JPH02291493A - Self-cooling sealing liquid supply device for vacuum pump - Google Patents

Self-cooling sealing liquid supply device for vacuum pump

Info

Publication number
JPH02291493A
JPH02291493A JP1112018A JP11201889A JPH02291493A JP H02291493 A JPH02291493 A JP H02291493A JP 1112018 A JP1112018 A JP 1112018A JP 11201889 A JP11201889 A JP 11201889A JP H02291493 A JPH02291493 A JP H02291493A
Authority
JP
Japan
Prior art keywords
vacuum pump
tube passage
liquid
supply device
hollow body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1112018A
Other languages
Japanese (ja)
Other versions
JP2644039B2 (en
Inventor
Masashi Yoshimura
吉村 将士
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TAIKO KIKAI KOGYO KK
Original Assignee
TAIKO KIKAI KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TAIKO KIKAI KOGYO KK filed Critical TAIKO KIKAI KOGYO KK
Priority to JP1112018A priority Critical patent/JP2644039B2/en
Publication of JPH02291493A publication Critical patent/JPH02291493A/en
Application granted granted Critical
Publication of JP2644039B2 publication Critical patent/JP2644039B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0007Injection of a fluid in the working chamber for sealing, cooling and lubricating

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

PURPOSE:To simplify a structure of a self-cooling sealing liquid supply device for vacuum pump that is mounted on an inlet port of the vacuum pump by injecting a liquid impregnated from an impregnation port into a hollow body provided on an inner tube passage of a double tube passage, from nozzle holes on the hollow body. CONSTITUTION:In a screw rotor type vacuum pump 1, by means of the rotation of a pair of screw rotors 4, 5, gas is taken in from an inlet port 2 and discharged from an outlet port. In order to cool the vacuum pump 1, a self-cooling sealing liquid supply device is mounted on the inlet port 2. The self-cooling sealing liquid supply device is formed in a double tube passage structure of an inner tube passage 7 that can be communicated with the inlet port 2, and of an outer tube passage 8 both ends of which are sealed, and the vicinity of an outlet hole 12a of a tube passage 12 communicating with an outer tube passage 8, provided on the inner tube passage 7, is covered with a hollow body 13 for liquid reservation. Liquid such as water impregnated from an impregnation port 11 is injected from nozzle holes 13a on the hollow body 13, in the inner tube passage 7, whereby the temperature of the environment is reduced due to the heat of vaporization.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は吸入側から水等の封入液を供給し、シ−リング
及び冷却効果を持たせた真空ポンプに使用される封入液
供給装置に関するものである。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a sealed liquid supply device used in a vacuum pump that supplies a sealed liquid such as water from the suction side and has a sealing and cooling effect. It is something.

〔従来の技術〕[Conventional technology]

真空ポンプは圧縮機と原理的には同じであり、吸入した
ガスを圧縮するためにかなりの高温になる。そのため、
吸引するガスとともに冷却用の水等の液体を供給するタ
イプのものが知られている。
A vacuum pump is basically the same as a compressor, and in order to compress the gas it sucks in, it reaches a fairly high temperature. Therefore,
A type that supplies liquid such as water for cooling along with the gas to be sucked is known.

その場合、この液体は冷却と同時にロータとケーシング
間等の密閉すなわちシーリングを向上させるためにも役
立てられている。
In this case, this liquid is used not only for cooling but also for improving the sealing between the rotor and the casing.

