JPH02290493A - Heat exchanger - Google Patents

Heat exchanger

Info

Publication number
JPH02290493A
JPH02290493A JP1107557A JP10755789A JPH02290493A JP H02290493 A JPH02290493 A JP H02290493A JP 1107557 A JP1107557 A JP 1107557A JP 10755789 A JP10755789 A JP 10755789A JP H02290493 A JPH02290493 A JP H02290493A
Authority
JP
Japan
Prior art keywords
pipes
heat exchange
heat exchanger
exchange section
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1107557A
Other languages
Japanese (ja)
Other versions
JP2907864B2 (en
Inventor
Kenji Umetsu
健児 梅津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP1107557A priority Critical patent/JP2907864B2/en
Publication of JPH02290493A publication Critical patent/JPH02290493A/en
Application granted granted Critical
Publication of JP2907864B2 publication Critical patent/JP2907864B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To increase an efficiency and to reduce noise by a construction wherein discharge ports used at the time of heating are formed for a first heat exchanger element on the upstream side and pipes thereof, suction ports are formed for a second heat exchanger element on the downstream side and two or more pipes thereof respectively, and connecting elements are provided for endmost-side pipes of the first and second heat exchanger elements. CONSTITUTION:The end parts of a plurality of pipes 15 of a first heat exchanger element 12 on the upstream side in a heat exchanger 10 are so connected by connecting pipes 16 as to communicate with each other, and a heating medium from the lower side at the time of heating moves upward through the pipes 15i, 15h and 15g sequentially, passes through a joining element 18 and flows into the pipe 15c. A heating medium from the pipe 15a at the uppermost end lowers through the pipes 15b and 15c sequentially, joins the heating medium flowing in from the joining element 18, lowers through the pipes 15d, 15e and 15f sequentially and reaches a discharge port 20. Suction ports 23 and 24 are formed for a pipe 22d and 22e of a second heat exchanger element 13 respectively, and pipes 22a and 22i are connected to the pipes 15a and 15i in the upper and lower ends of the first heat exchanger element 12 by a connecting element 17 respectively.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、例えばヒートポンブ式ルームエアコンに用い
る熱交換器に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Field of Industrial Application) The present invention relates to a heat exchanger used in, for example, a heat pump type room air conditioner.

(従来の技術) スプリット型ルームエアコン等の室内ユニットの騒音は
直接室内にいる使用者の快適性に悪影響を与えるため、
多くの低減化努力が払われている。その騒音の約90%
以上はファンの送風音であり、残りの約10%は熱媒の
流動音等である。
(Prior art) Noise from indoor units such as split-type room air conditioners has a direct negative impact on the comfort of users indoors.
Many efforts are being made to reduce this. Approximately 90% of that noise
The above is the sound of the fan, and the remaining approximately 10% is the sound of the heat medium flowing.

そして、熱交換器の熱交換能力を高めるために風量を増
加すると、この風量の増大に従い騒音も増大するという
欠点があった。このため、熱交換能力を高くしても騒音
の増大を招かないような何らかの改善が必要であった。
When the air volume is increased in order to improve the heat exchange capacity of the heat exchanger, there is a drawback that noise also increases as the air volume increases. For this reason, some kind of improvement was needed so that even if the heat exchange capacity was increased, the noise would not increase.

一般的な熱交換器には第2図に示されるものがある。こ
の熱交換器1は複数枚のフィン2・・・が所定間隔で層
状体に配列され、これら複数枚のフィン2・・・に対し
て配列方向に複数本のパイブ3・・・が貫通して結合さ
れている。これら、バイブ3・・・は上下方向に2列で
、千鳥状に配列されている。
A common heat exchanger is shown in FIG. In this heat exchanger 1, a plurality of fins 2... are arranged in a layered body at predetermined intervals, and a plurality of pipes 3... penetrate through the plurality of fins 2 in the arrangement direction. are combined. These vibrators 3... are arranged in two rows in the vertical direction in a staggered manner.

ここで、上記熱交換器1は上記フィン2・・・の層状構
造により輪郭形状が矩形箱状に形成されている。そして
、ルームエアコンの室内ユニット等においては一方の側
面側に例えば横流ファン4が設けられて、強制的に上記
熱交換器1に対して空気を循環するようになっている。
Here, the heat exchanger 1 has a rectangular box-like outline due to the layered structure of the fins 2 . In an indoor unit of a room air conditioner, for example, a cross-flow fan 4 is provided on one side of the unit to forcibly circulate air to the heat exchanger 1.

