JPH022921B2 - - Google Patents

Info

Publication number
JPH022921B2
JPH022921B2 JP59241087A JP24108784A JPH022921B2 JP H022921 B2 JPH022921 B2 JP H022921B2 JP 59241087 A JP59241087 A JP 59241087A JP 24108784 A JP24108784 A JP 24108784A JP H022921 B2 JPH022921 B2 JP H022921B2
Authority
JP
Japan
Prior art keywords
metallization
metal
ceramics
alloy powder
metallizing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59241087A
Other languages
Japanese (ja)
Other versions
JPS61119601A (en
Inventor
Masaru Sashiki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KAWASO TEXEL KK
Original Assignee
KAWASO TEXEL KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KAWASO TEXEL KK filed Critical KAWASO TEXEL KK
Priority to JP59241087A priority Critical patent/JPS61119601A/en
Publication of JPS61119601A publication Critical patent/JPS61119601A/en
Publication of JPH022921B2 publication Critical patent/JPH022921B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】 (A) 〔産業上の利用分野〕 本発明は、セラミツクスとセラミツクス、ある
いはセラミツクスと金属を接合するためのメタラ
イズ用合金粉末に係るもので、複雑な形状のセラ
ミツクスと接合金属の、超気密接合を比較的低温
で容易になすことのできる、メタライズ用合金粉
末に関するものである。
[Detailed Description of the Invention] (A) [Field of Industrial Application] The present invention relates to a metallizing alloy powder for joining ceramics to ceramics or ceramics to metal, and is suitable for joining ceramics with complex shapes. The present invention relates to an alloy powder for metallization that can easily form a super hermetic bond of metals at a relatively low temperature.

(B) 〔従来の技術〕 セラミツクスと金属を接合するには、従来、活
性金属法や高融点金属法等が実用化されており、
活性金属法は、Ti,Zr等の活性金属粉末と、こ
れと比較的低融点合金をつくるCu,Ni,Agとを
共晶組成になるようセラミツクスと被接合材料と
のの間に挿入し、真空中または不活性ガス中で、
一回の加熱操作により接合する方法であるが、共
晶組成となる混合粉末を、セラミツクスと接合金
属の間に挿入する際に、Ti,Zr等の活性金属は
酸化しやすく、その酸化物がメタライズ層に残留
してメタライズ強度を低下したり、粉末を完全に
均一に混合することは非常に困難であり、その為
のメタライズ層の不均一性に基づく、メタライズ
強度の低下や、気密性の低下を招く不都合があつ
た。また、セラミツクス管にフランジ等の丸物を
嵌合接合する場合、セラミツクス管と金属フラン
ジの接合面に、混合粉末を挿入して直接加熱メタ
ライズ接合した場合は、セラミツクス管と金属フ
ランジ間のクリアランスを、各部均一にすること
がほとんど不可能で、ろう材が片寄つたり、流出
して、接合部分にろう材が満遍無く充填されて、
高気密性を持たすことは不可能であつた。
(B) [Conventional technology] Conventionally, active metal methods and high melting point metal methods have been put into practical use to bond ceramics and metals.
The active metal method involves inserting active metal powders such as Ti and Zr, and Cu, Ni, and Ag, which form alloys with relatively low melting points, between the ceramic and the material to be joined to form a eutectic composition. in vacuum or inert gas,
This is a method of joining by a single heating operation, but when inserting the mixed powder with a eutectic composition between the ceramics and the joining metal, active metals such as Ti and Zr are easily oxidized, and their oxides are It remains in the metallized layer and reduces the metallized strength, and it is very difficult to mix the powder completely uniformly, resulting in a decrease in metallized strength and airtightness due to the non-uniformity of the metallized layer. There were some inconveniences that caused the decline. In addition, when fitting a round object such as a flange to a ceramic tube, if a mixed powder is inserted into the joint surface of the ceramic tube and the metal flange and the metallization bond is directly performed, the clearance between the ceramic tube and the metal flange must be adjusted. , it is almost impossible to make each part uniform, and the solder metal may be unevenly distributed or flow out, and the joint parts may be evenly filled with the filler metal.
It was impossible to achieve high airtightness.

