JPH02291505A - Light signal distribution system - Google Patents

Light signal distribution system

Info

Publication number
JPH02291505A
JPH02291505A JP1111819A JP11181989A JPH02291505A JP H02291505 A JPH02291505 A JP H02291505A JP 1111819 A JP1111819 A JP 1111819A JP 11181989 A JP11181989 A JP 11181989A JP H02291505 A JPH02291505 A JP H02291505A
Authority
JP
Japan
Prior art keywords
optical
optical fiber
optical signal
light signal
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1111819A
Other languages
Japanese (ja)
Inventor
Koichi Aoyama
青山 耕一
Shinichi Aoyanagi
慎一 青柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP1111819A priority Critical patent/JPH02291505A/en
Publication of JPH02291505A publication Critical patent/JPH02291505A/en
Pending legal-status Critical Current

Links

Landscapes

  • Light Guides In General And Applications Therefor (AREA)
  • Optical Communication System (AREA)

Abstract

PURPOSE:To increase the number of ports to which a signal can be distributed by branching a light signal which is propagated in an optical fiber, and propagating the branch light signal through a single-mode optical fiber which has >=0.6mum cutoff frequency and no polarization dependency and then amplifying the signal according to the intensity of incident exciting light by a rare earth element added optical fiber amplifier. CONSTITUTION:One branch light signal from an optical branching circuit 2 is propagated through optical fibers 4 and 10 which have >=0.6mum cutoff wavelength and no polarization dependency and made incident on the rare earth element added optical fiber amplifier 9. The exciting light is made incident on this amplifier 9, which converts part of the energy into the incident light signal and amplifies the light signal with a specific gain. The amplified light signal is transmitted to an optical receiver 3 at a branch destination or a trailing-stage optical fiber for transmission. Consequently, the light signal distribution system which can easily be inserted into the transmission line, compensates light loss generated by the optical branching circuit 2, and can increase the number of distribution ports is obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、光ファイバを用いる種々のシステムにおいて
、光ファイバ中を伝搬する光信号を分配する光信号分配
方式に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to an optical signal distribution system for distributing optical signals propagating through optical fibers in various systems using optical fibers.

(従来の技術) 第2図は、従来の光信号分配方式を採用した光ファイバ
伝送系の基本構成を示す図である。第2図において、1
は光送信器、2は複数のボートに配置され、光信号の一
部を分岐する光分岐回路、3は各ボートに配置された光
受信器、4は伝送路用光ファイバ、5は光分岐回路2で
分岐された一方の分岐光信号を光受信器3に入射させる
光ファイバである。
(Prior Art) FIG. 2 is a diagram showing the basic configuration of an optical fiber transmission system employing a conventional optical signal distribution system. In Figure 2, 1
is an optical transmitter, 2 is an optical branching circuit placed on multiple boats and branches a part of the optical signal, 3 is an optical receiver placed on each boat, 4 is an optical fiber for transmission line, and 5 is an optical branching circuit. This is an optical fiber that allows one of the branched optical signals branched by the circuit 2 to enter the optical receiver 3.

このような構成においては、光送信器1から送出された
光信号は、光ファイバ4を伝搬し、各ボートにおける光
分岐回路2を通過する毎に、その一部が分岐される。分
岐された光信号は、光ファイバ5を伝搬した後、光受信
器3にて受信される。
In such a configuration, the optical signal transmitted from the optical transmitter 1 propagates through the optical fiber 4, and a portion of the optical signal is branched each time it passes through the optical branching circuit 2 in each boat. After propagating through the optical fiber 5, the branched optical signal is received by the optical receiver 3.

このように、光分岐回路2を、伝送路用先ファイバ4の
途中に多段に接続することにより、光信号の分配を行な
うことができる。
In this way, by connecting the optical branch circuits 2 in multiple stages in the middle of the destination fiber 4 for transmission line, it is possible to distribute optical signals.