そして、上記横流ファン4によって発生した矢印A,B
,Cで示される空気の流れの、上記熱交換器1に対する
流入側面に近接して上下方向に並んだ1列は、隣接する
パイブ3・・・どうしの端部が順次連通するように接続
されている。
Then, the arrows A and B generated by the cross-flow fan 4 are
, C, which are arranged in a vertical direction close to the inlet side of the heat exchanger 1, are connected so that the ends of adjacent pipes 3 are sequentially connected to each other. ing.

また、上記熱交換器1に対する空気の流出側に近接して
上下方向に並んだ1列は、隣接するパイブ3・・・どう
しの端部が順次連通ずるように接続されており、略中央
部に位置する2本のパイプ3、3の隣接する一端部は上
部側か熱媒の流入口5、下部側か熱媒の吐出口6となっ
ている。
In addition, in one row arranged vertically close to the air outflow side of the heat exchanger 1, adjacent pipes 3 are connected so that their end portions communicate with each other, and approximately at the center Adjacent one end portions of the two pipes 3, 3 located at the upper side serve as an inlet 5 for the heating medium, and serve as an outlet 6 for the heating medium on the lower side.

そして、空気の流れ方向の上流側の1列と下流側の1列
との上下端のバイプ3・・・は互いの一方の端部が連通
接続されており、上記吸込口5から流入された熱媒は上
記バイブの内部を順次流れ、吐出口6がら吐出されるよ
うになっている。
The upper and lower ends of the upper and lower pipes 3 of one row on the upstream side and one row on the downstream side in the air flow direction are connected to each other at one end, and the air flows in from the suction port 5. The heat medium sequentially flows inside the vibrator and is discharged from the discharge port 6.

こうした熱交換器1は風の通りをよくするために、極力
細径のバイブ3・・・が使われているが騒音低減および
熱交換性を高める効果が十分に得られないとった欠点が
あった。
This type of heat exchanger 1 uses a vibrator 3 with a diameter as small as possible in order to improve airflow, but it has the disadvantage that it cannot sufficiently reduce noise and improve heat exchange performance. Ta.

上記熱交換器1は例えば熱媒の流入側のフィン2の温度
が約75℃であり、熱媒の吐出側のフィン2の温度が約
48℃である場合、複数枚のフィン2・・・全体が一体
的で熱伝導状態にあるので、フィン2・・・の全体の温
度は略一定となる。そして、上記フィン2・・・の温度
が全体的に約50゜Cとなり通過された空気は48℃ま
で上昇される。
The heat exchanger 1 has a plurality of fins 2... Since the whole is integral and in a thermally conductive state, the overall temperature of the fins 2 is approximately constant. Then, the temperature of the fins 2 becomes approximately 50°C as a whole, and the air passing through the fins 2 is raised to 48°C.

ところが、熱媒の流入口5と吐出口6とは互いに近接し
て設けられているので、熱媒の流入側と吐出側との間で
熱交換をしてしまうものであった。
However, since the heat medium inflow port 5 and the heat medium discharge port 6 are provided close to each other, heat exchange occurs between the heat medium inflow side and the discharge side.

つまり、通過される空気への熱交換が十分に行えない構
造であった。
In other words, the structure did not allow sufficient heat exchange to the air passing through.

(発明が解決しようとする課題) 一般的な熱交換器は熱媒の流入口と吐出口とがフィンに
よって熱伝導状態に接合されており、流入される熱媒と
吐出される熱媒とがフィンを通じて熱交換してしまい、
効率の高い熱交換ができなかった。また、パイプの直径
が大きく通過する空気の抵抗となり、騒音を発生する原
因となっていた。
(Problems to be Solved by the Invention) In a general heat exchanger, the inlet and outlet of the heat medium are connected by fins in a thermally conductive state, and the heat medium flowing in and the heat medium being discharged are Heat is exchanged through the fins,
Highly efficient heat exchange was not possible. In addition, the large diameter of the pipe creates resistance to the air passing through it, causing noise.

本発明は上記課題に着目してなされたものであり、熱交
換の効率が高く、かつ、通風時の騒音の発生を低減でき
る熱交換器を提供することを目的とする。
The present invention has been made in view of the above problems, and an object of the present invention is to provide a heat exchanger that has high heat exchange efficiency and can reduce noise generation during ventilation.