しかるに、このような液封式真空ポンプは、封入された
水温によってポンプの性能が大きく変化する。これは水
温によって水の飽和蒸気圧が変わり、,ポンプ内の圧力
が冷却用水の水温に対応した飽和蒸気圧以下には下がら
ないためである。たとえば水温が100゜Cであれば、
飽和蒸気圧は760mn+Hg(以下rmmHg」をr
Torr,4で表す。)であり、水温が20゜Cであれ
ば、飽和蒸気圧は17 Torrになる。第3図は、真
空ポンプ内の封入水の温度によって、真空ポンプの到達
し得る真空度、すなわち到達真空度が変化する様子を示
した線図である。これによれば、冷却用の水温が15゜
Cであれば到達真空度は10〜15Torrに達するが
、30゜Cでは2 5〜3 0Torr, 4 o”c
では35Torr〜40Torrとなって、到達真空度
が封入される水の温度に大きく影響を受けることがわか
る。
However, the performance of such liquid-ring vacuum pumps varies greatly depending on the temperature of the water sealed in the pump. This is because the saturated vapor pressure of water changes depending on the water temperature, and the pressure inside the pump does not fall below the saturated vapor pressure corresponding to the temperature of the cooling water. For example, if the water temperature is 100°C,
The saturated vapor pressure is 760 mn+Hg (rmmHg)
It is expressed as Torr,4. ), and if the water temperature is 20°C, the saturated vapor pressure will be 17 Torr. FIG. 3 is a diagram showing how the degree of vacuum that the vacuum pump can reach, that is, the ultimate degree of vacuum, changes depending on the temperature of the water sealed in the vacuum pump. According to this, if the cooling water temperature is 15°C, the ultimate vacuum will reach 10 to 15 Torr, but at 30°C, it will reach 25 to 30 Torr, 4 o"c
It becomes 35 Torr to 40 Torr, and it can be seen that the ultimate vacuum degree is greatly affected by the temperature of the water sealed.

実際に真空ポンプを使用する場合、封入水用の低温の水
を豊富に使用できれば問題はないが、水の確保が難しい
場合がある。また封入水には真空ポンプを通過するガス
に含まれた物質が溶け込むので、その物質によっては公
害の原因となり、封入水を放流出来ない場合もある。そ
の場合は真空ポンプの吐出側でガスから分離した水を再
利用するが、当然この封入水の温度は、真空ポンプの圧
縮作用を受けて上昇しており、前述の飽和蒸気圧が上昇
している。したがって、真空ポンプは高真空に到達でき
ず、性能がダウンしてしまう。
When actually using a vacuum pump, there is no problem as long as you can use plenty of low-temperature water for the sealed water, but it may be difficult to secure water. Furthermore, since substances contained in the gas passing through the vacuum pump dissolve in the sealed water, some of these substances may cause pollution, and the sealed water may not be able to be discharged. In that case, the water separated from the gas on the discharge side of the vacuum pump is reused, but of course the temperature of this sealed water rises due to the compression action of the vacuum pump, and the saturated vapor pressure mentioned above rises. There is. Therefore, the vacuum pump cannot reach a high vacuum and its performance decreases.

この問題を解決するものとして、第4図に示すシステム
が知られている。このシステムにおいては、まず、真空
ポンプaから吐出された水等の混大したガスを、消音セ
パレー夕タンクbでガスと水に分離する。次に、分離さ
れた水を熱交換機Cで冷却する。dは熱交換機Cを冷却
するチラーである。こうして冷却された水を再び真空ボ
ンプaの吸入口から供給し、循環して使用することとし
ている。
A system shown in FIG. 4 is known as a solution to this problem. In this system, first, a mixed gas such as water discharged from a vacuum pump a is separated into gas and water in a sound-deadening separator tank b. Next, the separated water is cooled by heat exchanger C. d is a chiller that cools the heat exchanger C. The water cooled in this manner is supplied again from the suction port of the vacuum pump a, and is circulated for use.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

液封式真空ポンプは、封入水温度が15゜C以下であれ
ば、乾式真空ポンプに比べて優れたものとなる。しかし
ながら、上記第4図のシステムのように装置が大掛かり
となり、高価なものとなってしまうという問題があった
A liquid ring vacuum pump is superior to a dry vacuum pump if the temperature of the sealed water is 15°C or less. However, like the system shown in FIG. 4 above, there is a problem in that the apparatus is large-scale and expensive.