従つて、セラミツクス管に金属フランジを接合
する方法としては、高融点金属法例えばMo−
Mn法が使用されているが、このMo−Mn法は
MoとMnの微粉末を有機バインダでペイント状
にしたものを、セラミツクスの表面に塗布して、
加湿水素または加湿フオーミングガス(H2
N2)中において、1300〜1700℃でメタライジン
グし、Niメツキを施した後、ろう材を使用して
接合金属とろう付けする方法であるが、この方法
は活性ガスである水素を使用する為、危険性を伴
ない製造設備や製造方法が容易でなく、また、非
常な高温処理を伴なう為、高温炉を必要とし、設
備費が高くなり、製造コストが高くなる。
Therefore, as a method for joining a metal flange to a ceramic tube, a high melting point metal method such as Mo-
The Mn method is used, but this Mo−Mn method
Fine powders of Mo and Mn are made into a paint form with an organic binder and applied to the surface of ceramics.
Humidified hydrogen or humidified forming gas ( H2 /
After metallizing at 1300 to 1700℃ in N 2 ) and applying Ni plating, the metal is brazed using a brazing filler metal, but this method uses hydrogen, which is an active gas. Therefore, the manufacturing equipment and manufacturing method are not easy due to the danger, and since it involves extremely high temperature treatment, a high temperature furnace is required, which increases the equipment cost and the manufacturing cost.

更に、セラミツクスも高温に良く耐えるものの
使用に限定される等、多くの制約があり、決して
使いがつての良いものではなかつた。
Furthermore, ceramics had many limitations such as being able to withstand high temperatures well, so they were not very useful.

また、活性金属法と同様に微粉末を混合して、
使用するが、均一な混合は困難であり、従つて均
一なメタライズには困難性を伴なつた。
Also, like the active metal method, by mixing fine powder,
However, it is difficult to mix uniformly, and therefore it is difficult to achieve uniform metallization.

(C) 〔発明が解決しようとする問題点〕 本発明は、上記したような活性金属法や高融点
金属法等、従来のろう材や接合法の欠点を解消
し、作業性に優れ、複雑な形状にもメタライズが
容易で、かつ酸化等の変質を防止し、常に均一な
成分を保持し、メタライズした場合も、常に均一
で強固なメタライズ強度を得ることのできるメタ
ライズろう材を提供するものである。
(C) [Problems to be solved by the invention] The present invention solves the drawbacks of conventional brazing metals and joining methods such as the active metal method and high melting point metal method as described above, and has excellent workability and is complex. To provide a metallized brazing material that can be easily metalized into any shape, prevents deterioration such as oxidation, always maintains uniform components, and can always obtain uniform and strong metallized strength even when metalized. It is.

(D) 〔問題点を解決するための手段〕 重量比でTi.15〜25%,Cu.60〜40%,Ag.25〜
35%からなる合金を、微粉にしてなるメタライズ
用合金粉末である。
(D) [Means to solve the problem] Ti.15-25%, Cu.60-40%, Ag.25-25% by weight
This is an alloy powder for metallization made by finely powdering an alloy consisting of 35%.

即ち、上記混合比率のTi,Cu,Agを真空中ま
たは不活性ガス中において合金とした後、粉砕し
て微粉末とするものである。
That is, Ti, Cu, and Ag having the above-mentioned mixing ratio are made into an alloy in a vacuum or an inert gas, and then pulverized to form a fine powder.

なお、微粉末の粒度は、作業性の面からは
10μm以下が望ましが、15μm程度までは作業面・
メタライス面・メタライズ強度面からは支障な
く、セラミツクスへの塗布方法に応じて使用しや
すい粒度のものを使用する。
In addition, the particle size of the fine powder is determined from the viewpoint of workability.
10μm or less is desirable, but up to about 15μm can be used on the work surface.
Use a particle size that does not cause any problems in terms of metallization surface and metallization strength and is easy to use depending on the method of application to ceramics.