[発明の構成] (課題を解決するための手段) 本発明は暖房時の空気の流れの上流側に位置され複数枚
のフィンに対して複数本のパイプを貫通しこれらパイプ
の端部どうしを連通接続した第1の熱交換部を設け、こ
の第1の熱交換部におけるいずれかのパイプの接続端に
吐出口を形成し、暖房時の空気の流れの下流側に位置さ
れ複数枚のフィンに対して複数本のバイブを貫通しこれ
らバイブの端部どうしを連通接続した第2の熱交換部を
設け、この熱交換部における2本以上のパイプの接続端
にそれぞれ2つ以上の吸込口を形成し、上記第1および
第2の熱交換部のそれぞれの最端側に位置するパイプの
端部を連通接続する接続部を設けた熱交換器にある。
[Structure of the Invention] (Means for Solving the Problems) The present invention is located upstream of the air flow during heating, penetrates a plurality of pipes for a plurality of fins, and connects the ends of these pipes. A first heat exchange section connected in communication is provided, a discharge port is formed at the connection end of one of the pipes in the first heat exchange section, and a plurality of fins are arranged downstream of the air flow during heating. A second heat exchange section is provided in which a plurality of vibrators are passed through and the ends of these vibrators are connected to each other, and two or more suction ports are provided at the connection ends of two or more pipes in this heat exchange section. The heat exchanger is provided with a connecting portion for communicating and connecting the end portions of the pipes located at the endmost sides of each of the first and second heat exchange portions.

(作 用) 暖房時にフィンを通過する空気の流れ方向の上流側と下
流側に熱的に分割し、かつ、暖房時における熱媒の吸込
口を空気流れの下流側に2つ以上設け、上記空気流れの
上流側に吐出口を設けることで、熱媒の通過するバイブ
の直径が小さくても十分な熱交換を行うことができる。
(Function) The air passing through the fins during heating is thermally divided into upstream and downstream sides in the flow direction, and two or more inlets for the heat medium during heating are provided on the downstream side of the air flow, and the above-mentioned By providing the discharge port on the upstream side of the air flow, sufficient heat exchange can be performed even if the diameter of the vibrator through which the heat medium passes is small.

(実施例) 本発明における一実施例を第1図を参照して説明する。(Example) An embodiment of the present invention will be described with reference to FIG.

図中に示される熱交換器10は例えばスブリット型ルー
ムエアコンの室内ユニットに使用されるものであり、横
流ファン11によって強制的に循環される空気が通過す
るようになっている。
The heat exchanger 10 shown in the figure is used, for example, in an indoor unit of a split-type room air conditioner, and is configured to allow air that is forcibly circulated by a cross-flow fan 11 to pass therethrough.

なお、暖房時において上記横流ファン11は矢印A,B
,Cで示される方向に風を送るようになっている。
Note that during heating, the cross-flow fan 11 moves in the direction of arrows A and B.
, C, the wind is sent in the directions indicated by .

そして、上記熱交換器10は上記空気の流れ方向の上流
側に位置する第1の熱交換部12と、この第1の熱交換
部12の下流に位置する第2の熱交換部13とからなっ
ている。上記第1の熱交換部12は複数枚のフィン14
・・・が互いに所定間隔をもって左右方向に層状に配列
されており、これらのフィン14・・・の厚さ方向に複
数本のパイブ15・・・が貫通状態に結合されている。
The heat exchanger 10 includes a first heat exchange section 12 located upstream in the air flow direction and a second heat exchange section 13 located downstream of the first heat exchange section 12. It has become. The first heat exchange section 12 includes a plurality of fins 14
... are arranged in layers in the left-right direction at predetermined intervals from each other, and a plurality of pipes 15 ... are coupled in a penetrating manner in the thickness direction of these fins 14 ....

これらのパイプ15・・・は上下方向に所定間隔をもっ
て配列されており、それぞれの端部は左右方向の最端部
に位置するフィンに開口されている。
These pipes 15 are arranged at predetermined intervals in the vertical direction, and each end is opened to a fin located at the extreme end in the left-right direction.

そして、これらバイブ15・・・の端部は上下に位置す
るどうしか接続管16・・・によって連通接続されてい
る。
The ends of these vibrators 15 are connected to each other by connecting pipes 16 located above and below.