本発明は上記の事実に鑑みてなされたもので、簡単な構
成で低温の封入液を確保できる真空ポンプ用の自冷式封
入液供給装置を提供することを目的としている。
The present invention has been made in view of the above-mentioned facts, and an object of the present invention is to provide a self-cooled filled liquid supply device for a vacuum pump that can secure a low-temperature filled liquid with a simple configuration.

〔課題を解決するための手段〕[Means to solve the problem]

上記の目的を達成するために本発明は、真空ポンプの吸
入口と連通し得る内管路と、両端が閉止された外管路と
からなる二重管路の外壁に、前記外管路に連通ずる封入
液用の注入口を形成し、前記内管路内に前記外管路と連
通ずる液貯留用の中空体を設置し、該中空体に封入液噴
出用のノズル孔を穿設した構成としている。
In order to achieve the above object, the present invention provides a method for connecting the external pipe line to the outer wall of a double pipe line consisting of an inner pipe line that can communicate with the suction port of a vacuum pump and an outer pipe line that is closed at both ends. An injection port for the sealed liquid was formed in the inner pipe, and a hollow body for storing the liquid communicating with the outer pipe was installed in the inner pipe, and a nozzle hole for spouting the filled liquid was bored in the hollow body. It is structured as follows.

または、真空ポンプの吸入口と連通し得る管路の外壁に
封入液用の注入口を形成し、該注入口から管路内に細径
のチューブを曲折して配設し、該チューブに封入液噴出
用のノズル孔を穿設した構成としている。
Alternatively, an inlet for the sealed liquid is formed on the outer wall of the conduit that can communicate with the suction port of the vacuum pump, a small diameter tube is bent and arranged from the inlet into the conduit, and the sealed liquid is placed in the tube. It is constructed with a nozzle hole for ejecting liquid.

〔作 用〕[For production]

注入口から二重管路の外管路に注入された液体は外管路
を通って内管路内の中空体内に入り、中空体に穿設され
たノズル孔から内管路内に噴出する。そして噴出した液
体は吸入口の真空度に応じて飽和するまで蒸発する。こ
の蒸発によって周囲から気化熱を奪い、それによって液
体自身が冷却され、冷却用液体として適当な温度に下が
り、真空ポンプ内に送りこまれる。
The liquid injected from the injection port into the outer pipe of the double pipe passes through the outer pipe and enters the hollow body in the inner pipe, and is ejected into the inner pipe from a nozzle hole drilled in the hollow body. . The ejected liquid then evaporates until it is saturated depending on the degree of vacuum at the suction port. This evaporation removes vaporization heat from the surroundings, thereby cooling the liquid itself, lowering the temperature to an appropriate level as a cooling liquid, and feeding it into the vacuum pump.

または、真空ポンプの吸入口と連設した管路内に設けら
れた細径のチューブに液体を供給する。
Alternatively, the liquid is supplied to a small diameter tube provided in a conduit connected to the suction port of the vacuum pump.

液体はチューブに穿設されたノズル孔から管路内に噴出
する。そして噴出した液体は上記と同様に冷却され、真
空ポンプ内に送りこまれる。
The liquid is ejected into the conduit from a nozzle hole formed in the tube. The ejected liquid is then cooled in the same manner as above and sent into the vacuum pump.

〔実施例] 以下に図面を用いて本発明の実施例を説明する。〔Example] Embodiments of the present invention will be described below with reference to the drawings.

本発明の自冷式封入液供給装置は、液封式の真空ポンプ
であればどんなタイプにも使用できるものであるが、実
施例においてはスクリューロータ弐の真空ポンプに使用
している。第1図は本発明の一実施例を示す図である。
Although the self-cooled sealed liquid supply device of the present invention can be used with any type of liquid-ring type vacuum pump, in the embodiment, it is used with a screw rotor two vacuum pump. FIG. 1 is a diagram showing an embodiment of the present invention.