しかし、この構成では、光分岐回路2を通過する毎に、
主光信号電力より光受信器3の受光レベル相当分が失わ
れるために、分配できるボート数に著しい制限が生じる
However, in this configuration, each time the optical branch circuit 2 is passed through,
Since an amount equivalent to the light reception level of the optical receiver 3 is lost from the main optical signal power, the number of ports that can be distributed is significantly limited.

この問題を解決し、分配可能なポート数を増大させるた
めに、光分岐回路2で受けた光損失を補償する方法を挙
げることができる。この光分岐回路2による光損失を補
償する良好な手段は、光分岐回路2の分岐光出射側に光
増幅器を配置することである。この光増幅器の代表的な
ものとしては、半導体レーザを用いた光増幅器がある。
In order to solve this problem and increase the number of ports that can be distributed, there is a method of compensating for the optical loss suffered by the optical branch circuit 2. A good means for compensating for the optical loss caused by the optical branching circuit 2 is to arrange an optical amplifier on the branched light output side of the optical branching circuit 2. A typical example of this optical amplifier is an optical amplifier using a semiconductor laser.

(発明が解決しようとする課題) しかしながら、上記半導体レーザを用いた光増幅器は、 ■増幅特性が入射光の偏波状態に依存する、■温度変動
に対して特性の変動が大きい、という欠点を有している
(Problems to be Solved by the Invention) However, optical amplifiers using the above-mentioned semiconductor lasers have the disadvantages that: (1) the amplification characteristics depend on the polarization state of the incident light; and (2) the characteristics fluctuate greatly in response to temperature fluctuations. have.

特に、現在の光通信システムでは、主に伝送路に偏波依
存性のない1.3μm零分散単一モード光ファイバ(カ
ットオフ波長1.1μm以上)もしくは1.5μm零分
散単一モード光ファイバ(カットオフ波長0.8μm以
上)が用いられており、半導体レーザ型の光増幅器にお
いては、上記■の欠点のために、伝送路中に挿入するこ
とは困難であった。
In particular, in current optical communication systems, the transmission path is mainly a 1.3 μm zero-dispersion single mode optical fiber (cutoff wavelength 1.1 μm or more) or a 1.5 μm zero dispersion single mode optical fiber without polarization dependence. (cutoff wavelength of 0.8 μm or more), and in semiconductor laser type optical amplifiers, it has been difficult to insert them into the transmission line due to the drawback (2) above.

本発明は、かかる事情に鑑みてなされたものであり、そ
の目的は、伝送路中への挿入を容易に行なえ、しかも光
分岐回路にて受ける光損失を補償でき、分配数を増大さ
せることのできる光信号分配方式を提供することにある
The present invention has been made in view of the above circumstances, and its purpose is to easily insert it into a transmission line, compensate for optical loss suffered in an optical branch circuit, and increase the number of distributions. The purpose of this invention is to provide an optical signal distribution system that allows for efficient optical signal distribution.

(課題を解決するための手段) 上記目的を達成するため、請求項(1)では、光ファイ
バを伝搬する光信号を光分岐回路にて分岐し、前記光分
岐回路にて分岐された少なくとも一の分岐光信号を、カ
ットオフ波長が0.6μm以上の偏波依存性のない単一
モード光ファイバにて伝搬させた後、希土類元素添加光
ファイバ増幅器にて、入射される励起光強度に応じて増
幅するようにした。
(Means for Solving the Problem) In order to achieve the above object, in claim (1), an optical signal propagating through an optical fiber is branched by an optical branching circuit, and at least one branched by the optical branching circuit is provided. The branched optical signal is propagated through a polarization-independent single mode optical fiber with a cutoff wavelength of 0.6 μm or more, and then transmitted to a rare earth element-doped optical fiber amplifier according to the intensity of the incident pump light. and amplified it.

また、請求項(2)では、光信号と励起光とを波長多重
して光ファイバを伝搬させるようにした。
Moreover, in claim (2), the optical signal and the pumping light are wavelength-multiplexed and propagated through the optical fiber.