なお、図中に示される接続管の構造について説明すると
、最上部に位置されるパイプ15aはー端側か後述する
接続部17によって上記第2の熱交換部13の最上端の
バイブ22aに連通接続されている。
In addition, to explain the structure of the connecting pipe shown in the figure, the pipe 15a located at the top end communicates with the vibe 22a at the top end of the second heat exchange section 13 through a connecting portion 17, which will be described later. It is connected.

上側から2番目および3番目に位置されるバイブ15b
,15cの一方の端部は互いに合流部18を有する接続
管19によって接続されている。
Vibrator 15b located second and third from the top
, 15c are connected to each other by a connecting pipe 19 having a merging portion 18.

この接続管19は合流部18によって上側から7番目に
位置するバイブ15gの一端に接続されている。
This connecting pipe 19 is connected to one end of the vibrator 15g located seventh from the top by a confluence part 18.

さらに、上側から4番目と5番目に位置されるバイブ1
5d,15eの一端はそれぞれ接続管16によって接続
されている。そして、上側から6番目のパイプ15fの
一端は暖房時における吐出口20が形成されている。ま
た、上側から8番また、上記9番目のパイブ15iの他
端側は後述する第2の熱交換部13の最下端のバイブ2
2iの他端側に図示しない接続部によって連通接続され
ている。
Furthermore, the vibe 1 located 4th and 5th from the top
One ends of 5d and 15e are connected by connecting pipes 16, respectively. A discharge port 20 during heating is formed at one end of the sixth pipe 15f from the top. In addition, the other end side of the ninth pipe 15i is number 8 from the top and is the lowermost pipe 2 of the second heat exchanger 13, which will be described later.
It is connected to the other end of 2i by a connecting portion (not shown).

上述のように構成された第1の熱交換部12は暖房時に
おいて、上下端側のバイブ15a,15iからそれぞれ
熱媒が流れ込み、下側からの熱媒はバイブ15i,15
h,15gを順次上方に移動し、上記合流部18を通過
してバイブ15cに流入する。
During heating, the first heat exchange section 12 configured as described above has a heat medium flowing into it from the upper and lower ends of the vibrators 15a and 15i, respectively, and a heat medium from the lower side flows into the first heat exchanger 12 through the vibrators 15i and 15i.
h, 15g sequentially upward, passes through the merging section 18, and flows into the vibrator 15c.

また、最上端のパイプ15aからの熱媒はパイブ15b
,15cと順次降下し上記合流部18から流れ込む熱媒
と合流される。
In addition, the heat medium from the pipe 15a at the uppermost end is transferred to the pipe 15b.
, 15c, and are merged with the heat medium flowing from the merging portion 18.

そして、この合流された熱媒はパイブ15d,15e,
15fを順次降下し、吐出口20が吐出されるようにな
っている。
Then, this combined heat medium is transferred to the pipes 15d, 15e,
15f is sequentially lowered, and the discharge port 20 is configured to discharge.

以下、上記第2の熱交換部13の構造について説明する
。この第2の熱交換部13は空気の流れ方向の下流側に
位置しており、上記第1の熱交換部13と同様に複数枚
のフィン21・・・が所定間隔をもって層状に配列され
ており、この配列方向に向かって複数本のパイプ22・
・・が貫通状態に結合されている。これらパイプ22・
・・は上下方向に所定間隔をもって棲や配列されており
、それぞれの端部は左右方向の端部に位置するフィン2
1に開口されている。
The structure of the second heat exchange section 13 will be explained below. This second heat exchange section 13 is located on the downstream side in the air flow direction, and similarly to the first heat exchange section 13, a plurality of fins 21 are arranged in layers at predetermined intervals. A plurality of pipes 22 and 22 are arranged in this arrangement direction.
... are connected in a penetrating state. These pipes 22・
... are arranged vertically at predetermined intervals, and each end is connected to the fin 2 located at the left and right end.
1 is opened.

そして、これらのバイブ22・・・は上記第1の熱交換
部12に設けられたパイプ15・・・に対して千鳥状に
なるように配置されている。
These vibrators 22 are arranged in a staggered manner with respect to the pipes 15 provided in the first heat exchange section 12.