次にメタライズ粉末の組成であるが、実験結果
からは第2図に示すように、50Cu−15Ti−35Ag
から40Cu−5Ti−35Agの間の組成が、メタライ
ズ温度・メタライズ強度面から望ましく、15Ti
以下になるとメタライズ強度が、引張強度で5
Kg/mm2を下回るようになるので、15Ti以上が望
ましい。
Next, regarding the composition of the metallized powder, the experimental results show that it is 50Cu−15Ti−35Ag, as shown in Figure 2.
A composition between 40Cu-5Ti-35Ag is desirable from the viewpoint of metallization temperature and metallization strength, and 15Ti
If the metallization strength is below, the tensile strength will be 5.
Since it becomes less than Kg/mm 2 , 15Ti or more is desirable.

逆に25Ti以上になると、第3図に示すように、
メタライズ温度が900℃を上回るようになり、使
用する炉の条件や、より高温に耐えるセラミツク
スを使用する要がある等、メタライズ条件がそれ
だけ厳しくなる。
On the other hand, when the temperature exceeds 25Ti, as shown in Figure 3,
As the metallization temperature exceeds 900°C, the conditions for metallization become stricter, such as the furnace conditions used and the need to use ceramics that can withstand higher temperatures.

次に、メタライズ用合金粉末によるメタライズ
法は、メタライズ合金粉末にバインダを加えてペ
ーストとし、セラミツクスに塗布後、真空中また
は不活性ガス中で加熱してメタライズし、そのメ
タライズ層に金属メツキを施した後、接合金属と
ろう付けするものである。
Next, in the metallization method using alloy powder for metallization, a binder is added to the metallization alloy powder to make a paste, and after applying it to ceramics, it is heated in a vacuum or in an inert gas to metallize, and the metallized layer is plated with metal. After that, it is brazed to the joining metal.

例えば、本発明の粒度10μmのメタライズ用合
金粉末を、メタクリレート、ニトロセルローズあ
るいはテレピン油等のいずれかの有機バインダー
を加えてペースト状とし、第1図に示すような
Al2O3等のセラミツクス管1の金属フランジ2の
接合個所に帯状にスクリーン印刷または刷毛塗り
等により塗布後、真空中または不活性ガス中で
900℃前後に加熱すれば、メタライズ用合金粉末
中のTiがセラミツクス中に拡散して強固なメタ
ライズ層3が形成される。
For example, the metallizing alloy powder of the present invention with a particle size of 10 μm is made into a paste by adding any organic binder such as methacrylate, nitrocellulose, or turpentine oil, and the powder is made into a paste as shown in Figure 1.
After applying a strip of Al 2 O 3 or the like to the joint of the metal flange 2 of the ceramic tube 1 by screen printing or brush painting, it is applied in a vacuum or in an inert gas.
When heated to around 900° C., Ti in the metallizing alloy powder diffuses into the ceramic, forming a strong metallized layer 3.

この場合メタライズ用合金粉末中のCuとAgは
メタライズ温度を引き下げるとともに、Agは濡
性をよくして各部均一で緻密なメタライズ層を形
成する。
In this case, Cu and Ag in the metallizing alloy powder lower the metallizing temperature, and Ag improves wettability to form a uniform and dense metallized layer in each part.

次にメタライズ層3にNi,Cu,Ag等の金属メ
ツキを施した後、金属フランジ2を第1図に示す
ように密に嵌合し、その嵌合部分に銀ろう4を介
在せしめて、真空中または不活性ガス中にて加熱
ろう付けすれば、銀ろう4はセラミツクス管1と
金属フランジ2の間に満遍無く拡散して、完全な
高気密で、かつ強固に接合される。
Next, after plating the metallized layer 3 with metal such as Ni, Cu, Ag, etc., the metal flange 2 is tightly fitted as shown in FIG. 1, and a silver solder 4 is interposed in the fitted part. By heating and brazing in a vacuum or an inert gas, the silver solder 4 is evenly diffused between the ceramic tube 1 and the metal flange 2, resulting in a completely airtight and strong bond.

