the drying temperature is high at this time, the polymer layer flows after the moisture is removed and closes the moisture passage, resulting in a decrease in water absorption and the rate of water vapor transmission. It is explained that below the transition temperature, the polymer layer is fixed, and as a result, water vapor passages exist, so that the water vapor permeation rate increases.

しかしかかる説明は、本発明の理解のため述べたもので
あり、本発明を限定するものではない。
However, such explanations are provided for the purpose of understanding the present invention, and are not intended to limit the present invention.

かくして本発明で使用される水蒸気選択性透過膜は、ガ
ラス転移温度以下好ましくは、ガラス転移温度の少なく
とも25℃以下、特には50℃以下の低温下で乾燥処理
せしめる。かくして、通常好ましくは、25℃以下、好
ましくは15℃以下特には10゜C以下にて乾燥処理せ
しめられる。
Thus, the water vapor selective permeable membrane used in the present invention is dried at a temperature below the glass transition temperature, preferably at least 25°C below the glass transition temperature, particularly below 50°C. Thus, the drying treatment is usually preferably carried out at a temperature of 25°C or lower, preferably 15°C or lower, particularly 10°C or lower.

乾燥処理条件としては、乾燥処理前のイオン交換体層の
吸湿率の少なくとも30%以上、、好ましくは、50%
以上の水分を除去するようにせしめることにより、水蒸
気透過性の大きな膜が得られる。
The drying treatment conditions include at least 30% or more, preferably 50%, of the moisture absorption rate of the ion exchanger layer before the drying treatment.
By removing the above amount of water, a membrane with high water vapor permeability can be obtained.

以下に本発明を更に詳しく説明すると、本発明の含フッ
素イオン交換体層としては、イオン交換容量が、0.6
〜2.5ミl7当量/g樹脂からなりまたイオン交換基
の型としては、スルホン酸、スルホン酸塩、カルボン酸
、カルボン酸塩、リン酸、リン酸塩、酸性水酸基、酸性
水酸塩、等のカチオン交換基の他、1〜3級アミ7基、
4級アンモニウム基等のアニオン交換基が例示できる。
To explain the present invention in more detail below, the fluorine-containing ion exchanger layer of the present invention has an ion exchange capacity of 0.6
~2.5 mil7 equivalents/g resin, and types of ion exchange groups include sulfonic acid, sulfonate, carboxylic acid, carboxylate, phosphoric acid, phosphate, acidic hydroxyl, acidic hydroxyl, In addition to cation exchange groups such as, 7 primary to tertiary ami groups,
Examples include anion exchange groups such as quaternary ammonium groups.

なかでも、スルホン酸が吸水性が高く、耐熱性、耐薬品
性に優れ、本発明のイオン交換膜を容易に製造できるの
で特に好ましい。
Among these, sulfonic acid is particularly preferred because it has high water absorption, excellent heat resistance and chemical resistance, and the ion exchange membrane of the present invention can be easily produced.

かかる含フッ素樹脂からなるスルホン酸膜、特には一般
式、′ (mは0または1、nは2〜5の整数)を含有した含フ
ッ素系共m合体が望ましい。
A sulfonic acid film made of such a fluororesin, particularly a fluorine-containing co-m polymer containing the general formula ' (m is 0 or 1, n is an integer from 2 to 5), is desirable.