(作 用) 請求項(1)によれば、光ファイバを伝搬された光信号
は、光分岐回路に到達する。光分岐回路は、入射した光
信号を所定の分岐比をもって分岐する。
(Function) According to claim (1), the optical signal propagated through the optical fiber reaches the optical branch circuit. The optical branching circuit branches an incident optical signal at a predetermined branching ratio.

光分岐回路による一の分岐光信号は、カットオフ波長が
0.6μm以上の偏波依存性のない光ファイバを伝搬さ
れて、希土類元素添加光ファイバ増幅器に入射される。
One branched optical signal from the optical branching circuit is propagated through a polarization-independent optical fiber with a cutoff wavelength of 0.6 μm or more, and inputted into a rare earth element-doped optical fiber amplifier.

希土類元素添加光ファイバ増幅器には、励起光が入射さ
れて励起状態となり、これにより、エルルギ一の一部が
入射された光信号に変換され、光信号は所定の利得をも
って増幅される。
Pumping light is incident on the rare earth element-doped optical fiber amplifier to bring it into an excited state, whereby a part of the energy is converted into an incident optical signal, and the optical signal is amplified with a predetermined gain.

この増幅作用を受けた光信号は、分配先の光受信器ある
いは次段の伝送路用光ファイバに送出される。
The amplified optical signal is sent to a distribution destination optical receiver or to an optical fiber for the next stage transmission line.

また、請求項(2)によれば、光信号に励起光が波長多
重され、この波長多重光が光ファイバを伝搬され、光分
岐回路に到達する。光分岐回路は入射した光信号を所定
の分岐比をもって分岐する。
Further, according to claim (2), excitation light is wavelength-multiplexed on the optical signal, and this wavelength-multiplexed light is propagated through an optical fiber and reaches the optical branch circuit. The optical branching circuit branches the incident optical signal at a predetermined branching ratio.

光分岐回路による一の分岐波長多重光は、カットオフ波
長が0.6μm以上の偏波依存性のない光ファイバを伝
搬されて、希土類元素添加光ファイバ増幅器に入射され
る。希土類元素添加光ファイバ増幅器9は、入射した分
岐波長多重光のうち、励起光の入射に伴い励起状態とな
り、これにより、エルルギ一の一部が光信号に変換され
、光信号は所定の利得をもって増幅される。
One branched wavelength-multiplexed light from the optical branching circuit is propagated through a polarization-independent optical fiber with a cutoff wavelength of 0.6 μm or more, and is input to a rare earth element-doped optical fiber amplifier. The rare earth element-doped optical fiber amplifier 9 enters an excited state due to the input of the pumping light among the input branched wavelength multiplexed light, whereby a part of the energy is converted into an optical signal, and the optical signal is converted into an optical signal with a predetermined gain. amplified.

この増幅作用を受けた光信号は、分配先の先受信器ある
いは次段の伝送路用光ファイバに送出される。
The optical signal subjected to this amplification effect is sent to a destination receiver or an optical fiber for the next stage transmission line.

(実施例) 第1図は、本発明に係る光信号分配方式を採用した光フ
ァイバ伝送系の第1の実施例を示す構成図であって、基
本構成を示す第2図と同一構成部分は同一符号をもって
表す。即ち、1は光送信器で、例えば、発振波長1.5
5μmの半導体レーザーを備え、光信号を後記する伝送
路用光ファイバ4に送出する。2は光分岐回路で、複数
の各ポートに配置され、光信号の一部を分岐する。3は
各ボートに配置された光受信器、4は伝送路用光ファイ
バで、例えば偏波依存性がな<、シかもカットオフ波長
が0.6μm以上で波長1.5μm近傍に零分散波長を
有する単一モード光ファイバからなる。
(Embodiment) FIG. 1 is a block diagram showing a first embodiment of an optical fiber transmission system employing the optical signal distribution system according to the present invention, and the same components as in FIG. 2 showing the basic configuration are as follows. Represented by the same symbol. That is, 1 is an optical transmitter, for example, the oscillation wavelength is 1.5
It is equipped with a 5 μm semiconductor laser and sends an optical signal to a transmission line optical fiber 4, which will be described later. Reference numeral 2 denotes an optical branching circuit, which is arranged at each of a plurality of ports and branches a part of the optical signal. 3 is an optical receiver placed on each boat, and 4 is an optical fiber for a transmission line. It consists of a single mode optical fiber with a