(E) 〔発明の効果〕 従来の活性金属法では、活性金属のTiやZrと、
低融点合金を作るCuやNiあるいはAg等の粉末混
合が均一にならないためと、活性金属の酸化等に
よる変質や、メタライズ部に酸化物の残留等によ
り、各部均一な接合が困難で、接合製品にばらつ
きを生じたり、均一強固な接合ができなかつた
り、接合部に高気密性等を付与することが困難で
あつた。
(E) [Effect of the invention] In the conventional active metal method, active metals Ti and Zr and
It is difficult to uniformly join each part due to uneven mixing of powders such as Cu, Ni, or Ag that make up low melting point alloys, deterioration due to oxidation of active metals, and residual oxides in metallized parts. It has been difficult to provide a high airtightness to the joint, and it has been difficult to achieve uniform and strong bonding.

また、高融点金属法においても、例えばMo,
Mn等の混合において、同様に均一な混合が困難
という問題がある上、活性ガスを使用したり、高
温処理を必要とするため、製造が容易でなく、製
造設備費も高く、メタライズするセラミツクスも
高温によく耐えるものに限定される等の制約があ
つた。
In addition, in the refractory metal method, for example, Mo,
When mixing Mn, etc., there is a similar problem that it is difficult to mix uniformly, and since it uses active gas and requires high-temperature treatment, it is not easy to manufacture, the manufacturing equipment cost is high, and ceramics to be metalized are also difficult to manufacture. There were restrictions such as being limited to materials that could withstand high temperatures well.

本発明のメタライズ用合金粉末においては、
Ti,Cu,Agを真空中または不活性ガス中で、合
金化して混合の不均一性をなくし、かつ、合金化
したことにより、活性金属であるTiの酸化を防
止して、常に均一性を保持できるようにした。
In the metallizing alloy powder of the present invention,
Ti, Cu, and Ag are alloyed in vacuum or in an inert gas to eliminate non-uniformity of the mixture, and by alloying, the oxidation of Ti, an active metal, is prevented and uniformity is maintained at all times. I was able to keep it.

また、本発明のメタライズ用合金粉末の組成に
おいて、Tiを15−25%としたことによりメタラ
イズのときのセラミツクス内への拡散をよくし
て、メタライズ強度をあげるとともに、Cu60〜
40%、Ag25〜35%ととして、メタライズ温度を
この種のろう材としては低温の900℃前後に低く
し、更にAgにより、ろう材の濡性をよくしてメ
タライズ層の気密性を大きく向上するとともに、
メタライズを容易にし、メタライズのコスト低減
を可能にするものである。
In addition, in the composition of the alloy powder for metallization of the present invention, by setting Ti to 15-25%, it improves diffusion into the ceramics during metallization, increases metallization strength, and Cu60~25%.
40%, Ag 25-35%, the metallization temperature is lowered to around 900℃, which is the lowest temperature for this type of brazing material, and the Ag improves the wettability of the brazing material, greatly improving the airtightness of the metallized layer. At the same time,
This facilitates metallization and enables cost reduction of metallization.

更に本発明のメタライズ合金粉末の特徴は、前
記したようにメタライズ層がセラミツクスに強固
かつ均一に、しかも緻密で常に製品にばらつき無
く均一に形成されることである。
Further, the feature of the metallized alloy powder of the present invention is that, as described above, the metallized layer is formed firmly and uniformly on ceramics, and is dense and always uniform with no variation in products.

しかも、接合方法も高融点金属法の1300〜1700
℃に比較して大幅に低温の900℃前後でのメタラ
イジングを可能にし、水素等の活性ガスを使用し
ないので作業が安全であり、低温の為設備費も安
く経済的である。
Moreover, the joining method is 1300~1700 using high melting point metal method.
It enables metallizing at around 900°C, which is significantly lower than the average temperature of 900°C, and the process is safe because it does not use active gases such as hydrogen, and because of the low temperature, equipment costs are low and economical.

