JPH02290597A - Control device for feed water pump of nuclear reactor - Google Patents

Control device for feed water pump of nuclear reactor

Info

Publication number
JPH02290597A
JPH02290597A JP1111612A JP11161289A JPH02290597A JP H02290597 A JPH02290597 A JP H02290597A JP 1111612 A JP1111612 A JP 1111612A JP 11161289 A JP11161289 A JP 11161289A JP H02290597 A JPH02290597 A JP H02290597A
Authority
JP
Japan
Prior art keywords
feed water
scram
output
water
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1111612A
Other languages
Japanese (ja)
Inventor
Hiroyuki Nishiyama
博之 西山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP1111612A priority Critical patent/JPH02290597A/en
Publication of JPH02290597A publication Critical patent/JPH02290597A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

PURPOSE:To assure the feed water rate necessary after a scram by comparing the output of a feed water rate measuring means after the scram and the output of a feed water rate computing means and tripping turbine driving feed water pumps when the measured feed water rate exceeds the required feed water rate. CONSTITUTION:A feed water flow rate memory 11 memorizes the feed water flow rate just before the generation of the scram by the signal from a reactor output detecting section 10 when the scram arises. The feed water rate necessary after the scram is determined in the required feed water rate calculating section 12 after the scram in accordance with the output of this memory 11. The reactor output after the scram from the feed water flow rate and the main steam flow rate is inputted to an integrator 13 which calculates and outputs the flow rate of the feed water injected into inventory after the scram. This output signal is added to the feed water rate signal from the integrator 13 and is compared with the output signal S 12 of the calculating section 12. A signal S 15 is outputted when the feed water rate is excessive. The signal S 15 is inputted as the trip signals S 15a, S 15b of the turbine driving feed water pumps 2a, 2b and the automatic start prohibition signal to the pump 3b which is one unit of two units of the motor driving feed water pumps 3a, 3b to a logical circuit 16.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は沸騰水型原子炉のスクラム時における原子炉給
水ポンプの制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a control device for a reactor feed water pump during scram of a boiling water reactor.

(従来の技術) 沸騰水型原子炉においては、第3図の給水系の構成説明
図に示すように、原子炉1における発生蒸気量を確保す
る給水を供給するために複数のタービン駆動給水ボンプ
2a, 2bと同じく複数のモータ駆動給水ポンプ3a
. 3bを設置し、一般に通常運転中はタービン駆動給
水ポンプ2a, 2bを運転し、タービン駆動給水ポン
プ2a, 2bのトリップ(停止)あるいは原子炉1の
始動時等で蒸気発生がない時または発生量が少ない時に
は、前記モータ駆動給水ポンプ3a. 3bを後備とし
て切替えている。しかしながら原子炉1はその健全性を
維持するために炉の運転状態によっては、緊急に全制御
棒を高速で挿入して原子炉1の運転を停止させるスクラ
ム機能を保有している。この原子炉スクラムが行われた
時に炉内においては出力が減少するため、炉水中のボイ
ドが急速に減少して炉水位が低下する。
(Prior Art) In a boiling water reactor, as shown in the explanatory diagram of the water supply system configuration in FIG. Like 2a and 2b, multiple motor-driven water supply pumps 3a
.. 3b is installed, and the turbine-driven feedwater pumps 2a and 2b are generally operated during normal operation, and when no steam is generated or the amount generated is such as when the turbine-driven feedwater pumps 2a and 2b are tripped (stopped) or when the reactor 1 is started, etc. When the amount of water is low, the motor-driven water supply pump 3a. I am switching to 3b as a backup. However, in order to maintain its health, the nuclear reactor 1 has a scram function that urgently inserts all control rods at high speed to stop the operation of the reactor 1, depending on the operating state of the reactor. When this reactor scram is performed, the power in the reactor decreases, so the voids in the reactor water rapidly decrease and the reactor water level decreases.