上記含フッ素系共重合体としては、テトラフルオ口エチ
レン、トリフルオロエチレン、ビニリデンフロライド、
フッ化ビニル等のフッ素化オレフィンと一般式 CF2=CF \ (mは0または1, nは2〜5の整数)として表され
る−S02F基含有パーフルオロビニルエーテルモノマ
ーを共重合して得られるものが好ましい。更に必要によ
り、エチレン、ブロビレン、パーフルオロアセトン、バ
ーフルオロビニルエーテル、パーフルオロジビニルエー
テル、パーフルオロアリルビニルエーテル等の第3成分
を添加することもできる。
Examples of the above-mentioned fluorine-containing copolymers include tetrafluoroethylene, trifluoroethylene, vinylidene fluoride,
What is obtained by copolymerizing a fluorinated olefin such as vinyl fluoride and a -S02F group-containing perfluorovinyl ether monomer represented by the general formula CF2=CF\ (m is 0 or 1, n is an integer of 2 to 5) is preferred. Furthermore, if necessary, a third component such as ethylene, brobylene, perfluoroacetone, perfluorovinyl ether, perfluorodivinyl ether, perfluoroallyl vinyl ether, etc. can be added.

尚、上記共重合体の組成比は、含フッ素共重合体が、上
記イオン交換容量を形成するように選ばれるが、なかで
も、本発明の除湿膜に使用するイオン交換膜としては、
好ましくは固定イオン濃度が1〜6 meq/gH20
が使用される。固定イオン濃度は膜に吸水した水1gあ
たりのイオン交換基ミリ当量で表示したものである。従
来のイオン選゛択透過性イオン交換膜の開発においては
、イオン選択透過性がドナンの平衡式から、固定イオン
濃度を高める方同で進められ、通常、固定イオン濃度が
6meq/gH20以上が好ましく使用されている。本
発明者の研究から水蒸気透過性イオン交換膜としては、
固定イオン濃度が6 meq/gH20を越えると水蒸
気透過速度が著しく低下し、また、1 meq/gH2
0以下では水蒸気透過速度と水蒸気の分離係数が低下す
るので、固定イオン濃度が1〜6 meq/gll20
、特には、2〜5 meq/gll20が水蒸気透過速
度と水蒸気の分離係数のバランスから好ましい。
The composition ratio of the above-mentioned copolymer is selected so that the fluorine-containing copolymer forms the above-mentioned ion-exchange capacity. Among them, the ion-exchange membrane used in the dehumidifying membrane of the present invention is
Preferably, the fixed ion concentration is 1 to 6 meq/gH20
is used. The fixed ion concentration is expressed in milliequivalents of ion exchange groups per gram of water absorbed by the membrane. In the development of conventional ion-selective permeable ion-exchange membranes, ion-selective permeability has been determined from Donnan's equilibrium equation by increasing the fixed ion concentration, and it is usually preferable that the fixed ion concentration is 6 meq/gH20 or more. It is used. Based on the research of the present inventor, water vapor permeable ion exchange membranes include:
When the fixed ion concentration exceeds 6 meq/gH20, the water vapor transmission rate decreases significantly;
If the fixed ion concentration is below 0, the water vapor permeation rate and water vapor separation coefficient will decrease, so the fixed ion concentration should be 1 to 6 meq/gll20.
In particular, 2 to 5 meq/gll20 is preferable from the viewpoint of the balance between the water vapor transmission rate and the water vapor separation coefficient.

本発明において固定イオン濃度が1〜6 meq/gH
2 0に加えて、吸水率とイオン交換容量が特定の範囲
のイオン交換膜であることが、水蒸気透過1が大きく、
水蒸気分離係数が高い膜を得るために好ましい。吸水率
が20重量%以下では水蒸気透過速度の低下を招き、ま
た、 250ffliIt%を越えると膜形態保持能力
が損なわれるため吸水率は、20〜250重量%、特に
は22〜100重量%が、この膜を用いてモジュールを
製作、使用する上で、実用的強度を有するので好ましい
。一方、イオン交換容量は、0.6〜2.5ミリ当量/
g樹脂、特には、1.06〜2.0ミリ当量/8樹脂が
、水蒸気の透過速度、分離係数の優れた膜を得るためと
、膜強度の大きな高分子重合体を得るために好ましい。
In the present invention, the fixed ion concentration is 1 to 6 meq/gH.
In addition to 20, an ion exchange membrane with a water absorption rate and ion exchange capacity in a specific range has a high water vapor permeation 1,
This is preferable in order to obtain a membrane with a high water vapor separation coefficient. If the water absorption rate is less than 20% by weight, the water vapor transmission rate will decrease, and if it exceeds 250ffliIt%, the membrane shape retention ability will be impaired. When manufacturing and using a module using this membrane, it is preferable because it has practical strength. On the other hand, the ion exchange capacity is 0.6 to 2.5 meq/
g resin, particularly 1.06 to 2.0 milliequivalent/8 resin, is preferred in order to obtain a membrane with excellent water vapor permeation rate and separation coefficient, and to obtain a high molecular weight polymer with high membrane strength.