同図において、1は真空ポンプで、2はその吸入口、3
はケーシングである。ケーシング3内には、主従のスク
リューロータ4,5が噛み合うように配置され、矢印A
の方向に回転して吸入口2からガスを吸引する。吸引さ
れたガスは矢印Bの方向に流れてスクリューロータ4,
5の右側に設けられた図示しない吐出口から排出される
。一方冷却用の液体は吸入口2からガスと共に供給され
、ケーシング3内に進入して真空ポンプ1を冷却する。
In the figure, 1 is a vacuum pump, 2 is its suction port, and 3 is a vacuum pump.
is the casing. Inside the casing 3, master and slave screw rotors 4 and 5 are arranged so as to mesh with each other, as indicated by the arrow A.
The gas is sucked from the suction port 2 by rotating in the direction of . The sucked gas flows in the direction of arrow B to the screw rotor 4,
The liquid is discharged from an unillustrated discharge port provided on the right side of 5. On the other hand, cooling liquid is supplied from the suction port 2 together with the gas, enters the casing 3, and cools the vacuum pump 1.

同時にスクリューロータ4,5相互間およびスクリュー
ロータ4,5とケーシング3間をシールして真空度の向
上も図っている。
At the same time, the degree of vacuum is improved by sealing between the screw rotors 4 and 5 and between the screw rotors 4 and 5 and the casing 3.

本発明の自冷式封入液供給装置は、上記の真空ボンプ1
の吸入口2に取付けられるものである。
The self-cooling type sealed liquid supply device of the present invention has the above-mentioned vacuum pump 1.
It is attached to the inlet 2 of the.

第1図により装置の構成を説明する。6は二重管路で、
管路内壁7aによって内管路7と外管路8に分かれてい
る。内管路7は、真空ポンプ1の吸入口2と連通し、外
管路8の両端は閉止されている。この二重管路6の両端
にはフランジ継手9,10があり、一方のフランジ継手
9と真空ボンプ1の吸入口2とが接続され、他方のフラ
ンジ継手10は図示しない吸入側の管路に接続される。
The configuration of the apparatus will be explained with reference to FIG. 6 is a double pipe,
The pipe is divided into an inner pipe 7 and an outer pipe 8 by an inner pipe wall 7a. The inner pipe line 7 communicates with the suction port 2 of the vacuum pump 1, and both ends of the outer pipe line 8 are closed. There are flange joints 9 and 10 at both ends of this double pipe line 6, one flange joint 9 is connected to the suction port 2 of the vacuum pump 1, and the other flange joint 10 is connected to the suction side pipe line (not shown). Connected.

二重管路6の外壁6aの右端近傍には、外管路8に連通
ずる封入液用の注入口11が形成されている。
Near the right end of the outer wall 6a of the double conduit 6, an injection port 11 for the sealed liquid is formed which communicates with the outer conduit 8.

一方内管路7内の左端近傍には、前記外管路8と直径方
向の両端で連通ずる管路12が設けられ、中間に吐出孔
12aが穿設されている。管路12の吐出孔12a近傍
部分は、周囲を液貯留用の中空体13で覆われ、この中
空体13には封入液噴出用の多数のノズル孔13aが穿
設されている。
On the other hand, in the vicinity of the left end of the inner pipe line 7, a pipe line 12 is provided which communicates with the outer pipe line 8 at both ends in the diametrical direction, and a discharge hole 12a is bored in the middle. A portion of the conduit 12 near the discharge hole 12a is surrounded by a hollow body 13 for storing liquid, and this hollow body 13 has a large number of nozzle holes 13a for ejecting the sealed liquid.