このため図示しない水位制御器からは一時的に給水増の
指令が発せれる。しかるにスクラム状態では炉出力が急
速に低下するので、発生蒸気量が大きく減少して炉内イ
ンベントリの確保に関しては、それ程多くの給水量は必
要としない。しかしながら前記水位制御器の作動により
スクラム直後に給水が増加して、結果的には必要インベ
ントリ以上の給水が炉内に注入されることになる。これ
を回避するため従来はスクラム時における給水に対する
運転手順を定めておき、運転員によりスクラム後にター
ビン駆動給水ポンプを手動にてトリップさせているが、
原子炉スクラム時において運転員は、これ以外にも数多
くの操作や確認作業があり、これ等のために給水ポンプ
の運転手順に遅れが生じたりすると過剰給水になるとい
う可能性があった。・また従来はタービン駆動給水ポン
プ2a, 2bがトリップすると、休止していたモータ
駆動給水ポンブ3a, 3bが自動起動する構成となっ
ているため、タービン駆動給水ポンプ2a. 2bのト
リップ以降の必要給水量は少量であるにもかかわらず、
前記全モータ駆動給水ポンプ3a. 3bが運転され、
これにより過剰給水が一層顕著となる可能性があった。
For this reason, a water level controller (not shown) temporarily issues a command to increase water supply. However, in a scram state, the furnace output rapidly decreases, so the amount of steam generated is greatly reduced, and in order to maintain the inventory in the furnace, a large amount of water supply is not required. However, due to the operation of the water level controller, the water supply increases immediately after the scram, and as a result, more water than the required inventory is injected into the reactor. To avoid this, conventionally, operating procedures for water supply during scrams have been established, and operators manually trip the turbine-driven water supply pumps after scrams.
During a reactor scram, operators have to perform many other operations and checks, and if these delays occur in the operating procedures of the water pumps, there is a possibility that an excessive amount of water will be supplied. - Also, conventionally, when the turbine-driven water pumps 2a, 2b trip, the motor-driven water pumps 3a, 3b, which have been inactive, are automatically activated. Although the amount of water required after trip 2b is small,
Said all-motor driven water pump 3a. 3b is operated,
As a result, there was a possibility that excessive water supply would become even more pronounced.

また炉内はこの後も、炉心の残留熱により再度ボイドが
発生したり、給水系とは別個に設置されている制御棒駆
動系からの駆動水注入により炉水位は増加傾向を呈し、
炉水位が高々水位に到達すれば保護装置が作動して自動
的に全給水ポンプをトリップしてしまうことがある。こ
の場合には例え原子炉スクラム後でも少量の給水が必要
であるため、その所要給水量の確保のために改めて運転
員が手動によりモータ駆動給水ポンプ2a, 2bの一
部を起動運転しなければならなかった。
Furthermore, even after this, voids were generated in the reactor again due to the residual heat in the reactor core, and the reactor water level continued to increase due to drive water injection from the control rod drive system, which was installed separately from the water supply system.
If the reactor water level reaches at most the water level, a protection device may be activated and automatically trip all feedwater pumps. In this case, even after the reactor scram, a small amount of water is required to be supplied, so the operator must manually start up some of the motor-driven water pumps 2a and 2b to ensure the required amount of water. did not become.

(発明が解決しようとする課題) 原子炉のスクラム後にタービン駆動給水ポンプのトリッ
プ操作を手動としているため、スクラム時における運転
員の負担は増加し、かつこのトリップ操作が最適タイミ
ングで行われるとは限らない、殊に操作タイミングが遅
れた場合には、スクラム後の炉内インベントリ確保のた
めに必要な給水量以上の給水が炉内に注入され、この結
果、水位増から炉水位高々保護装置が作動して給水ポン
ブの全数停止に至り、さらに運転員には手動によるモー
タ駆動給水ポンプの起動操作が要求され、作業負担がさ
らに増大するという問題があった。
(Problems to be Solved by the Invention) Since the turbine-driven water pump is manually tripped after a reactor scram, the burden on operators increases during the scram, and it is difficult to know whether this tripping operation will be performed at the optimal timing. However, especially if the operation timing is delayed, more water is injected into the reactor than is necessary to maintain the reactor inventory after the scram, and as a result, the reactor water level protection device is activated due to the water level increase. This causes a problem in that all the water pumps are stopped, and the operator is required to manually start the motor-driven water pump, further increasing the workload.

またタービン駆動給水ポンプのトリップ時に自動起動す
るモータ駆動給水ポンプについては、これ等の停止も通
常、運転員が状況を判断して適宜、手動で操作するため
さらに複雑な作業が増加する問題があった。
Furthermore, regarding motor-driven water pumps that automatically start when a turbine-driven water pump trips, the operator usually has to judge the situation and operate the system manually when the turbine-driven water pump trips, which increases the complexity of the work. Ta.

本発明は、上記の事情を考慮してなされたもので、その
目的とするところは、スクラム前における原子炉出力か
ら、スクラム後の炉内インベントリ確保に必要な給水量
を自動的に確保して、原子炉運転の安全性、信頼性を向
上すると共に運転員の負担を軽減する原子炉給水ポンプ
制御装置を提供することにある。
The present invention has been made in consideration of the above circumstances, and its purpose is to automatically secure the amount of water supply necessary for securing the reactor inventory after the scram from the reactor output before the scram. An object of the present invention is to provide a reactor feed water pump control device that improves the safety and reliability of nuclear reactor operation and reduces the burden on operators.

[発明の構成] (課題を解決するための手段) 原子炉のスクラム時にスクラム前における炉出力検出手
段と、スクラム後に原子炉水位の維持に必要な給水量を
演算する給水量演算手段と、スクラム後の給水量を計測
する給水量計測手段と、この出力と前記給水量演算手段
の出力を比較して、給水量計測手段の出力が前記給水量
演算手段の出力である所要給水量を超えた時に、タービ
ン駆動給水ポンプをトリップさせる信号と一部のモータ
駆動給水ポンプの自動起動の阻止信号を発する給水ポン
プ制御手段を具備する。
[Structure of the invention] (Means for solving the problem) A reactor output detection means before the scram during a reactor scram, a water supply amount calculation means for calculating the amount of water supply required to maintain the reactor water level after the scram, and a scram The water supply amount measuring means for measuring the subsequent water supply amount compares this output with the output of the water supply amount calculation means, and the output of the water supply amount measurement means exceeds the required water supply amount which is the output of the water supply amount calculation means. At times, the water pump control means is provided to issue a signal to trip the turbine-driven water pump and to inhibit automatic activation of some motor-driven water pumps.

(作 用) 原子炉が何らかの原因でスクラムした時に、このスクラ
ム直前の給水流量を基にしたスクラム前の炉出力からス
クラム後にインベントリ確保のために必要かつ十分な給
水量と、同時にスクラム後にインベントリに注入された
給水量を時々刻々積算し、これに各タービン駆動給水ポ
ンプの流量を基に、その流量でポンプがトリップした場
合のコーストダウン流量を予測する。さらに前記スクラ
ム後にインベントリに注入された給水量と、コーストダ
ウン流量との和が、インベントリ確保のために必要かつ
十分な給水量を上回った時点で全タービン駆動給水ポン
プに対して自動トリップ信号を出力し、モータ駆動給水
ポンプについては、その一部例えば1台のみ自動起動し
て、他はこの場合に限り運転を阻止して過剰給水を防止
する。
(Function) When a reactor is scrammed for some reason, the reactor power before the scram is calculated based on the water supply flow rate just before the scram to obtain the necessary and sufficient amount of water supply to secure the inventory after the scram, and at the same time to maintain the inventory after the scram. The amount of water injected is integrated every moment, and based on this and the flow rate of each turbine-driven water pump, the coastdown flow rate when the pump trips at that flow rate is predicted. Furthermore, when the sum of the amount of water injected into the inventory after the scram and the coastdown flow rate exceeds the necessary and sufficient amount of water to secure the inventory, an automatic trip signal is output to all turbine-driven water pumps. However, some of the motor-driven water supply pumps, for example, only one, are automatically started, and the others are prevented from operating only in this case to prevent excessive water supply.

(実施例) 本発明の一実施例を図面を参照して説明する。(Example) An embodiment of the present invention will be described with reference to the drawings.

なお本一実施例における原子炉の給水ポンプについては
、常用タービン駆動給水ポンプ及び後備モータ駆動給水
ポンプ共、各2台設置した場合について説明する。第1
図はブロック回路構成図で、原子炉1の給水流量と主蒸
気流量を入力し、さらにスクラム信号からスクラム前の
炉出力を検出する炉出力検出部lOと、この出力を記憶
する給水流量メモリ11からなる炉出力検出手段と、前
記給水流量メモリ11の出力からスクラム後の原子炉水
位の維持に必要な給水量を算出する給水量演算手段であ
るスクラム後必要給水量算出部12と、前記炉出力検出
部lOからの出力よりスクラム後の給水量を計測する積
分器l3と2台のタービン駆動給水ポンプ(TDRFP
)2a.2bのトリップ後のコーストダウン流量予測部
14 (14a , 14b ”)とからなる給水量計
i’lll手段と、前記コーストダウン流量予測部14
の出力と前記積分器13の出力を加算した給水量計測手
段の出力信号S14と、前記スクラム後必要給水量算出
部l2の出力信号S12を比較器で比較し、この比較器
において前記給水量計測手段の出力信号S14が、前記
スクラム後必要給水量算出部12からの出力信号SL2
を超えた時に、全タービン駆動給水ポンブ2a, 2b
をトリップさせる信号と2台中1台のモータ駆動給水ポ
ンプ(MDRFP)3bの自動起動の阻止信号S15を
発する比較部l5と、この阻止信号Sl5による当該給
水ポンプの停止信号から他の1台のモータ駆動給水ポン
プ(MDRFP)3aに自動起動信号を発する第1の論
理回路1Bからなる給水ポンプ制御手段で構成されてい
る。
Regarding the water supply pumps for the nuclear reactor in this embodiment, a case will be described in which two of each of the regular turbine-driven water pumps and the back-up motor-driven water pumps are installed. 1st
The figure is a block circuit configuration diagram, which includes a reactor output detection unit 10 that inputs the feedwater flow rate and main steam flow rate of the reactor 1, and further detects the reactor output before scram from the scram signal, and a feedwater flow rate memory 11 that stores this output. a post-scram required water supply amount calculation unit 12 which is a water supply amount calculation means for calculating the amount of water supply necessary to maintain the reactor water level after the scram from the output of the water supply flow rate memory 11; An integrator l3 that measures the water supply amount after scram from the output from the output detection unit lO and two turbine-driven water pumps (TDRFP)
)2a. 2b after the trip coastdown flow rate prediction unit 14 (14a, 14b''); and the coastdown flow rate prediction unit 14.
A comparator compares the output signal S14 of the water supply amount measuring means, which is the sum of the output of the above and the output of the integrator 13, and the output signal S12 of the post-scram required water supply amount calculating section 12, The output signal S14 of the means is the output signal SL2 from the post-scram required water supply amount calculating section 12.
All turbine-driven water pumps 2a, 2b
A comparator 15 generates a signal to trip the motor and a signal S15 to automatically start one of the two motor-driven water pumps (MDRFP) 3b, and a comparator 15 that outputs a signal S15 to trip the motor-driven water pump (MDRFP) 3b, and a comparator 15 that outputs a stop signal S15 for automatically starting one of the two motor-driven water pumps (MDRFP) 3b. The water supply pump control means includes a first logic circuit 1B that issues an automatic start signal to the drive water pump (MDRFP) 3a.

次に上記構成による作用について述べる。スクラムが発
生すると炉出力検出部10からの信号で、給水流量メモ
1月1はスクラム発生直前の給水流量をメモリする。さ
らにこの給水流量メモリ1lの出力を基にスクラム後必
要給水量算出部12において、スクラム後に必要とする
給水量を求める。なおスクラム後必要給水量算出部12
には、事前解析により前記スクラム後に必要とする給水
量をスクラム時炉出力(給水流量相当)の関数として設
定しておくことも可能である。また給水流量と主蒸気流
量からのスクラム後の炉出力は、給水量計測手段である
積分器l3に入力されて、スクラム後インベントリに注
入された給水量を算出して出力する。
Next, the effects of the above configuration will be described. When a scram occurs, the feed water flow rate memo January 1 stores the feed water flow rate immediately before the scram occurs in response to a signal from the reactor output detection section 10. Further, based on the output of the water supply flow rate memory 1l, the post-scrum water supply amount calculation unit 12 calculates the water supply amount required after the scram. In addition, the required water supply amount calculation unit 12 after scram
In this case, it is also possible to set the amount of water supply required after the scram as a function of the reactor output (equivalent to the water supply flow rate) during the scram through preliminary analysis. Further, the post-scrum furnace output from the feed water flow rate and main steam flow rate is input to an integrator l3, which is a water feed amount measuring means, to calculate and output the amount of water feed injected into the post-scrum inventory.

これと別に2台のタービン駆動給水ポンプ2a, 2b
のトリップ後のコーストダウン流量をコーストダウン流
量予測部l4にて予測する。なお各コーストダウン流量
予測部14a . 14bには事前解析により各タービ
ン駆動給水ポンプの流量と、トリップ後に停止する迄の
コーストダウンにより給水される給水量の関係を予め設
定しておく。この出力信号は前記積分器l3からの給水
量信号と加算して信号S14として出力され、前記スク
ラム後必要給水量算出部l2の出力信号Sl2と比較部
15において比較され、信号Sl2<信号S14となっ
た時点で給水量が過剰となると判断して信号Sl5を出
力する。この信号Sl5は全部のタービン駆動給水ポン
ブ2a.2bのトリップ信号S15a,  S15bと
2台のモータ駆動給水ポンプの内1台の3bへの自動起
動阻止信号S 15cとして、給水ポンプ制御手段であ
る第1の論理回路1Bに入力される。これにより2台の
タービン駆動給水ポンブ2as 2bがトリップする。
In addition to this, two turbine-driven water pumps 2a and 2b are installed.
The coast down flow rate after the trip is predicted by the coast down flow rate prediction unit l4. Note that each coastdown flow rate prediction unit 14a. In 14b, the relationship between the flow rate of each turbine-driven water supply pump and the amount of water supplied by coast down until it stops after tripping is set in advance by preliminary analysis. This output signal is added to the water supply amount signal from the integrator l3 and output as a signal S14, and is compared with the output signal Sl2 of the post-scram required water supply amount calculation section l2 in the comparison section 15, and the signal Sl2<signal S14. When the amount of water is reached, it is determined that the amount of water supplied is excessive, and a signal Sl5 is output. This signal Sl5 is applied to all turbine-driven water pumps 2a. The trip signals S15a and S15b for the motor-driven water supply pumps 2b and an automatic start prevention signal S15c for one of the two motor-driven water supply pumps 3b are input to the first logic circuit 1B, which is a water supply pump control means. This trips the two turbine-driven water pumps 2as and 2b.

この2台のタービン駆動給水ポンプがトリップしたこと
により、第1の論理回路1Bから、1台のモータ駆動給
水ポンブ3aの自動起動信号S leaが出力されて、
モータ駆動給水ポンプ3aが自動起動し、この後、出力
の低下した原子炉1への給水はこの1台のモータ駆動給
水ポンプ3aにより行われる。
When these two turbine-driven water pumps trip, the first logic circuit 1B outputs an automatic activation signal S lea for one motor-driven water pump 3a.
The motor-driven water supply pump 3a is automatically started, and thereafter, water is supplied to the reactor 1 whose output has decreased by this single motor-driven water supply pump 3a.

なお本発明は、原子炉1のスクラム発生時のみに作動す
るように、炉出力検出部lOと比較部l5において、ス
クラム信号が入力されていない場合に、信号S12は1
00%、信号Sl4はθ%となるようにスクラム信号と
連動する切替手段が設けられている。
Note that the present invention operates only when a scram occurs in the reactor 1, so that the signal S12 is set to 1 when no scram signal is input in the reactor output detection unit lO and the comparison unit l5.
00% and the signal Sl4 is θ%, a switching means is provided that interlocks with the scram signal.

これにより、スクラム後の原子炉1内のインベントリ確
保に必要な給水量が1台のモータ駆動給水ポンブ3aに
より適確に確保されて運転されるので、運転員がスクラ
ム発生時で多忙な時期にタービン駆動給水ポンプ2a,
 2bのトリップやモータ駆動給水ポンプ3a起動のタ
イミング及び給水量制御等複雑で熟練を要する作業が不
要となる。
As a result, the amount of water required to maintain the inventory in the reactor 1 after a scram is properly secured and operated by one motor-driven water pump 3a. Turbine-driven water pump 2a,
This eliminates the need for complicated operations that require skill, such as tripping the motor-driven water supply pump 3a, timing of starting the motor-driven water supply pump 3a, and controlling the water supply amount.

第2図は本発明の他の実施例を示すブロック回路構成図
で、給水ポンプ制御手段がスクラム信号により所定の遅
れ手段Tを介して2台中1台のタービン駆動給水ポンブ
2bのトリップ信号S 17aと、2台のモータ駆動給
水ポンプ3a, 3bへの自動起動阻止信号S17b,
  S17cを発すると共に、前記タービン駆動給水ポ
ンブ2bのトリップと前記1台のモータ駆動給水ボンプ
3aへの自動起動阻止信号S17bの消滅から、前記モ
ータ駆動給水ポンプ3aへの自動起動信号Sl7dを出
力する第2の論理回路l7と、比較部l5からの信号で
ある1台のタービン駆動給水ポンプ2aへのトリップ信
号S15aと1台のモータ駆動給水ボンプ3bへの自動
起動阻止信号S15cの消滅を入力して、前記タービン
駆動給水ボンプ2aのトリップにより、1台のモータ駆
動給水ボンプ3aの自動起動信号818aを出力する第
3の論理回路1Bとから構成されたもので、上記一実施
例と異なり、スクラム発生時に所定の遅れをもって、先
ず2台中1台のタービン駆動給水ポンプ2bのトリップ
と2台のモータ駆動給水ポンプ3a,3bの自動起動の
阻止を行なって、スクラム発生初期は1台のタービン駆
動給水ポンプ2aによる給水を行こなわせる。しかる後
に上記一実施例と同様に信号S12と信号Sl5との比
較から比較部15より出力された信号S15により、タ
ービン駆動給水ポンブ2aをトリップさせ、代わりに1
台のモータ駆動給水ポンブ3aを自動起動させて過剰給
水とならぬように給水運転を実施する。
FIG. 2 is a block circuit diagram showing another embodiment of the present invention, in which the water pump control means uses a scram signal to send a trip signal S17a to one of the two turbine-driven water pumps 2b via a predetermined delay means T. and an automatic start prevention signal S17b to the two motor-driven water supply pumps 3a and 3b,
S17c and outputs an automatic start signal Sl7d to the motor-driven water pump 3a based on the trip of the turbine-driven water pump 2b and disappearance of the automatic start prevention signal S17b to the one motor-driven water pump 3a. 2 logic circuit 17 and the disappearance of the trip signal S15a to one turbine-driven water supply pump 2a and the automatic start prevention signal S15c to one motor-driven water supply pump 3b, which are signals from the comparator 15, are inputted. , and a third logic circuit 1B that outputs an automatic activation signal 818a for one motor-driven water supply pump 3a when the turbine-driven water supply pump 2a trips. At a predetermined delay, one of the two turbine-driven water pumps 2b is tripped and the two motor-driven water pumps 3a and 3b are prevented from starting automatically.In the early stages of a scram, only one turbine-driven water pump is activated. 2a is used to supply water. After that, similarly to the above embodiment, the signal S15 outputted from the comparison section 15 from the comparison between the signal S12 and the signal Sl5 causes the turbine-driven water pump 2a to trip, and the water pump 2a is tripped instead.
The motor-driven water supply pump 3a of the stand is automatically started to carry out water supply operation to avoid excessive water supply.

[発明の効果] 以上説明したように本発明によれば、原子炉のスクラム
時においてスクラム後の必要インベントリの給水量を確
保しつつ、複数のタービン駆動及びモータ駆動給水ポン
プを自動的に運転制御を行なうので、原子炉の安全性と
運転の信頼性が向上すると共に、運転員に対し、殊にス
クラム時における作業負担が軽減されて、他の作業に注
力できる大きな効果がある。
[Effects of the Invention] As explained above, according to the present invention, the operation of a plurality of turbine-driven and motor-driven water supply pumps can be automatically controlled while ensuring the necessary inventory water supply amount after the scram during a nuclear reactor scram. This not only improves the safety and operational reliability of the reactor, but also reduces the workload on operators, especially during scram, which has the great effect of allowing them to focus on other tasks.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例のブロック回路構成図、第2
図は本発明の他の実施例のブロック回路構成図、第3図
は原子炉給水系の構成説明図である。 2a, 2b・・・タービン駆動給水ポンプ、(TDR
FP) 3a, 3b・・・モータ駆動給水ポンプ、(MDRF
P) lO・・・炉出力検出部、 11・・・給水流量メモリ、 l2・・・スクラム後必要給水量算出部、l3・・・積
分器、 14・・・コーストダウン流量予測部、l5・・・比較
部、   l6・・・第1の論理回路、l7・・・第2
の論理回路、 l8・・・第3の論理回路。 代理人 弁理士 大 胡 典 夫 第 図
FIG. 1 is a block circuit configuration diagram of an embodiment of the present invention, and FIG.
The figure is a block circuit configuration diagram of another embodiment of the present invention, and FIG. 3 is a configuration explanatory diagram of a reactor water supply system. 2a, 2b...Turbine-driven water pump, (TDR
FP) 3a, 3b...Motor-driven water supply pump, (MDRF
P) lO...Furnace output detection unit, 11...Water supply flow rate memory, l2...Required water supply amount calculation unit after scram, l3...Integrator, 14...Coast down flow rate prediction unit, l5. ...Comparison section, l6...First logic circuit, l7...Second
logic circuit, l8... third logic circuit. Agent Patent Attorney Norifu Ogo

Claims (1)

【特許請求の範囲】[Claims] 複数のタービン駆動給水ポンプ及び複数のモータ駆動給
水ポンプにより炉内給水を行う沸騰水型原子炉の給水ポ
ンプ制御装置において、原子炉スクラム前の炉出力検出
手段と、この出力からスクラム後の原子炉水位の維持に
必要な給水量を算出する給水量演算手段と、スクラム後
の給水量を計測する給水量計測手段と、この出力と前記
給水量演算手段の出力を比較して給水量計測手段の出力
が、前記給水量演算手段の出力を超えた時にタービン駆
動給水ポンプをトリップさせる信号とモータ駆動給水ポ
ンプの自動起動の阻止信号を発する給水ポンプ制御手段
からなることを特徴とする原子炉給水ポンプ制御装置。
In a water pump control device for a boiling water reactor that supplies water to the reactor using a plurality of turbine-driven water feed pumps and a plurality of motor-driven water feed pumps, a reactor output detection means before a reactor scram and a reactor output after a scram based on this output are used. A water supply amount calculation means for calculating the amount of water supply required to maintain the water level, a water supply amount measurement means for measuring the water supply amount after scram, and a water supply amount measurement means that compares the output of the water supply amount calculation means with the output of the water supply amount calculation means. A reactor feed water pump comprising a feed water pump control means that issues a signal to trip the turbine-driven feed water pump and a signal to prevent automatic start of the motor-driven feed water pump when the output exceeds the output of the water supply amount calculation means. Control device.
JP1111612A 1989-04-28 1989-04-28 Control device for feed water pump of nuclear reactor Pending JPH02290597A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1111612A JPH02290597A (en) 1989-04-28 1989-04-28 Control device for feed water pump of nuclear reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1111612A JPH02290597A (en) 1989-04-28 1989-04-28 Control device for feed water pump of nuclear reactor

Publications (1)

Publication Number Publication Date
JPH02290597A true JPH02290597A (en) 1990-11-30

Family

ID=14565750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1111612A Pending JPH02290597A (en) 1989-04-28 1989-04-28 Control device for feed water pump of nuclear reactor

Country Status (1)

Country Link
JP (1) JPH02290597A (en)

Similar Documents

Publication Publication Date Title
JPS6253797B2 (en)
JP2000019287A (en) Control system of nuclear power plant
JPH02290597A (en) Control device for feed water pump of nuclear reactor
US4282061A (en) System for preventing erroneous operation of control rods
JP3302788B2 (en) Turbine control unit and reactor isolation cooling system control system
JPH0456957B2 (en)
JP3346883B2 (en) Nuclear power plant protection device and its operation determination method
JPH05312303A (en) Water supply control device
JPH01178900A (en) Feed-water flow-rate controller for nuclear reactor
JP3151339B2 (en) Feed water pump control device
JPH02244000A (en) Method and device for controlling nuclear power plant
JPS6282396A (en) Monitor device for core cooling system of nuclear reactor
JPS61223596A (en) Recirculating flow controller
JPH06289174A (en) Output control for nuclear reactor and device therefor
JPH053557B2 (en)
JPH05119189A (en) Nuclear reactor injection water flow automatic controller
JPS5897697A (en) Feedwater recirculation flow rate cooperation control device
JPH02161398A (en) Static type variable voltage frequency power source device for reactor circulating pump
JPS6128881B2 (en)
JPS60231200A (en) Nuclear reactor output controller on abnormality
JPS6025685B2 (en) Automatic operation method of steam turbine for driving boiler feed water pump
JPH0432799A (en) Nuclear reactor operation area limiting device
JP2000081497A (en) Feed water control device of boiling water nuclear power station
JPH068881B2 (en) Recirculation pump runback system for boiling water reactor
JPH0634782A (en) Dynamic water pressure device for driving control rod