イオン交換容量が0.6以下の膜でも、本発明の固定イ
オン濃度1〜6 meQ/gH20、吸水率20重量%
以上にすることができるが、水蒸気透過性の点て、イオ
ン交換容量が1.05以上とイオン交換基の量が多いこ
とが好ましい。本発明において、前述した特定の固定イ
オン濃度、吸水率、イオン交換容量を有するイオン交換
膜を用いて水蒸気を選択的に透過分離する際において、
イオン交換膜の膜厚も重要である。本発明の除湿用イオ
ン交換膜は、興味深いことに水蒸気透過性が膜厚に反比
例せず、次式の関係かある。
Even if the membrane has an ion exchange capacity of 0.6 or less, the fixed ion concentration of the present invention is 1 to 6 meQ/gH20, and the water absorption rate is 20% by weight.
However, from the viewpoint of water vapor permeability, it is preferable that the ion exchange capacity is 1.05 or more and the amount of ion exchange groups is large. In the present invention, when selectively permeating and separating water vapor using an ion exchange membrane having the above-described specific fixed ion concentration, water absorption rate, and ion exchange capacity,
The thickness of the ion exchange membrane is also important. Interestingly, the water vapor permeability of the ion exchange membrane for dehumidification of the present invention is not inversely proportional to the membrane thickness, but has the following relationship.

Q=(αt+p′)/1 ここてQ :水蒸気透過速度   t:膜厚p′:膜厚
Oμm外挿時の透過係数 α ;透過係数の膜厚依存係数 (膜の固有値) このため膜厚が厚くなっても透過量の減少は少なくなく
、ある特定の厚み以下にならないと透過量の増加が顕著
でない。
Q = (αt+p')/1 where Q: Water vapor permeation rate t: Film thickness p': Permeability coefficient α when extrapolated to film thickness 0 μm; Film thickness dependence coefficient of permeability coefficient (eigenvalue of the film) Therefore, the film thickness Even if the thickness becomes thicker, the amount of transmission decreases considerably, and the increase in amount of transmission does not become noticeable until the thickness becomes below a certain level.

一方、水蒸気以外の窒素、酸素等の気体の透過速度は、
膜厚に反比例するので、水蒸気の分離係数は低下するの
で過度の膜厚低減は好ましくない。
On the other hand, the permeation rate of gases other than water vapor such as nitrogen and oxygen is
Since it is inversely proportional to the film thickness, the water vapor separation coefficient decreases, so it is not preferable to reduce the film thickness excessively.

叉、膜厚を過度に厚くすると、続く低温乾燥処理時、膜
内の水分を充分除去てきないため湿潤気体を除去しても
露点温度の低い気体が得られないという欠点がある。
On the other hand, if the film thickness is excessively thick, water in the film cannot be removed sufficiently during the subsequent low-temperature drying process, so there is a drawback that even if the wet gas is removed, a gas with a low dew point temperature cannot be obtained.

かくしてイオン交換体層としての膜7gは、好ましくは
、O. L〜100 t.t m, 特には、1 〜5
0 tt mが水蒸気透過速度、分離1系数、低湿度の
気体製造の観点から望ましい。
The membrane 7g as ion exchanger layer thus preferably has an O. L~100t. t m, especially 1 to 5
0 tt m is desirable from the viewpoint of water vapor permeation rate, separation number 1, and gas production with low humidity.