5 (a,b)は光ファイバで、光分岐回路2で分岐さ
れ、後記する希土類元素添加光ファイバ9で増幅された
光信号を光受信器3に入射させる。
5 (a, b) are optical fibers, which are branched by an optical branching circuit 2 and amplified by a rare earth element-doped optical fiber 9 (to be described later), and input an optical signal into an optical receiver 3.

6は励起光源で、例えば発振波長1.48μmの半導体
レーザからなり、励起光を所定の強度で出射する。
Reference numeral 6 denotes an excitation light source, which is made of, for example, a semiconductor laser with an oscillation wavelength of 1.48 μm, and emits excitation light at a predetermined intensity.

7は励起先用光ファイバで、励起光源6から出射された
励起光が伝搬される。
Reference numeral 7 denotes a pumping destination optical fiber through which the pumping light emitted from the pumping light source 6 is propagated.

8は光結合器で、光分岐回路2にて分岐された一の分岐
光信号と励起光源6による励起光とを合波する。
Reference numeral 8 denotes an optical coupler, which combines one branched optical signal branched by the optical branching circuit 2 and the pumping light from the pumping light source 6.

9は希土類元素添加光ファイバ増幅器(以下、光ファイ
バ増幅器と0う)で、光ファイバに希土類元素、例えば
エルビウム(Er3”)を所定の濃度で添加して構成さ
れている。
Reference numeral 9 denotes a rare earth element-doped optical fiber amplifier (hereinafter referred to as an optical fiber amplifier), which is constructed by doping an optical fiber with a rare earth element, for example, erbium (Er3'') at a predetermined concentration.

この光ファイバ増幅器9は、入力端が光結合器8の合波
光出射側に後記する光ファイバ10bを介して接続され
、出力端が光ファイバ5aの一端に接続されており、励
起光が所定の強度で入射されていると、光信号を所定の
利得(〜2 5 d B)をもって増幅する。その増幅
特性は、入射光の偏波状態に依存せず、かつ、温度変動
に対して特性が安定している。また、その長さは100
m以下(数m〜数十m)に設定される。
This optical fiber amplifier 9 has an input end connected to the multiplexed light output side of the optical coupler 8 via an optical fiber 10b, which will be described later, and an output end connected to one end of an optical fiber 5a, so that the pumping light is When the optical signal is incident at a high intensity, the optical signal is amplified with a predetermined gain (~25 dB). Its amplification characteristics do not depend on the polarization state of incident light and are stable against temperature fluctuations. Also, its length is 100
m or less (several meters to several tens of meters).

なお、利得のある波長或は、光ファイバに添加した希土
類元素がEr3+の場合、光信号の波長は1.53〜1
.56μm(励起光の波長は、〜1.48μm)に制限
される(文献: K.Hagla+oto.  et.
  al.   “A  212  km  Non−
repeated  Transmiss1on  E
xperiment  at  l.8Gb/s  u
sing  LD  PumpedEr”−Doped
 Fiber A+*pllr1ers In an 
IM/Dlrect一Detectlon Syste
m  .OFC’  89.Post Deadlln
e Paper. Houston. Feb.198
9、参照)。
In addition, when the wavelength has a gain or the rare earth element added to the optical fiber is Er3+, the wavelength of the optical signal is 1.53 to 1.
.. 56 μm (the wavelength of the excitation light is ~1.48 μm) (Reference: K. Hagla+oto. et.
al. “A 212 km Non-
repeated Transmission1onE
experiment at l. 8Gb/s u
sing LD PumpedEr”-Doped
Fiber A+*pllr1ers In an
IM/Dlrect-Detectlon System
m. OFC' 89. Post Deadlln
e Paper. Houston. Feb. 198
9, see).