最上部に位置されるパイプ22aの他端側は下側に位置
するパイプ22bの他端部に図示しない接続管により接
続されている。このパイプ22bの一端側は上側から3
番目のパイプ22cの一端に接続管16により接続され
ている。さらに、このパイプ22cの他端は図示しない
接続管によって上側から4番目のバイブ22dの他端に
接続されている。このパイプ22dの一端は吸込口23
として開口されている。
The other end of the pipe 22a located at the top is connected to the other end of the pipe 22b located at the bottom by a connecting pipe (not shown). One end side of this pipe 22b is 3
It is connected to one end of the second pipe 22c by a connecting pipe 16. Furthermore, the other end of this pipe 22c is connected to the other end of the fourth vibrator 22d from the top via a connecting pipe (not shown). One end of this pipe 22d is the suction port 23
It has been opened as.

また、上側から5@目のパイプ22eは一端が上述した
吸込口23同様に吸込口24が形成されている。さらに
、このパイプ22eの他端は上側から6番目のバイブ2
2fの他端に図示しない接続管によって接続されている
。そして、以下7番目のパイプ22g,22h,22i
のそれぞれの一端は順次接続管1つによって接続されて
おり、また図示しない他端も同様に接続管によって接続
されている。そして、この第2の熱交換部13の上下端
のそれぞれのパイプ22a,22iはそれぞれが上述の
如く上記第1の熱交換部12の上下端のバイブ15a,
15tに接続されている。
Further, one end of the fifth pipe 22e from the top is formed with a suction port 24 similar to the suction port 23 described above. Furthermore, the other end of this pipe 22e is connected to the sixth vibe 2 from the top.
It is connected to the other end of 2f by a connecting pipe (not shown). And the following 7th pipes 22g, 22h, 22i
One end of each of the two is sequentially connected by one connecting pipe, and the other end (not shown) is similarly connected by a connecting pipe. The pipes 22a and 22i at the upper and lower ends of the second heat exchanger 13 are connected to the vibrators 15a and 22i at the upper and lower ends of the first heat exchanger 12, respectively, as described above.
Connected to 15t.

上述のように構成されることで、上記2つの吸込口23
.24からそれぞれ吸込まれた熱媒は上方と下方とにそ
れぞれ流れ、第2の熱交換部13の上下端部から第1の
熱交換部12の上下端にそれぞれ流入される。
By being configured as described above, the two suction ports 23
.. The heat medium sucked from 24 flows upward and downward, respectively, and flows from the upper and lower ends of the second heat exchanger 13 to the upper and lower ends of the first heat exchanger 12, respectively.

以下、上記熱交換器20の暖房時における熱交換の状態
を従来構造に比較して説明する。従来例で述べた熱交換
器1はフィン2・・・が全体に一体的に設けられている
ので、熱媒の人口側のフィンの温度と出口側のフィンの
温度との差に影響を受けずに、略一定となる。つまり、
熱媒の流入口5の温度が約90℃である場合に、フィン
2・・・全体の温度は約50℃となる。これらのフィン
2・・・に流入された21℃の空気は約48℃まで上昇
される。
Hereinafter, the heat exchange state of the heat exchanger 20 during heating will be explained in comparison with a conventional structure. Since the heat exchanger 1 described in the conventional example has fins 2 integrally provided throughout, it is affected by the difference in temperature between the fins on the artificial side of the heating medium and the temperature of the fins on the outlet side. It remains almost constant. In other words,
When the temperature of the heat medium inlet 5 is about 90°C, the temperature of the entire fin 2 is about 50°C. The air at 21°C flowing into these fins 2 is raised to about 48°C.

こうした熱交換器1は、熱媒の流入口5と吐出口6とが
互いに近接して設けられているので、熱媒の流入側と吐
出側との間で熱交換をしてしまうものであった。
In such a heat exchanger 1, the inlet 5 and the outlet 6 of the heat medium are provided close to each other, so that heat exchange occurs between the inlet side and the outlet side of the heat medium. Ta.

これに対して、上記熱交換器10は、2つの吸込口23
.24から吸込まれる熱媒の温度が上述同様約90℃で
ある場合に、この熱交換器10に流入された約21℃の
空気は約50℃まで上昇される。熱媒の温度は吸込口2
3.24で約90℃であり。順次吐出側に向かって温度
が降下していく。上記パイブ2aで約60℃、バイブ1
5Cで約50℃、そして、吐出口20で約40℃となる
On the other hand, the heat exchanger 10 has two suction ports 23
.. When the temperature of the heat medium sucked from the heat exchanger 24 is about 90°C as described above, the air at about 21°C flowing into the heat exchanger 10 is raised to about 50°C. The temperature of the heating medium is determined by the suction port 2.
3.24 and approximately 90°C. The temperature gradually decreases toward the discharge side. Approximately 60℃ with the above pipe 2a, vibrator 1
The temperature at 5C is approximately 50°C, and the temperature at the discharge port 20 is approximately 40°C.