上記イオン交換体層は、既知の手段により膜状にしたま
までも1史用できるが、モジュール化成型?、耐圧性の
観点から多孔性基材との複合化膜とすることが好ましく
、膜厚30μm以下の透過性の大きな除湿膜を得るには
特に好ましい方法として例示される。
The above-mentioned ion exchanger layer can be used for a single period even if it is formed into a membrane by known means, but can it be molded into a module? From the viewpoint of pressure resistance, it is preferable to form a composite membrane with a porous base material, and this method is exemplified as a particularly preferable method for obtaining a highly permeable dehumidifying membrane with a thickness of 30 μm or less.

多孔性基材とイオン交換樹脂との複合方法としては、イ
オン交換樹脂を膜状とした後、多孔性基材と積層するか
、イオン交換樹脂を溶液、懸濁溶液または、乳化重合ラ
テックスまたは、乳化重合ラテックスの水を有機溶媒と
置換せしめた有■溶媒系ディスバージョン等を多孔性基
材に含浸、乾燥する方法が例示される。
As a method of combining a porous base material and an ion exchange resin, the ion exchange resin is formed into a membrane and then laminated with the porous base material, or the ion exchange resin is formed into a solution, suspension solution, emulsion polymerization latex, or An example is a method in which a porous substrate is impregnated with a solvent-based dispersion in which water in emulsion polymerization latex is replaced with an organic solvent, and then dried.

更に本発明で使用される除湿膜は、好ましくは外径10
0〜3000μ11、肉厚0.1−100llmの中空
糸として使用することもできる。特に中空状多孔性基材
に上記した樹脂含有溶液を含浸・乾燥する方法により透
過量の大きな除湿中空糸を得ることもできる。
Further, the dehumidifying membrane used in the present invention preferably has an outer diameter of 10
It can also be used as a hollow fiber having a thickness of 0 to 3000μ11 and a wall thickness of 0.1 to 100llm. In particular, dehumidifying hollow fibers with a large permeation rate can also be obtained by impregnating a hollow porous base material with the above resin-containing solution and drying it.

かくして得られた膜は、イオン交換基に変換されていな
い場合には、アルカリ性溶液で加水分解した後、酸性溶
液に浸漬することによりスルホン酸型膜とする。
If the membrane thus obtained is not converted into an ion exchange group, it is hydrolyzed with an alkaline solution and then immersed in an acidic solution to form a sulfonic acid type membrane.

次いで本発明で使用されるイオン交換体膜は、乾燥処理
が施ざれる。乾燥方法としては、上記温度で乾燥気体に
接触するか、減圧ずろ方法以外に脱水アルコール等に浸
漬し、乾燥することに本発明の水蒸気選択性透過膜を得
ることができる。
Next, the ion exchanger membrane used in the present invention is subjected to a drying treatment. As a drying method, the water vapor selective permeable membrane of the present invention can be obtained by contacting with a drying gas at the above-mentioned temperature, or by immersing it in dehydrated alcohol or the like in addition to the vacuum grate method and drying.

かくして得た水蒸気選択性透過膜は、モジュールに組む
が、低温乾燥処理がされていない場合は使用前に低温乾
燥処理を施す。
The thus obtained water vapor selective permeable membrane is assembled into a module, but if it has not been subjected to low-temperature drying treatment, it is subjected to low-temperature drying treatment before use.

かくして本発明の低温乾燥処理した水蒸気選択性透過膜
で区画ざれた一方の側に水蒸気を含有する気体を接触さ
せ、もう一方の側にパージし・た乾燥気体を接触するか
、または、減圧せし・ぬることにより、水蒸気を選択的
に透過させて除湿ざれる。
Thus, one side of the partitioned water vapor selective permeable membrane subjected to low temperature drying of the present invention is brought into contact with a gas containing water vapor, and the other side is brought into contact with a purged dry gas, or the pressure is reduced. By soaking and soaking, water vapor is selectively permeated and dehumidified.