10 (a,b)は光ファイバで、前記伝送路用光ファ
イバ4と同様に、例えば、偏波依存性がな<、シかもカ
ットオフ波長が0.8μm以上で波長1.5μm近傍に
零分散波長を有する単一モード光ファイバからなる。光
ファイバ10aは、光分岐回路2の一方の分岐光信号出
射側と光結合器8の一の入射端とを、光ファイバ10b
は、光結合器8の合波光出射側と光ファイバ増幅器9の
入力側とをそれぞれ接続している。
10 (a, b) are optical fibers, which, like the transmission line optical fiber 4, have, for example, no polarization dependence, and a cutoff wavelength of 0.8 μm or more and a zero near the wavelength of 1.5 μm. It consists of a single mode optical fiber with dispersive wavelengths. The optical fiber 10a connects one branch optical signal output side of the optical branch circuit 2 and one input end of the optical coupler 8 to the optical fiber 10b.
connect the multiplexed light output side of the optical coupler 8 and the input side of the optical fiber amplifier 9, respectively.

11は励起光除去用光フィルタで、光ファイバ5aと5
b間に挿入されており、光ファイバ増幅器9の出力光の
うち、光信号は透過させ、励起光は遮断する。
11 is an optical filter for removing excitation light, which connects optical fibers 5a and 5.
b, and among the output light of the optical fiber amplifier 9, the optical signal is transmitted and the pumping light is blocked.

次に、上記構成による動作を説明する。Next, the operation of the above configuration will be explained.

光送信器1から送出された光信号は、光ファイバ4を伝
搬され、光分岐回路2に到達する。光分岐回路2は入射
した光信号を所定の分岐比をもって2分岐し、次段の光
ファイバ4及び光ファイバ10aにそれぞれ出射する。
The optical signal sent out from the optical transmitter 1 is propagated through the optical fiber 4 and reaches the optical branch circuit 2 . The optical branching circuit 2 branches the incident optical signal into two at a predetermined branching ratio, and outputs them to the next stage optical fiber 4 and optical fiber 10a, respectively.

光ファイバ10aに出射された分岐光信号は、光ファイ
バ10aを伝搬されて光結合器8の一の入射端に入射さ
れる。また、光結合器8の他の入射端には、励起光源6
による励起光が光ファイバ7を介して入射され、分岐光
信号と励起光とが合波される。次いで、この合波光は、
光ファイバ10bを介して光ファイバ増幅器9に入射さ
れる。
The branched optical signal outputted to the optical fiber 10a is propagated through the optical fiber 10a and inputted into one input end of the optical coupler 8. Further, an excitation light source 6 is provided at the other input end of the optical coupler 8.
The excitation light is input through the optical fiber 7, and the branched optical signal and the excitation light are combined. Next, this combined light is
The light is input to the optical fiber amplifier 9 via the optical fiber 10b.

光ファイバ増幅器9は、入射された合波光のうち、励起
光の入射に伴い励起状態となる。これにより、エルルギ
一の一部が光信号に変換され、光信号は所定の利得をも
って増幅される。
The optical fiber amplifier 9 enters an excited state as the pumping light of the multiplexed light enters the optical fiber amplifier 9 . As a result, a part of the energy is converted into an optical signal, and the optical signal is amplified with a predetermined gain.

次に、増幅作用を受けた光信号並びに励起光は、光ファ
イバ5aを介して光フィルタ11に入射される。光フィ
ルタ11は、光信号はそのまま透過され、励起光は遮断
する。光フィルタ11を透過した光信号は、光ファイバ
5bを介して光受信器3にて受信される。
Next, the amplified optical signal and excitation light are input to the optical filter 11 via the optical fiber 5a. The optical filter 11 allows the optical signal to pass through as it is and blocks the excitation light. The optical signal transmitted through the optical filter 11 is received by the optical receiver 3 via the optical fiber 5b.