封入液用の注入口11から、例えば真空ポンプの吐出ガ
スから分離され循環してきた高温になっている水等の液
体が注入される。注入口11から入った水は外管路8を
通り、管路12から吐出口12aを経て中空体13に達
し、多数のノズル孔13aから一斉に内管路7内に噴出
される。内管路7内は真空ポンプ1の吸入口2と連通し
ており、圧力が真空近くまで低くなっている。そのため
ノズル孔13aから噴出された水は内管路7内で飽和す
るまで急速に気化し、周囲から気化熱を奪い水の温度を
大きくしかも簡単に下げる。中空体13を内管路7の左
端、すなわち二重管路6におけるガスの流れの上流側に
配置しているので、外管路8内の水も管路内壁7aを通
して冷却される。
A liquid such as high-temperature water, which has been separated from the discharge gas of a vacuum pump and circulated, is injected from an injection port 11 for the sealed liquid. Water entering from the inlet 11 passes through the outer pipe line 8, reaches the hollow body 13 from the pipe line 12 through the discharge port 12a, and is ejected into the inner pipe line 7 from a large number of nozzle holes 13a all at once. The inside of the inner pipe line 7 communicates with the suction port 2 of the vacuum pump 1, and the pressure is low to near vacuum. Therefore, the water ejected from the nozzle hole 13a rapidly vaporizes in the inner pipe 7 until it is saturated, absorbs vaporization heat from the surroundings, and greatly and easily lowers the temperature of the water. Since the hollow body 13 is disposed at the left end of the inner pipe line 7, that is, on the upstream side of the gas flow in the double pipe line 6, the water in the outer pipe line 8 is also cooled through the inner pipe wall 7a.

したがって、管路内壁7aを銅などの熱伝導性の良い材
料で製造すれば冷却効果はより大きくなる。
Therefore, if the pipe inner wall 7a is made of a material with good thermal conductivity such as copper, the cooling effect will be greater.

このようにして二重管路6を通過してきた水は、真空ポ
ンプ1の冷却用に適した温度となり、ポンプ1内に送り
こまれる。
The water that has passed through the double pipe line 6 in this manner has a temperature suitable for cooling the vacuum pump 1, and is fed into the pump 1.

第2図は本発明の第二の実施例の図である。まず構成か
ら説明するが、真空ポンプlに関しては前述した実施例
と同じであるから省略する。この真空ボンプ1の吸入口
2と連通する管路15を設け、管路15の一方のフラン
ジ継手16で吸入口2と接続し、他方のフランジ継手1
7で図示しない吸入側配管と接続する。管路15の外壁
15aに封入液用の注入口18を形成し、この注入口1
8から管路15内に管路径より細径のチューブ19を入
れ、管路15内にコイル状に曲折して配置する。コイル
は注入口18から管路15の左端にまで達するように形
成されている。チューブ19の先端は折曲されてコイル
の中心に配され、この先端部分に多数のノズル孔19a
を穿設する。
FIG. 2 is a diagram of a second embodiment of the invention. First, the configuration will be explained, but since the vacuum pump 1 is the same as the above-mentioned embodiment, the explanation will be omitted. A conduit 15 communicating with the suction port 2 of the vacuum pump 1 is provided, and one flange joint 16 of the conduit 15 is connected to the suction port 2, and the other flange joint 1 is connected to the suction port 2.
Connect with suction side piping (not shown) at 7. An injection port 18 for the sealed liquid is formed in the outer wall 15a of the conduit 15, and this injection port 1
A tube 19 having a smaller diameter than the pipe diameter is inserted into the pipe line 15 from 8, and is bent into a coil shape and placed inside the pipe line 15. The coil is formed to extend from the injection port 18 to the left end of the conduit 15. The tip of the tube 19 is bent and placed at the center of the coil, and a number of nozzle holes 19a are formed at this tip.
to be drilled.

第1図の実施例と同様に真空ポンプの吐出ガスから分離
された高温の水を循環して、注入口18から供給する。
As in the embodiment of FIG. 1, high temperature water separated from the discharge gas of the vacuum pump is circulated and supplied from the inlet 18.

高温の水はコイル状のチューブ19内を進行し、先端に
穿設された多数のノズル孔19aから管路15内に噴出
される。噴出された水は第1図の実施例と同様に冷却さ
れ、真空ポンプ1内に封入水として送りこまれる。
The high temperature water travels through the coiled tube 19 and is ejected into the conduit 15 from a number of nozzle holes 19a formed at the tip. The ejected water is cooled in the same manner as in the embodiment shown in FIG. 1, and is sent into the vacuum pump 1 as sealed water.