かかる場合おいて、除湿が25℃以下好ましくは20℃
以下、特には15゛℃以下、更には10℃以下で行わせ
しめることは、本発明の水蒸気選択性透過膜を使用し、
高度に乾燥された気体を製造する上で特に好ましい。
In such cases, dehumidification is performed at 25°C or lower, preferably at 20°C.
Hereinafter, the water vapor selective permeable membrane of the present invention is used to carry out the following, particularly at a temperature of 15° C. or below, and even 10° C. or below.
Particularly preferred for producing highly dry gases.

かかる低温下で除湿ずろ方法が同故高度に乾燥された気
体が得られるかは、明かでないが後の実施例で説明する
ように高温で乾燥処理した膜は低温で除湿しても高度な
乾燥気体が得ることはできない。 かくして本発明の低
温乾燥処理された水蒸気透過膜を低温で除去操作をする
ことにより、露点25℃の気体を露点−60℃以上の高
度に乾燥された気体を得ろことができる。
It is not clear whether highly dry gas can be obtained using the dehumidification process at such low temperatures, but as will be explained in the examples below, membranes dried at high temperatures do not remain highly dry even when dehumidified at low temperatures. Gas cannot be obtained. Thus, by performing a removal operation at a low temperature on the low-temperature drying treated water vapor permeable membrane of the present invention, it is possible to obtain a highly dried gas with a dew point of -60°C or higher from a gas with a dew point of 25°C.

次に本発明を実施例により説明するが、本発明はかかる
実施例に限定ざれるものではない。
Next, the present invention will be explained with reference to examples, but the present invention is not limited to these examples.

実施例に先立ち、以下の実施例で用いた各種測定法に関
して、まとめて述べる。
Prior to the examples, various measurement methods used in the following examples will be summarized.

(1)吸水率Wの測定 透過性を測定する膜と同一条1牛下で製作した膜、もし
くは測定膜の一部から採取した膜を、純水中、25゜C
に浸漬平衡した膜重量をw1、該膜を真空乾燥した乾燥
重f!i W 2より、次式より求める。
(1) Measurement of water absorption rate W A membrane manufactured in the same row as the membrane to be measured for permeability, or a membrane sampled from a part of the membrane to be measured, is placed in pure water at 25°C.
The weight of the membrane equilibrated by immersion in water is w1, and the dry weight of the membrane dried under vacuum is f! From i W 2, it is determined from the following formula.

W = 100 ( W + − W2) / W26
(2)固定イオン瀾度A一の算出 イオン交換容量(meq/g樹脂)ARと、上記の吸水
率Wから、次式により求める。
W = 100 (W + - W2) / W26
(2) Calculated ion exchange capacity (meq/g resin) of fixed ion contamination A1 is calculated from the following formula from AR and the above water absorption rate W.

Au=AR/ (W/100) (3)吸湿率Mの測定 25℃、湿度50%に平衡にしたイオン交換体層の重量
をW3、また、低温乾燥処理したイオン交換体層を直ち
に測定した重量/i−W3、該膜を130゜Cて真空乾
燥した乾燥重ffi @ W aより、次式により求め
ろ。
Au=AR/ (W/100) (3) Measurement of moisture absorption rate M The weight of the ion exchanger layer equilibrated at 25°C and 50% humidity was measured as W3, and the ion exchanger layer subjected to low temperature drying was immediately measured. Determine the weight/i-W3 from the dry weight ffi@Wa obtained by vacuum drying the membrane at 130°C using the following formula.

W= 100 (W3−Wa) / ’vVj(4)露
点温度の測定 水分量の測定には、ギャパシタンスセンサーを用いた静
電容量方式露点計とカールフィッシャー水分計を併用し
て1テった。
W = 100 (W3-Wa) / 'vVj (4) Measuring dew point temperature To measure moisture content, use a capacitance dew point meter using a gapacitance sensor and a Karl Fischer moisture meter together in one test. Ta.