一方、光ファイバ4に出射された主光信号は、光ファイ
バ4を伝搬された後、次段の光分岐回路2に入射され、
上記したと同様の作用を受ける。
On the other hand, the main optical signal emitted to the optical fiber 4 is propagated through the optical fiber 4 and then input to the next stage optical branch circuit 2.
It receives the same effect as described above.

このようにして、各ボートにおいて光信号の分配が行な
われる。
In this way, optical signals are distributed in each boat.

以上のように、本第1の実施例によれば、先分岐回路2
にて分岐された光信号を、偏波依存性のない光ファイバ
10a,10bを伝搬させ、かつ、分岐光信号に励起光
を合波させた後、この合波光を励起光の入射により励起
状態となる希土類元素添加光ファイバ増幅器9に入射さ
せて、分岐光信号を増幅してから光受信器3にて受信す
るようにしたので、光分岐回路2による光分岐損失を補
償することができる。従って、光分岐回路2の分岐比を
適切に設定(光ファイバ4側に多くの電力を分岐)する
ことにより、主光信号の分岐損失の小さい光ファイバ伝
送系を実現できる。その結果、分配可能なボート数の増
大を図ることができる。
As described above, according to the first embodiment, the destination branch circuit 2
After propagating the branched optical signal through optical fibers 10a and 10b without polarization dependence and combining the branched optical signal with excitation light, the combined light is brought into an excited state by the incidence of the excitation light. Since the branched optical signal is made incident on the rare earth element-doped optical fiber amplifier 9 and amplified before being received by the optical receiver 3, the optical branching loss caused by the optical branching circuit 2 can be compensated. Therefore, by appropriately setting the branching ratio of the optical branching circuit 2 (branching a large amount of power to the optical fiber 4 side), an optical fiber transmission system with small branching loss of the main optical signal can be realized. As a result, it is possible to increase the number of boats that can be distributed.

なお、光ファイバ増幅器9の出力側の光ファイバ5a,
5bは、増幅された光信号を光受信器3に導くものであ
り、入力側の光ファイバ10a,10bと構造パラメー
タが異なったり、偏波依存性を有するものであっても良
い。
Note that the optical fibers 5a on the output side of the optical fiber amplifier 9,
5b guides the amplified optical signal to the optical receiver 3, and may have different structural parameters from the optical fibers 10a and 10b on the input side, or may have polarization dependence.

第3図は、本発明に係る光信号分配方式を採用した光フ
ァイバ伝送系の第2の実施例を示す構成図である。本第
2の実施例と前記第1の実施例の異なる点は、第1の実
施例では、光ファイバ増幅器9を光信号の分配側に配置
したのに対して、本第2の実施例においては、主光信号
の伝送路用光ファイバ4に挿入したことにある。また、
これに伴い、前記第1の実施例と同様に、光ファイバ増
幅器9の入力側には、光結合器8及び励起光源6と光フ
ァイバ7を配置し、出力側には光信号のみを透過させる
励起光除去用光フィルタ11を配置している。
FIG. 3 is a block diagram showing a second embodiment of an optical fiber transmission system employing the optical signal distribution system according to the present invention. The difference between the second embodiment and the first embodiment is that in the first embodiment, the optical fiber amplifier 9 is placed on the optical signal distribution side, whereas in the second embodiment, the optical fiber amplifier 9 is disposed on the optical signal distribution side. This is because the main optical signal is inserted into the optical fiber 4 for transmission line. Also,
Accordingly, as in the first embodiment, an optical coupler 8, a pumping light source 6, and an optical fiber 7 are arranged on the input side of the optical fiber amplifier 9, and only optical signals are transmitted on the output side. An optical filter 11 for removing excitation light is arranged.

本第2の実施例において、光分岐回路2は光信号の分配
側に多くの電力が分岐されるように設計される。このよ
うな構成においても、前記第1の実施例と同様の効果を
得ることができる。
In the second embodiment, the optical branching circuit 2 is designed so that a large amount of power is branched to the optical signal distribution side. Even in such a configuration, the same effects as in the first embodiment can be obtained.