次に本発明による接合強度並びに気密度は、第
1図に示すように、例えばAl2O3のセラミツクス
管1のフランジ接合個所に、本発明のメタライズ
用合金粉末、例えば45Cu−20Ti−35Agの粒度
10μのものに、有機バインダーのメタクリレート
を加えてペースト状としたものを帯状に塗布後、
真空雰囲気中(5×10-5Torr)にて、約900℃で
約10分間加熱してメタライズ後、Niメツキを施
したうえ、第1図に示すような形状のKovalの金
属フランジ2を、真空雰囲気中で銀ろう付け接合
したものについて、メタライズ接合試験を行なつ
た結果は、 その接合部のヘリユームデテクタによるリーク
テストにおいて、1×10-8〔Torr・l/s〕以下
という高い気密度を示した。
Next, the joint strength and airtightness according to the present invention are determined by applying the metallizing alloy powder of the present invention, for example, 45Cu-20Ti-35Ag, to the flange joint of a ceramic tube 1 made of, for example, Al 2 O 3 , as shown in FIG. particle size
After applying a paste of 10μ and an organic binder, methacrylate, in a strip,
After metallizing by heating at about 900℃ for about 10 minutes in a vacuum atmosphere (5 × 10 -5 Torr), Ni plating was applied, and Koval's metal flange 2 with the shape shown in Fig. 1 was attached. The results of a metallized joint test on silver soldered joints in a vacuum atmosphere showed that a leak test using a helium detector at the joint showed a high leakage of 1×10 -8 [Torr・l/s] or less. The density was shown.

更に金属フランジ2を基板にろう付け固定し
て、セラミツクス管1に回転トルクを与え、ある
いはセラミツクス管1に曲トルクをあたえた場合
も、セラミツクス管1が破損するか、金属フラン
ジ2が変形するに至つても、接合部には何等の異
常をも生じなかつた。
Furthermore, if the metal flange 2 is brazed and fixed to the substrate and a rotating torque is applied to the ceramic tube 1 or a bending torque is applied to the ceramic tube 1, the ceramic tube 1 may be damaged or the metal flange 2 may be deformed. Even so, no abnormality occurred at the joint.

また、破損または変形寸前までのトルクを与え
た後のリークテストにおいても、接合部の気密は
1×10-8〔Torr・l/s〕以下の値を示し、何等
気密の低下は無く、高い気密性を保持した。
In addition, even in a leak test after applying torque to the verge of breakage or deformation, the airtightness of the joint showed a value of 1×10 -8 [Torr・l/s] or less, and there was no decrease in airtightness and a high Maintained airtightness.

以上のように本発明のメタライズ用合金粉末に
おいては、メタライズ用合金粉末は化学的に安定
で酸化し難く、均一に合金化されているため、各
部均一にメタライズされ、メタライズ温度も比較
的に低温であり、メタライズ作業も容易なうえ、
メタライズ層も強固で、緻密かつ均一である。
As described above, in the metallizing alloy powder of the present invention, the metallizing alloy powder is chemically stable, difficult to oxidize, and uniformly alloyed, so that all parts are uniformly metalized and the metallizing temperature is also relatively low. Therefore, the metallization work is easy, and
The metallized layer is also strong, dense, and uniform.

そして、セラミツクス管に金属フランジを接合
した場合、一番問題となる接合部の高気密性付与
について、製品間にばらつきなく、一様に容易に
付与できるという、非常に大きな効果を発揮する
等、活性金属法や高融点金属法の欠点を補完し、
その長所を併せ持たせたことを特徴とするメタラ
イズ用合金粉末である。
In addition, when joining a metal flange to a ceramic pipe, the most important problem is to provide high airtightness at the joint, which can be easily and uniformly applied without any variation between products. Compensating for the shortcomings of the active metal method and high melting point metal method,
This alloy powder for metallization is characterized by having both of these advantages.

(F) 〔他の実施例〕 本発明の実施例を、主としてセラミツクス管に
金属フランジを接合する場合について記したが、
板状のセラミツクスと金属板の接合は勿論、セラ
ミツクス同士の接合においても、それぞれのセラ
ミツクスをメタライズ用合金粉末でメタライズ後
ろう付けすれば容易に接合できる。
(F) [Other Embodiments] The embodiments of the present invention have mainly been described with respect to the case where a metal flange is joined to a ceramic pipe.
Not only can plate-shaped ceramics and metal plates be joined, but also ceramics can be easily joined by brazing after metalizing each ceramic with a metallizing alloy powder.