実施例1 テ1・ラフルオ口エチレンと(一′F 2=(7 FC
’) C F 2C F (C F 3) O (C 
F2) z S (−)2Fとを共重合せしめて、イオ
ン交換容惜1.Imc川/3{召脂の共重合体Aを得た
Example 1 Te1 Lafluoroethylene and (1'F2=(7FC
') C F 2C F (C F 3) O (C
F2) z S (-)2F is copolymerized to improve the ion exchange capacity 1. Imc Kawa/3 {Sobashi copolymer A was obtained.

共重合体八を、溶融押しだし成型により、中空糸を押し
出した。該中空糸を20重?d%の苛性カリ水溶液でス
ルホン酸カリ塩に811水分解した後、1規定の塩酸に
浸漬し=.−Slhll型に変換し・、水洸した後、風
乾せしめ、内径220μ/外径340μの中空糸を得た
。かくして得た中空糸を内径2.0cm長さ20cmの
円筒内に350本組みこんだ中空糸型モジュールを製作
した。
Copolymer 8 was melt-extruded to extrude hollow fibers. 20 layers of hollow fibers? After 811 water decomposition into sulfonic acid potassium salt with d% caustic potassium aqueous solution, it was immersed in 1N hydrochloric acid. - Converted to Slhlll type, washed in water, and air-dried to obtain hollow fibers with an inner diameter of 220 μm and an outer diameter of 340 μm. A hollow fiber type module was manufactured by incorporating 350 of the thus obtained hollow fibers into a cylinder having an inner diameter of 2.0 cm and a length of 20 cm.

かくして得られた中空糸モジュールの中空糸の内側に相
対湿度50%の空気を13  7minで所定圧に圧縮
し、流通せしめた。中空糸内を通過した除湿空気を大気
圧に戻し、その20%を外筒側にパージし、中空糸の外
側に流通しながら、温度20゜Cにて除湿を行った。得
られた除湿空気の露点とモジュールに圧送した空気の圧
縮との結果を表1に示す。
Air with a relative humidity of 50% was compressed to a predetermined pressure for 137 minutes and allowed to flow inside the hollow fibers of the hollow fiber module thus obtained. The dehumidified air that had passed through the hollow fibers was returned to atmospheric pressure, 20% of which was purged into the outer cylinder, and dehumidified at a temperature of 20°C while flowing outside the hollow fibers. Table 1 shows the results of the dew point of the dehumidified air obtained and the compression of the air pumped into the module.

実施例2 10゜Cの条件下で、実施例1で得た中空糸モジュール
に露点−60゜Cの乾燥空気を中空糸の内側及び外側に
2日間流通せしめ、中空糸イオン交換膜を乾燥せしめた
。かくして得た中空糸モジュールを実施例lと全く同様
にして相対湿度50%の空気を除湿した。その結果を表
1に示す。
Example 2 Under conditions of 10°C, dry air with a dew point of -60°C was passed through the hollow fiber module obtained in Example 1 inside and outside the hollow fiber for 2 days to dry the hollow fiber ion exchange membrane. Ta. The thus obtained hollow fiber module was subjected to dehumidification of air at a relative humidity of 50% in exactly the same manner as in Example 1. The results are shown in Table 1.

比較例1 実施例2と同様の方法で100゜Cの条件下で、露点−
60’Cの乾燥空気を中空糸の内側、外側に流通せしめ
た。かくして得た中空糸モジュールを実施例2と全く同
様にして相対湿度50%の空気を除湿した。その結果を
表2に示す。
Comparative Example 1 In the same manner as in Example 2, the dew point -
Dry air at 60'C was circulated inside and outside the hollow fibers. The thus obtained hollow fiber module was subjected to dehumidification of air at a relative humidity of 50% in exactly the same manner as in Example 2. The results are shown in Table 2.