また、前記第1及び第2の実施例において、励起光源を
、光ファイバ増幅器9の数に対応した数だけ配置するこ
となく、別の場所に配置し、光信号と波長多重して伝送
させてもよい。この場合、励起光源6、光結合器8並び
に励起光用光ファイバ7の数を削減できる利点がある。
Furthermore, in the first and second embodiments, the pumping light sources are not arranged in a number corresponding to the number of optical fiber amplifiers 9, but are arranged in different locations, and are wavelength-multiplexed with the optical signal and transmitted. Good too. In this case, there is an advantage that the number of excitation light sources 6, optical couplers 8, and excitation light optical fibers 7 can be reduced.

但し、励起光が伝送路用光ファイバ4や光分岐回路2並
びに光ファイバ増幅器9にて光損失を受けるため、光フ
ァイバ増幅器9の数に制約を受ける。
However, the number of optical fiber amplifiers 9 is limited because the pumping light undergoes optical loss in the transmission line optical fiber 4, the optical branch circuit 2, and the optical fiber amplifier 9.

(発明の効果) 以上説明したように、請求項(1)によれば、光ファイ
バを伝搬する光信号を光分岐回路にて分岐し、前記光分
岐回路にて分岐された少なくとも一の分岐光信号を、カ
ットオフ波長が0.6μm以上の偏波依存性のない単一
モード光ファイバにて伝搬させた後、希土類元素添加光
ファイバ増幅器にて、入射される励起光強度に応じて増
幅するようにし、また、請求項(2)では、光信号と励
起光とを波長多重して光ファイバを伝搬させるようにし
たので、光分岐回路で生じた光損失を補償できる。
(Effects of the Invention) As explained above, according to claim (1), an optical signal propagating through an optical fiber is branched by an optical branching circuit, and at least one branched light branched by the optical branching circuit is After the signal is propagated through a polarization-independent single mode optical fiber with a cutoff wavelength of 0.6 μm or more, it is amplified using a rare earth element-doped optical fiber amplifier according to the intensity of the incident pumping light. Furthermore, in claim (2), since the optical signal and the pumping light are wavelength-multiplexed and propagated through the optical fiber, it is possible to compensate for optical loss occurring in the optical branch circuit.

従って、分配可能なボート数の増大を図れる光信号分配
方式を提供できる利点がある。
Therefore, it is advantageous to provide an optical signal distribution system that can increase the number of ports that can be distributed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る光信号分配方式を採用した光ファ
イバ伝送系の第1の実施例を示す構成図、第2図は従来
の光信号分配方式を採用した光ファイバ伝送系の基本構
成を示す図、第3図は本発明に係る光信号分配方式を採
用した光ファイバ伝送系の第2の実施例を示す構成図で
ある。 図中、1・・・光送信器、2・・・光分岐回路、3・・
・光受信器、4・・・偏波依存性のない伝送路用光ファ
イバ、6・・・励起光源、7・・・励起光用光ファイバ
、8・・・光結合器、9・・・希土類元素添加光ファイ
バ増幅器、10・・・偏波依存性のない単一モード光フ
ァイバ、11・・・励起光除去用光フィルタ。 特許出願人  日本電信電話株式会社
Fig. 1 is a configuration diagram showing a first embodiment of an optical fiber transmission system using the optical signal distribution system according to the present invention, and Fig. 2 is a basic configuration of an optical fiber transmission system using the conventional optical signal distribution system. FIG. 3 is a configuration diagram showing a second embodiment of an optical fiber transmission system employing the optical signal distribution system according to the present invention. In the figure, 1... optical transmitter, 2... optical branch circuit, 3...
- Optical receiver, 4... Optical fiber for transmission line without polarization dependence, 6... Pumping light source, 7... Optical fiber for pumping light, 8... Optical coupler, 9... Rare earth element-doped optical fiber amplifier, 10... Single mode optical fiber without polarization dependence, 11... Optical filter for removing excitation light. Patent applicant Nippon Telegraph and Telephone Corporation