チューブl9はコイル状に成形され、先端がコイルの中
心に来るようにしてあるので、ノズル孔19aから噴出
された水はコイル全体にかかり、コイル内の水も冷却さ
れる。チューブ19が熱伝導のよい銅管などであれば、
より効果的である。
Since the tube 19 is formed into a coil shape and its tip is placed at the center of the coil, the water ejected from the nozzle hole 19a covers the entire coil, and the water inside the coil is also cooled. If the tube 19 is a copper tube with good heat conduction,
more effective.

なおチューブ19の形状はコイル状に限定されるもので
はなく、管路15内に適当な形状で曲折を持って配置さ
れていれば、同様の効果を奏するものである。
Note that the shape of the tube 19 is not limited to a coiled shape, and the same effect can be achieved as long as the tube 19 is arranged in an appropriate shape and bent within the conduit 15.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、非常に簡単な装置
によって、冷却液の温度を下げることができ、真空ポン
プの吐出側ガスから分離した水を循環させても、充分冷
却用として適正な温度まで低下させることができる。ま
た、清掃等のための分解組み立ても不要であり、メンテ
ナンスも容易で、トータルとして安価になる。
As explained above, according to the present invention, it is possible to lower the temperature of the cooling liquid with a very simple device, and even when water separated from the discharge side gas of the vacuum pump is circulated, it is not sufficient for cooling. temperature can be lowered. Furthermore, there is no need to disassemble and reassemble for cleaning, etc., and maintenance is easy, resulting in a total cost.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す縦断面図、第2図は本
発明の他の実施例を示す縦断面図、第3図は冷却用の水
温と到達真空度の関係を示す線図、 第4図は従来の冷却水循環システムの構成図である。 6・・・二重管路、6a・・・外壁、7・・・内管路、
8・・・外管路、11.18・・・注入口、13・・・
中空体、l3a ,19a・・・ノズル孔、15・・・
管路、19・・・細径のチューブ。
Fig. 1 is a longitudinal sectional view showing one embodiment of the present invention, Fig. 2 is a longitudinal sectional view showing another embodiment of the invention, and Fig. 3 is a line showing the relationship between cooling water temperature and ultimate vacuum degree. Figure 4 is a configuration diagram of a conventional cooling water circulation system. 6...Double pipe line, 6a...Outer wall, 7...Inner pipe line,
8...Outer pipe line, 11.18...Inlet, 13...
Hollow body, l3a, 19a... nozzle hole, 15...
Conduit, 19...Small diameter tube.

Claims (2)

【特許請求の範囲】[Claims] (1)真空ポンプの吸入口と連通し得る内管路と、両端
が閉止された外管路とからなる二重管路の外壁に、前記
外管路に連通する封入液用の注入口を形成し、前記内管
路内に前記外管路と連通する液貯留用の中空体を設置し
、該中空体に封入液噴出用のノズル孔を穿設したことを
特徴とする真空ポンプ用自冷式封入液供給装置。
(1) An inlet for the sealed liquid that communicates with the outer pipe is installed on the outer wall of the double pipe, which consists of an inner pipe that can communicate with the suction port of the vacuum pump, and an outer pipe that is closed at both ends. a hollow body for liquid storage that communicates with the outer conduit is installed in the inner conduit, and a nozzle hole for ejecting the enclosed liquid is bored in the hollow body. Cold type sealed liquid supply device.
(2)真空ポンプの吸入口と連通し得る管路の外壁に封
入液用の注入口を形成し、該注入口から管路内に細径の
チューブを曲折して配設し、該チューブに封入液噴出用
のノズル孔を穿設したことを特徴とする真空ポンプ用自
冷式封入液供給装置。
(2) An inlet for the sealed liquid is formed on the outer wall of the conduit that can communicate with the inlet of the vacuum pump, and a small diameter tube is bent and arranged from the inlet into the conduit. A self-cooling filled liquid supply device for a vacuum pump, characterized by having a nozzle hole for spouting out the filled liquid.
JP1112018A 1989-05-02 1989-05-02 Self-cooling type sealed liquid supply device for vacuum pump Expired - Lifetime JP2644039B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1112018A JP2644039B2 (en) 1989-05-02 1989-05-02 Self-cooling type sealed liquid supply device for vacuum pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1112018A JP2644039B2 (en) 1989-05-02 1989-05-02 Self-cooling type sealed liquid supply device for vacuum pump