実施例3 実施例2と同様の操作で露点−60゜Cの乾燥空気で中
空糸の内側、外側に10℃で2日間流通せしめた中空糸
モシュールに対して7 kg/cJGに加圧した温度2
5、lO及び5℃の空気を中空糸の内側に供給したとき
の露点温度の結果について表3に示す。
Example 3 Dry air with a dew point of -60°C was circulated inside and outside the hollow fiber at 10°C for 2 days in the same manner as in Example 2, and the temperature was increased to 7 kg/cJG. 2
Table 3 shows the results of the dew point temperature when air at 5.5, 1 O and 5° C. was supplied inside the hollow fiber.

実施例4 実施例2、3て使用したモジュールを温度lO〜20’
C相対}兄度30〜50%の雰囲気中に7日間放置した
後、7kg/criGに加圧した温度lO゜C空気を中
空糸の内則に洪給したときの露点温度は−60℃を得た
Example 4 The module used in Examples 2 and 3 was heated to a temperature of lO~20'
C Relative} After being left in an atmosphere with an air temperature of 30 to 50% for 7 days, the dew point temperature when 10°C air pressurized to 7 kg/criG was fed into the internal structure of the hollow fiber was -60°C. Obtained.

また、該モジュールを7日間連続運転したが露点温度−
60゜Cを維持した。
In addition, although the module was operated continuously for 7 days, the dew point temperature was -
The temperature was maintained at 60°C.

Claims (5)

【特許請求の範囲】[Claims] (1)水蒸気選択性透過膜で区画された一方の側に水蒸
気を含有する気体を接触させ、もう一方の側にパージし
た乾燥気体を接触するか、または減圧し、水蒸気を選択
的に透過せしめ除湿する方法において、イオン交換容量
0.6〜2.5meq/g樹脂を有する含フッ素イオン
交換性重合体からなる膜を該重合体のガラス転移度以下
で乾燥処理した膜を水蒸気選択透過性膜として使用せし
めることを特徴とする除湿方法。
(1) A gas containing water vapor is brought into contact with one side of the membrane partitioned by a water vapor selective permeable membrane, and a purged dry gas is brought into contact with the other side or the pressure is reduced to selectively permeate water vapor. In the dehumidification method, a membrane made of a fluorine-containing ion-exchangeable polymer having an ion exchange capacity of 0.6 to 2.5 meq/g resin is dried at a temperature below the glass transition degree of the polymer, and a membrane is used as a water vapor selectively permeable membrane. A dehumidification method characterized in that the dehumidification method is used as a dehumidification method.
(2)ガラス転移温度以下の乾燥処理が、ガラス転移温
度より少なくとも25℃低い温度で行われ、乾燥前処理
膜の吸湿率の少なくとも30%以上低減せしめることを
特徴とする特許請求項(1)の除湿方法。
(2) Patent claim (1) characterized in that the drying treatment below the glass transition temperature is performed at a temperature at least 25° C. lower than the glass transition temperature, thereby reducing the moisture absorption rate of the pre-drying membrane by at least 30% or more. dehumidification method.
(3)乾燥処理が25℃以下にて行われる特許請求項(
1)または(2)の除湿方法。
(3) Patent claims in which the drying process is performed at 25°C or lower (
1) or (2) dehumidification method.
(4)水蒸気選択性透過膜が、一般式 ▲数式、化学式、表等があります▼ (但しmは0または1、nは2〜5)を有し、固定イオ
ン濃度1〜6ミリ当量/gH_2O、吸水率20〜25
0重量%、イオン交換容量1.05〜2.0ミリ当量/
乾燥樹脂の含フッ素イオン交換性重合体からなり、膜厚
0.1〜100μmであることを特徴とする特許請求項
(1)、(2)または、(3)の除湿方法。
(4) Water vapor selective permeable membrane has a general formula ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ (where m is 0 or 1, n is 2 to 5), and the fixed ion concentration is 1 to 6 milliequivalents/gH_2O , water absorption rate 20-25
0% by weight, ion exchange capacity 1.05-2.0 meq/
The dehumidification method according to claim 1, wherein the dry resin is made of a fluorine-containing ion-exchangeable polymer and has a film thickness of 0.1 to 100 μm.
(5)上記除湿が20℃以下で行われることを特徴とす
る特許請求項(1)、(2)、(3)または、(4)の
除湿方法。
(5) The dehumidification method according to claim (1), (2), (3) or (4), wherein the dehumidification is performed at a temperature of 20°C or lower.
JP1114062A 1989-05-09 1989-05-09 Dehumidifying method with steam permselective membrane utilized therefor Pending JPH02293032A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1114062A JPH02293032A (en) 1989-05-09 1989-05-09 Dehumidifying method with steam permselective membrane utilized therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1114062A JPH02293032A (en) 1989-05-09 1989-05-09 Dehumidifying method with steam permselective membrane utilized therefor