Claims (2)

【特許請求の範囲】[Claims] (1)光ファイバを伝搬する光信号を光分岐回路にて分
岐し、 前記光分岐回路にて分岐された少なくとも一の分岐光信
号を、カットオフ波長が0.6μm以上の偏波依存性の
ない単一モード光ファイバにて伝搬させた後、 希土類元素添加光ファイバ増幅器にて、入射される励起
光強度に応じて増幅するようにしたことを特徴とする光
信号分配方式。
(1) An optical signal propagating through an optical fiber is branched by an optical branching circuit, and at least one branched optical signal branched by the optical branching circuit is divided into polarization-dependent polarization-dependent signals having a cutoff wavelength of 0.6 μm or more. An optical signal distribution method characterized in that the optical signal is propagated through a single-mode optical fiber without any excitation light, and then amplified in accordance with the intensity of the incident excitation light using a rare-earth element-doped optical fiber amplifier.
(2)光信号と励起光とを波長多重して光ファイバを伝
搬させるようにした請求項(1)記載の光信号分配方式
(2) The optical signal distribution system according to claim (1), wherein the optical signal and the pump light are wavelength-multiplexed and propagated through an optical fiber.
JP1111819A 1989-04-28 1989-04-28 Light signal distribution system Pending JPH02291505A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1111819A JPH02291505A (en) 1989-04-28 1989-04-28 Light signal distribution system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1111819A JPH02291505A (en) 1989-04-28 1989-04-28 Light signal distribution system

Publications (1)

Publication Number Publication Date
JPH02291505A true JPH02291505A (en) 1990-12-03

Family

ID=14570956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1111819A Pending JPH02291505A (en) 1989-04-28 1989-04-28 Light signal distribution system

Country Status (1)

Country Link
JP (1) JPH02291505A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06292038A (en) * 1992-05-08 1994-10-18 Matsushita Electric Ind Co Ltd Video image distributer in passenger moving

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06292038A (en) * 1992-05-08 1994-10-18 Matsushita Electric Ind Co Ltd Video image distributer in passenger moving

Similar Documents

Publication Publication Date Title
US5506723A (en) Multistage fiber-optic amplifier
JP3025210B2 (en) Apparatus including optical fiber Raman amplifier
US6178038B1 (en) Optical amplifier having an improved noise figure
US5563733A (en) Optical fiber amplifier and optical fiber transmission system
US5083874A (en) Optical repeater and optical network using the same
US5535050A (en) Optical amplifier and optical communication system with optical amplifier using pumping light beam
JP2000151507A (en) Optical transmission system
US7046428B2 (en) Raman amplifier
US6417961B1 (en) Optical amplifiers with dispersion compensation
EP0660468B1 (en) Bidirectional optical amplifier
US6011645A (en) EDFA for amplifying transmitted light by dividing an exciting pump power in two directions
US7133195B2 (en) Gain-clamped fiber amplifier
JP2002062552A (en) Raman amplifier and optical communication system
JPH09197452A (en) Optical fiber communication system
US6934078B2 (en) Dispersion-compensated erbium-doped fiber amplifier
JPH0545682A (en) Optical amplifier
US7079313B2 (en) Optical amplifying apparatus which routes pumping light to a raman amplification medium and a rare-earth-doped optical amplification medium
KR100396510B1 (en) Dispersion-compensated optical fiber amplifier
JP3129368B2 (en) Optical signal transmission method and relay amplifier
JP2713396B2 (en) Optical fiber amplifier and optical fiber transmission system
US20020122244A1 (en) Temperature-stabilized optical amplifier and method for temperature-stabilizing an optical amplifier
JP3052598B2 (en) Bidirectional repeater with optical amplification
JP2714611B2 (en) Optical repeater and optical transmission network using the same
JPH02291505A (en) Light signal distribution system
JP2862145B2 (en) Bidirectional optical amplifier