ここで、フィン14・・・,21・・・の温度は上記温
度分布に沿って変化している。そして、吐出口20近傍
では約21℃の空気に接触することで、凝縮温度が約5
0℃の熱媒が約45℃まで冷却される。
Here, the temperature of the fins 14..., 21... changes along the above temperature distribution. In the vicinity of the discharge port 20, the condensation temperature is approximately 5°C due to contact with air at approximately 21°C.
A heating medium at 0°C is cooled to about 45°C.

このようにアンダークールを増大できるので、より効率
の高い熱交換ができる。
Since the undercooling can be increased in this way, more efficient heat exchange can be achieved.

また、このような構造は、吸込口23.24を2つ設け
ることで、熱媒の流量が同一であっても熱交換面積を増
大しているので、空気の流量を増大させずに十分な熱交
換ができる。これにより従来構造に比較して高い効率で
熱交換できる。
In addition, in this structure, by providing two suction ports 23 and 24, the heat exchange area is increased even if the flow rate of the heat medium is the same, so it is possible to increase the heat exchange area without increasing the flow rate of air. Capable of heat exchange. This allows for more efficient heat exchange compared to conventional structures.

さらに、第1の熱交換部12と第2の熱交換部13とに
分割し、空気の流れ方向に沿って上流側と下流側とに配
設し、さらに、上流側に位置する第1の熱交換部12に
吐出口20を設け、下流側に位置する第2の熱交換部1
3に吸込口13を設けることで、カウンターフロー効果
を発生させ、効率の商い熱交換ができる。さらに、各熱
交換部12.13のそれぞれのフィン14・・・,21
・・・は所定の隙間をもって、分離されているのでスリ
ット効果を発生できる。つまり、熱媒の吸込み側と吐出
側との直接的な熱交換を防止でき、空気側への熱交換の
みとなる。
Furthermore, it is divided into a first heat exchange section 12 and a second heat exchange section 13, which are arranged on the upstream side and the downstream side along the air flow direction, and furthermore, the first heat exchange section 12 located on the upstream side is divided into a first heat exchange section 12 and a second heat exchange section 13. A discharge port 20 is provided in the heat exchange section 12, and a second heat exchange section 1 located on the downstream side
By providing the suction port 13 in 3, a counterflow effect is generated and heat exchange can be performed efficiently. Furthermore, each fin 14..., 21 of each heat exchange section 12.13
... are separated by a predetermined gap, so that a slit effect can be generated. In other words, direct heat exchange between the suction side and the discharge side of the heat medium can be prevented, and only heat exchange is performed to the air side.

この結果、少風量でも十分な熱交換ができる。As a result, sufficient heat exchange can be achieved even with a small amount of air flow.

そして、従来構造に比較して同一の熱交換量を得るのに
送風による騒音の低減を計ることができる。
In addition, compared to the conventional structure, it is possible to reduce the noise caused by air blowing while obtaining the same amount of heat exchange.

例えば従来構造においては所定の熱交換量を得るために
室内ユニットの前方1mの位置で42dBの騒音が発生
していたが、上述の構造とすることで35dBに低減す
ることができた。
For example, in the conventional structure, in order to obtain a predetermined amount of heat exchange, 42 dB of noise was generated at a position 1 m in front of the indoor unit, but with the above structure, it was possible to reduce it to 35 dB.

なお、本発明は上記一実施例にのみ限定されるものでは
ない。例えば熱媒が凝縮された液状態で流動する第1の
熱交換器12のバイブ15・・・を内面リップルチュー
ブとすることで、より高い熱交換効率が得られる。ここ
で、リップルチューブは内面に伝熱効果を高める溝が形
成されたものである。第1の熱交換部12と第2の熱交
換部13とは分離されているので、ことなるパイプ構造
とすることが容易である。
Note that the present invention is not limited to the above-mentioned embodiment. For example, higher heat exchange efficiency can be obtained by using an inner ripple tube as the vibrator 15 of the first heat exchanger 12 in which the heat medium flows in a condensed liquid state. Here, the ripple tube has grooves formed on its inner surface to enhance the heat transfer effect. Since the first heat exchange section 12 and the second heat exchange section 13 are separated, they can easily have different pipe structures.