Publications (1)

Publication Number Publication Date
JPH02293032A true JPH02293032A (en) 1990-12-04

Family

ID=14628078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1114062A Pending JPH02293032A (en) 1989-05-09 1989-05-09 Dehumidifying method with steam permselective membrane utilized therefor

Country Status (1)

Country Link
JP (1) JPH02293032A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5620500A (en) * 1994-04-08 1997-04-15 Asahi Glass Company Ltd. Dehumidifying method
JP2002257388A (en) * 2001-02-28 2002-09-11 Nok Corp Steam permeation film and its using method
JP2009072701A (en) * 2007-09-20 2009-04-09 Agc Engineering Co Ltd Condensate remover

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5620500A (en) * 1994-04-08 1997-04-15 Asahi Glass Company Ltd. Dehumidifying method
JP2002257388A (en) * 2001-02-28 2002-09-11 Nok Corp Steam permeation film and its using method
JP2009072701A (en) * 2007-09-20 2009-04-09 Agc Engineering Co Ltd Condensate remover

Similar Documents

Publication Publication Date Title
US5620500A (en) Dehumidifying method
US4909810A (en) Vapor permselective membrane
US4875908A (en) Process for selectively separating gaseous mixtures containing water vapor
US4583996A (en) Apparatus for separating condensable gas
EP2226192B1 (en) Drying substances, preparation and use thereof
JP2010506365A (en) Humidifier membrane
JPH024419A (en) Gas dewatering
CN112351832B (en) Method for producing porous hollow fiber membrane for humidification
JP2006255502A (en) Manufacturing method of porous polyphenylsulfone resin hollow fiber membrane
KR100712393B1 (en) PROCESS FOR PRODUCTION OF POLYm-PHENYLENEISOPHTHAL- AMIDE POROUS HOLLOW FIBER MEMBRANE
Hwang et al. Preparation of sulfonated SEBS block copolymer membranes and their permeation properties
JP4100215B2 (en) Manufacturing method of water vapor permeable membrane
JPH02293032A (en) Dehumidifying method with steam permselective membrane utilized therefor
JPH082414B2 (en) Water vapor selective permeable membrane
JPH082413B2 (en) Dehumidifying film
JPH07111261B2 (en) Humidification method
Vasudevan et al. Composite cation exchangers
JPH02135118A (en) Production of low humidity air
JPS6216965B2 (en)
JPH01236917A (en) Multilayer dehumidifying film
JPS61229830A (en) Method for purifying acetylene
JPH01224027A (en) Steam permselective membrane
KR101170971B1 (en) Cation exchange composite membrane using fabric supports and method for manufacturing the same
JP3297095B2 (en) Dry gas production method
CN216977003U (en) Indoor dehumidification equipment adopting membrane dehumidification technology