更にセラミツクス上に本メタライズ合金粉末を
所要形状に印刷等してメタライズすることによ
り、強固な導電膜や導電回路等を容易に設けるこ
ともできる。
Furthermore, by printing or metallizing the present metallized alloy powder into a desired shape on ceramics, a strong conductive film, conductive circuit, etc. can be easily provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の説明用一部断面例示図、第2
図はTiの混合比とメタライズ強度の関係曲線、
第3図はTiの混合比とメタライズ温度の関係曲
線。 1はセラミツクス管、2は金属フランジ、3は
メタライズ層、4は銀ろう。
FIG. 1 is a partially cross-sectional illustrative diagram for explaining the present invention, and FIG.
The figure shows the relationship curve between Ti mixing ratio and metallization strength.
Figure 3 shows the relationship curve between Ti mixing ratio and metallization temperature. 1 is a ceramic tube, 2 is a metal flange, 3 is a metallized layer, and 4 is a silver solder.

Claims (1)

【特許請求の範囲】[Claims] 1 重量比でTi.15〜25%,Cu.60〜40%,Ag.25
〜35%からなる合金を、微粉にしてなるメタライ
ズ用合金粉末。
1 Ti.15-25%, Cu.60-40%, Ag.25 by weight
An alloy powder for metallization made by finely powdering an alloy consisting of ~35%.
JP59241087A 1984-11-15 1984-11-15 Alloy powder for metallizing Granted JPS61119601A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59241087A JPS61119601A (en) 1984-11-15 1984-11-15 Alloy powder for metallizing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59241087A JPS61119601A (en) 1984-11-15 1984-11-15 Alloy powder for metallizing

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP4089289A Division JPH01258379A (en) 1989-02-21 1989-02-21 Metalizing connection method

Publications (2)

Publication Number Publication Date
JPS61119601A JPS61119601A (en) 1986-06-06
JPH022921B2 true JPH022921B2 (en) 1990-01-19

Family

ID=17069090

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59241087A Granted JPS61119601A (en) 1984-11-15 1984-11-15 Alloy powder for metallizing

Country Status (1)

Country Link
JP (1) JPS61119601A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2123905C (en) * 1992-10-21 1999-02-16 Youhei Watabe Metal powder composition for metallization and a metallized substrate
US7461772B2 (en) 2005-10-28 2008-12-09 General Electric Company Silver/aluminum/copper/titanium/nickel brazing alloys for brazing WC-Co to titanium alloys

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB735929A (en) *

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB735929A (en) *

Also Published As

Publication number Publication date
JPS61119601A (en) 1986-06-06

Similar Documents

Publication Publication Date Title
US4624404A (en) Method for bonding ceramics and metals
US3609856A (en) Brazing carbon bodies to other bodies of temperature resistant materials
JPH02208274A (en) Composition for metallizing ceramic surface, surface-metallizing method and surface-metallized product
JPH022921B2 (en)
JPS62270483A (en) Ceramic metallizing composition, metallization and metallized product
US3117003A (en) Titanium-zirconium containing brazing material
JPH0258754B2 (en)
JPH0226880A (en) Method for brazing graphite to metal
JP2000246482A (en) Brazing filler metal paste
JPS6310223B2 (en)
JPS63169348A (en) Amorphous alloy foil for jointing ceramics
JPH0240028B2 (en) SERAMITSUKUSUTOKINZOKU * DOSHUSERAMITSUKUSUDOSHIMATAHAISHUSERAMITSUKUSUKANNOSETSUGOHOHO
JPS6228067A (en) Joining method for ceramics
JPS6310226B2 (en)
JPH0215874A (en) Method and material for joining metal and ceramics
JPS61291940A (en) Alloy for metallizing
US4432821A (en) Composition and method for brazing graphite to graphite
JP3493586B2 (en) Ceramic metallization composition
JPS62179893A (en) Brazing filler metal for joining metal and ceramics
JPH07187839A (en) Nitride ceramics-metal joined body and its production
JPH0362674B2 (en)
JPH08169778A (en) Brazing filler alloy for joining alumina ceramics to aluminum alloy and joined body
JPH01270580A (en) Metallizing process
JPH04325469A (en) Method for joining ceramics
JPS62167274A (en) Metallizing composition for silicon carbide type ceramics surface, metallization and same product with metallized surface

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term