Publications (2)

Publication Number Publication Date
JPH02291493A true JPH02291493A (en) 1990-12-03
JP2644039B2 JP2644039B2 (en) 1997-08-25

Family

ID=14575921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1112018A Expired - Lifetime JP2644039B2 (en) 1989-05-02 1989-05-02 Self-cooling type sealed liquid supply device for vacuum pump

Country Status (1)

Country Link
JP (1) JP2644039B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009108696A (en) * 2007-10-26 2009-05-21 Kobe Steel Ltd Screw compressor
CN103423129A (en) * 2012-05-24 2013-12-04 三菱电机株式会社 Sealed rotary refrigeration compressor
JP2016033372A (en) * 2015-10-15 2016-03-10 三菱電機株式会社 Hermetic rotary type refrigerant compressor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS562494A (en) * 1979-06-22 1981-01-12 Hitachi Ltd Rotary compressor
JPS6256782U (en) * 1985-09-27 1987-04-08
JPS6256783U (en) * 1985-09-27 1987-04-08

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS562494A (en) * 1979-06-22 1981-01-12 Hitachi Ltd Rotary compressor
JPS6256782U (en) * 1985-09-27 1987-04-08
JPS6256783U (en) * 1985-09-27 1987-04-08

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009108696A (en) * 2007-10-26 2009-05-21 Kobe Steel Ltd Screw compressor
CN103423129A (en) * 2012-05-24 2013-12-04 三菱电机株式会社 Sealed rotary refrigeration compressor
JP2016033372A (en) * 2015-10-15 2016-03-10 三菱電機株式会社 Hermetic rotary type refrigerant compressor

Also Published As

Publication number Publication date
JP2644039B2 (en) 1997-08-25

Similar Documents

Publication Publication Date Title
US6672099B1 (en) Refrigeration system
US3359753A (en) Air dryer
JPH0275794A (en) Dipping type pump device
IE42981B1 (en) Improvements in or relating to refrigerating processes and apparatuses therefor
JPH0221166A (en) Absorption cycle heat pump
JPH02291493A (en) Self-cooling sealing liquid supply device for vacuum pump
US2434118A (en) Restrictor tube for refrigerating systems
CN207849840U (en) A kind of novel oil catcher
CN209042840U (en) A kind of cooling device
JP2020531786A (en) A heat pump with a cooling device that cools the guide space or suction port
US5622060A (en) LiBr aqueous solution injection apparatus of a freezer system
CN206572811U (en) A kind of freezer heat of compressor recovering mechanism
CN114526237A (en) Marine assembled screw air compressor machine equipment that has cold winter dryer oil-water separator
JPH01247962A (en) Heat pump
CN211823223U (en) Refrigeration system for injecting and cooling motor liquid of compressor
CN216203923U (en) Linen washing workshop cooling device
JPS60259711A (en) Equalizer for high temperature fluid machine
CN214950103U (en) Chemical production multitube spray cooling machine
CN216241113U (en) Novel cooling device for wind driven generator
JP4290794B2 (en) Continuous ice making steam exhaust type ice heat storage device
CN217956855U (en) Liquid cooling motor and refrigeration compression equipment
CN209783036U (en) Refrigerating device
KR920006414Y1 (en) Separable air conditioner
SU1342519A1 (en) Apparatus for degassing condensate
KR200245710Y1 (en) Absorption chiller extractor

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090502

Year of fee payment: 12

EXPY Cancellation because of completion of term