また、第1の熱交換部12と第2の熱交換部13とは、
構造上分離されていなくとも本発明に含まれる。つまり
、゛双方間の伝熱を低減する熱的分離構造、例えば切り
欠き構造等があれば同様の効果を得ることができる。
Furthermore, the first heat exchange section 12 and the second heat exchange section 13 are
Even if they are not structurally separated, they are included in the present invention. In other words, the same effect can be obtained if there is a thermal isolation structure that reduces heat transfer between the two, such as a cutout structure.

風上側のパイプ径を風下側のパイプより細径化すること
により、騒音を低減する効果を一層だ高めることができ
る。
By making the diameter of the pipe on the windward side smaller than that of the pipe on the leeward side, the effect of reducing noise can be further enhanced.

[発明の効果] 暖房時における風上側に位置する第1の熱交換部に熱媒
の吐出口を設け、この第1の熱交換部と熱的に分離され
て、風下側に位置する第2の熱交換部に熱媒の吸込口を
2つ以上設けることにより、吸込口から流入された熱媒
の熱を、吐出側の熱媒に伝えることを防止することで、
通過する空気への熱交換の効率を高めることができる。
[Effect of the invention] A heat medium discharge port is provided in the first heat exchange section located on the windward side during heating, and the second heat exchange section is thermally separated from the first heat exchange section and located on the leeward side. By providing two or more heat medium suction ports in the heat exchange part of the heat exchanger, the heat of the heat medium flowing in from the suction port is prevented from being transferred to the heat medium on the discharge side.
The efficiency of heat exchange to the passing air can be increased.

また、吸込口を2つ以上設けることにより、熱媒のパイ
プを細径化し、空気の通過に対する抵抗を低減すること
で、空気の通過による騒音を低減できる。
Further, by providing two or more suction ports, the diameter of the heat medium pipe is reduced and resistance to the passage of air is reduced, thereby reducing noise caused by passage of air.

これにより、高効率かつ静粛性の高い熱交換器を提供で
きる。
This makes it possible to provide a highly efficient and quiet heat exchanger.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明における熱交換器の一実施例を示す斜視
図、第2図は従来における熱交換器を示す斜視図である
。 12・・・第1の熱交換器、13・・・第2の熱交換器
、14・・・フィン、15・・・バイブ、17・・・接
続部、20・・・吐出口、21・・・フィン、22・・
・パイプ、24・・・吸込口。
FIG. 1 is a perspective view showing an embodiment of a heat exchanger according to the present invention, and FIG. 2 is a perspective view showing a conventional heat exchanger. DESCRIPTION OF SYMBOLS 12... 1st heat exchanger, 13... 2nd heat exchanger, 14... fin, 15... vibrator, 17... connection part, 20... discharge port, 21... ...Finn, 22...
・Pipe, 24...Suction port.

Claims (1)

【特許請求の範囲】[Claims] 複数枚のフィンに対して複数本のパイプが貫通されこれ
らパイプの端部どうしが連通接続され暖房時の空気の流
れの上流側に位置された第1の熱交換部と、この第1の
熱交換部におけるいずれかのパイプの接続端に形成され
た暖房時の吐出口と、複数枚のフィンに対して複数本の
パイプが貫通されこれらパイプの端部どうしが連通接続
され暖房時の空気の流れの下流側に位置され上記第1の
熱交換部と熱的に分離された第2の熱交換部と、この第
2の熱交換部における2本以上のパイプの接続端にそれ
ぞれ形成された2つ以上の暖房時の吸込口と、上記第1
および第2の熱交換部のそれぞれの量端側に位置するパ
イプの端部を連通接続する接続部とを具備することを特
徴とする熱交換器。
a first heat exchange section in which a plurality of pipes pass through a plurality of fins, the ends of these pipes are connected in communication with each other, and the first heat exchange section is located on the upstream side of the air flow during heating; A discharge port for heating is formed at the connecting end of one of the pipes in the exchange section, and multiple pipes are passed through the plurality of fins, and the ends of these pipes are connected to each other to discharge air during heating. a second heat exchange section located on the downstream side of the flow and thermally separated from the first heat exchange section; and a second heat exchange section formed at the connecting ends of two or more pipes in this second heat exchange section. Two or more heating inlets and the first
and a connecting portion for communicating and connecting the end portions of the pipes located on the respective end sides of the second heat exchange portion.
JP1107557A 1989-04-28 1989-04-28 Heat pump type air conditioner indoor unit heat exchanger Expired - Fee Related JP2907864B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1107557A JP2907864B2 (en) 1989-04-28 1989-04-28 Heat pump type air conditioner indoor unit heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1107557A JP2907864B2 (en) 1989-04-28 1989-04-28 Heat pump type air conditioner indoor unit heat exchanger

Publications (2)

Publication Number Publication Date
JPH02290493A true JPH02290493A (en) 1990-11-30
JP2907864B2 JP2907864B2 (en) 1999-06-21

Family

ID=14462201

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1107557A Expired - Fee Related JP2907864B2 (en) 1989-04-28 1989-04-28 Heat pump type air conditioner indoor unit heat exchanger

Country Status (1)

Country Link
JP (1) JP2907864B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1031801A2 (en) * 1999-02-26 2000-08-30 Matsushita Electric Industrial Co., Ltd. Heat exchanger
US6142220A (en) * 1996-10-02 2000-11-07 Matsushita Electric Industrial Co., Ltd. Finned heat exchanger
WO2007017969A1 (en) * 2005-08-08 2007-02-15 Mitsubishi Denki Kabushiki Kaisha Air conditioner and method of producing air conditioner
RU2689857C1 (en) * 2015-10-23 2019-05-29 Самсунг Электроникс Ко., Лтд. Conditioner

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57157973A (en) * 1981-03-26 1982-09-29 Matsushita Seiko Kk Heat exchanger
JPS6285819U (en) * 1985-11-20 1987-06-01

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57157973A (en) * 1981-03-26 1982-09-29 Matsushita Seiko Kk Heat exchanger
JPS6285819U (en) * 1985-11-20 1987-06-01

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6142220A (en) * 1996-10-02 2000-11-07 Matsushita Electric Industrial Co., Ltd. Finned heat exchanger
EP1031801A2 (en) * 1999-02-26 2000-08-30 Matsushita Electric Industrial Co., Ltd. Heat exchanger
EP1031801A3 (en) * 1999-02-26 2001-12-05 Matsushita Electric Industrial Co., Ltd. Heat exchanger
WO2007017969A1 (en) * 2005-08-08 2007-02-15 Mitsubishi Denki Kabushiki Kaisha Air conditioner and method of producing air conditioner
JP2007046804A (en) * 2005-08-08 2007-02-22 Mitsubishi Electric Corp Air conditioner and method of manufacturing air conditioner
US7703504B2 (en) 2005-08-08 2010-04-27 Mitsubishi Electric Corporation Air conditioner and manufacturing method therefor
JP4506609B2 (en) * 2005-08-08 2010-07-21 三菱電機株式会社 Air conditioner and method of manufacturing air conditioner
RU2689857C1 (en) * 2015-10-23 2019-05-29 Самсунг Электроникс Ко., Лтд. Conditioner

Also Published As

Publication number Publication date
JP2907864B2 (en) 1999-06-21

Similar Documents

Publication Publication Date Title
JP3577863B2 (en) Counter-flow heat exchanger
US6845629B1 (en) Vertical counterflow evaporative cooler
JP2814765B2 (en) Heat exchanger
JP6370399B2 (en) Air conditioner indoor unit
JPH02290493A (en) Heat exchanger
JP2001021284A (en) Heat exchanger
KR101055668B1 (en) Core module of regenerative evaporative air conditioner and its manufacturing method
JP2003214724A (en) Air conditioner
JPH03156221A (en) Air conditioner
JP3758592B2 (en) Recessed ceiling air conditioner
JP2575861B2 (en) Air conditioning ventilation fan
JP4862218B2 (en) Air conditioner
JPH02171591A (en) Laminated type heat exchanger
CN218443466U (en) Heat exchanger with two opposite air flows
JPH05280760A (en) Air-conditioner
CN215982842U (en) Air duct component and air conditioner indoor unit
WO2021000502A1 (en) Air conditioning apparatus
JPH1038302A (en) Indoor unit for air conditioner
JPH0835742A (en) Refrigerant evaporator
JPH04103512U (en) Indoor unit of air conditioner with separate inside and outside
JP6207108B1 (en) Air source heat pump unit
JP2630552B2 (en) Crossflow cooling tower
JPH0534469U (en) Air conditioner
JPH0979794A (en) Orthogonally intersecting flow type cooling tower
JPH11281144A (en) Heat exchanger for air conditioner

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080402

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090402

Year of fee payment: 10

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090402

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees