JPH02290124A - Normally monitoring system for digital type protective relay - Google Patents

Normally monitoring system for digital type protective relay

Info

Publication number
JPH02290124A
JPH02290124A JP1108162A JP10816289A JPH02290124A JP H02290124 A JPH02290124 A JP H02290124A JP 1108162 A JP1108162 A JP 1108162A JP 10816289 A JP10816289 A JP 10816289A JP H02290124 A JPH02290124 A JP H02290124A
Authority
JP
Japan
Prior art keywords
section
value
current
maximum
max
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1108162A
Other languages
Japanese (ja)
Inventor
Yoshihiro Kawasaki
好博 川崎
Hiroaki Shirasago
白砂 浩章
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP1108162A priority Critical patent/JPH02290124A/en
Publication of JPH02290124A publication Critical patent/JPH02290124A/en
Pending legal-status Critical Current

Links

Landscapes

  • Emergency Protection Circuit Devices (AREA)

Abstract

PURPOSE:To decide whether there is an abnormal condition irrespective of sizes of system current or voltage by deriving a difference between the maximum and minimum of three phase of the system current of voltage detected by an analogue input section as the ratio to the maximum. CONSTITUTION:An absolute value operation section 11 derives each absolute value from sample values of detected current IR, IS, IT to be taken-in from an analogue input section. From the maximum(MAX) and minimum(MIN) of the absolute value, a subtraction section 13 derives the difference DIF, a multiplier section 14 derives a value (A) multiplying by a ratio coefficient (epsilon3), a size comparison section 15 derives a value (B) comparing (A) with the sizes of the difference DIF, and a size comparison section 16 compares MAX with the sixes (C) of a setting (epsilon4). A condition section 17 outputs a comparison result of the (B) as the result to decide whether or no there is an abnormal condition, subject to the (C). The decision result is such that the difference between the maximum and minimum of the current value of each phase is more than epsilon3 percent, that is, when it is given by a formula shown in the figure, it is decided that the analogue input section is in an abnormal condition.

Description

【発明の詳細な説明】 A.産業上の利用分野 本発明は、ディジタル形保護継電装置に係り、特にアナ
ログ入力部の常時監視方式に関する。
[Detailed Description of the Invention] A. INDUSTRIAL APPLICATION FIELD The present invention relates to a digital protective relay device, and more particularly to a method for constantly monitoring an analog input section.

B.発明の概要 本発明は、アナログ入力部の正常・異常を検出3l{]
ディジタル信号から判定するにおいて、各相の電流又は
電圧の最大値と最小値の相対比率の大小から判定するこ
とにより、 系統電流又は電圧の大小に拘わらず異常のu fltを
判定できるようにしたものである。
B. Summary of the invention The present invention detects normality/abnormality of an analog input section.
When determining from digital signals, it is possible to determine the abnormal u flt regardless of the magnitude of the system current or voltage by determining from the magnitude of the relative ratio between the maximum and minimum values of current or voltage of each phase. It is.

C,従来の技術 ディジタル形保護継電装置は、例えば第3図に示す構成
にされる。主変流ilSIR,  Is,  17で検
出した線路電流In,  Is.  Irを補助変流器
郎2で変成すると共に抵抗Rによって電圧信号に変換す
る。アナ口グーディジタル変換部3はサンプルボールド
回路4n,4−,4Tによって各電流検出信号をサンプ
ルホールドし、マルチブレクサ5によってザンプルホー
ルド信号を順次取り込み、A/D変換器6によってディ
ジタル信号に変換する。
C. Prior Art A digital protective relay device has the configuration shown in FIG. 3, for example. The line current In, Is. detected at the main transformer current ilSIR, Is. Ir is transformed by an auxiliary current transformer 2 and converted into a voltage signal by a resistor R. The analog/good digital converter 3 samples and holds each current detection signal using the sample bold circuits 4n, 4-, and 4T, sequentially takes in the sample hold signals using the multiplexer 5, and converts them into digital signals using the A/D converter 6. .

保護継電装置本体7はアナ口グーディジタル変換部3か
ら線路電流のディジタル信号を取り込み、零相電流の算
出とその整定値との比較等によって6種保護演算を行う
。これら保護演算には演算機能に応じて線路電,圧を検
出及びディジタル化して取り込む。
The protective relay main body 7 takes in the digital signal of the line current from the analog-to-good digital converter 3, and performs six types of protection calculations by calculating the zero-sequence current and comparing it with a set value. These protection calculations detect and digitize line voltage and voltage according to the calculation function.

上述のようなディジタル形保護継電装置において、誤っ
た保護動作にならないよう保護演算での各種チェック及
びハードウエアの異常監視を行うようにしている。ハー
ドウェア上の異常発生は捕助変流器郎2やアナ口グーデ
ィジタル変換郎3等のアナログ入力部及びしゃ断器トリ
ップ回路(図示省略)等の出力回路に多い。
In the digital protective relay device as described above, various checks are performed in protection calculations and hardware abnormality monitoring is performed to prevent erroneous protection operations. Hardware abnormalities often occur in analog input sections such as the auxiliary current transformer 2 and the analog digital converter 3, and in output circuits such as the breaker trip circuit (not shown).

そこで、従来のアナログ入力部の異常監視には検出信号
に代えて点検信号を入力する隔時点検方式と、検出信号
の挙動から監視する常時監視方式が知られていろ。この
うち、常時監視方式には零相監視方式と逆相監視方式が
ある。零相監視方式は、例えば検出電流In.Ts,I
ア又は検出電圧Vn, Vs, Vtl: ツイテ IR+IS+Itl >ε1 VR+Vs+Vt  >6+ によって異常の有無を判定する。
Therefore, conventional methods for monitoring abnormalities in analog input units include a bi-hourly inspection method in which a check signal is input in place of the detection signal, and a constant monitoring method in which the behavior of the detection signal is monitored. Among these, the constant monitoring method includes a zero-phase monitoring method and a negative-phase monitoring method. For example, the zero-phase monitoring method uses a detection current In. Ts,I
Detection voltages Vn, Vs, Vtl: IR+IS+Itl >ε1 VR+Vs+Vt >6+ It is determined whether there is an abnormality.

一方、逆相監視方式は、 によって判定する。ここで、ε.ε,は主変成部の誤差
やアナログ入力部の誤差さらに零相循環電流分とマージ
ンを考慮して決められ、定格の20〜30%程度にされ
る。
On the other hand, the reverse phase monitoring method is determined by: Here, ε. ε is determined by taking into consideration the error of the main transformation section, the error of the analog input section, the zero-sequence circulating current, and a margin, and is set to about 20 to 30% of the rating.

D.発明が解決しようとする課題 従来の常時監視方式によりアナログ入力部の異常監視を
行う場合、アナログ入力部の1線断線を検出するために
は線路の潮流か判定値ε.ε,で決められる値(定格の
20〜30%)以上あることが必要条件となる。このた
め、潮流が変成器の定格の20〜30%以下である状態
では異常検出が不可能となるし感度ら低下する問題があ
った。
D. Problems to be Solved by the Invention When monitoring abnormalities in the analog input section using the conventional constant monitoring method, in order to detect a disconnection of one wire in the analog input section, the judgment value ε. It is a necessary condition that the value determined by ε (20 to 30% of the rating) or more. Therefore, when the power flow is less than 20 to 30% of the transformer's rating, abnormality detection becomes impossible and sensitivity decreases.

本発明の目的は、線路電流又は電圧の大小に拘わらず異
常の有無を判定できるアナログ入力部のE.課題を解決
するための手段と作用 本発明は、上記目的を達成するため、3相の系統電流又
は電圧をディジタル信号に変換するアナログ入力部の正
常・異常を該ディジタル信号から監視するにおいて、前
記3相の電流又は電圧の最大viMAXと最小値MIN
を求め、比率係数値ε3に対して の成立で前記アナログ入力部の異常と判定するようにし
、系統電流又は電圧が小さくなる場合にもその最大値M
AXに対する最小値と最大値の差の比率の大小から判定
することで該系統電流又は電圧の変化にも一定の判定機
能を持たせる。
It is an object of the present invention to provide an E.sub. Means and Effects for Solving the Problems In order to achieve the above object, the present invention provides a method for monitoring the normality or abnormality of an analog input section that converts three-phase system current or voltage into a digital signal from the digital signal. Maximum viMAX and minimum value MIN of three-phase current or voltage
is determined to be abnormal in the analog input section when it holds true for the ratio coefficient value ε3, and even when the system current or voltage becomes small, the maximum value M
By making a determination based on the magnitude of the ratio of the difference between the minimum value and the maximum value with respect to AX, a certain determination function is provided to changes in the system current or voltage.

F,実施例 常時監視方式を提供することにある。F. Example The objective is to provide a constant monitoring method.

第1図は本発明の一実施例を示すブロック図であり、保
護継電装置本体7による常時監視プログラムの機能ブロ
ックとして示す。絶対値演算部1lはアナログ入力部か
ら取り込んだ検出電流IR,Is,Irのサンプル値か
ら夫々の絶対値を求める。
FIG. 1 is a block diagram showing an embodiment of the present invention, and is shown as a functional block diagram of a constant monitoring program by a protective relay main body 7. As shown in FIG. The absolute value calculation section 1l calculates the absolute value of each of the detected currents IR, Is, and Ir from sample values taken in from the analog input section.

最大最小判定郎!2は絶対値演算部Ilの演算結果l 
rRt,l xsl,l rtlのうち最大値と最小値
を求める。引算郎I3は判定部I2からの最大値MAX
と最小値MINの差DIF’を求める。
Maximum and minimum judgment! 2 is the calculation result l of the absolute value calculation unit Il
Find the maximum and minimum values among rRt, l xsl, and l rtl. Subtraction I3 is the maximum value MAX from judgment part I2
The difference DIF' between and the minimum value MIN is calculated.

乗算部l4は判定;事12からの最大値MAXに比率係
数ε,を乗算した値を求める。大小比較部15は乗算郎
l4の乗算結果と引算部13の引算結果との大小を比較
して異常の存無を判定する。
The multiplier 14 determines a value obtained by multiplying the maximum value MAX from step 12 by the ratio coefficient ε. The magnitude comparison unit 15 compares the magnitude of the multiplication result of the multiplication unit 14 and the subtraction result of the subtraction unit 13 to determine the presence or absence of an abnormality.

大小比較郎16は判定部I2からの最大値MAXと設定
値ε4の大小を比較する。条件部l7は大小比較部16
の比較結果を条件にして大小比較郎?5の比較結果を異
常の有無判定結果として自力する。
A magnitude comparison unit 16 compares the maximum value MAX from the determination unit I2 with the set value ε4. The condition part l7 is the size comparison part 16
Compare the size based on the comparison result? Use the comparison result in step 5 as the result of determining the presence or absence of an abnormality.

こうした構成において、絶対値演算部1lはアナログ人
力郎の検出電流1−,Is,ITの夫々の絶対値を求め
る。この演算は例えば、第2図に示すように、電流■■
の90度毎のサンプル値iR(n−2),iR(n−1
),in(n)からIn I =Jil?(n)X i
R(n)+iR(n − 1)X iR(n − 1)
/J2として各サンプルタイミングで求めることができ
る。これら絶対値の演算結果から、判定部I2による最
大値及び最小値判定結果は、 MAX=ma x(l I Rl .  l Isl 
.  l r7l )MIN=mi n(l IRI 
.l Isl ,   ITI)となる。また乗算部1
4で最大値MAXに比率係数83を乗算した結果と引算
郎13で最大値MAXと最小値MINとの引算結果DI
Fを入力する比較部I5の演算は次の(1)式になる。
In this configuration, the absolute value calculation unit 1l calculates the absolute values of the analog detection currents 1-, Is, and IT. For example, as shown in Figure 2, this calculation
sample values iR(n-2), iR(n-1
), in(n) to In I = Jil? (n) X i
R(n)+iR(n-1)X iR(n-1)
/J2 at each sample timing. From the calculation results of these absolute values, the maximum value and minimum value determination results by the determination unit I2 are as follows: MAX=max(l I Rl . l Isl
.. l r7l )MIN=min(l IRI
.. l Isl , ITI). Also, the multiplication section 1
The result of multiplying the maximum value MAX by the ratio coefficient 83 in 4 and the subtraction result DI of the maximum value MAX and minimum value MIN in subtractor 13
The calculation of the comparator I5 to which F is input is the following equation (1).

max(l IRI .l Isl .l Itl)m
in(l IRI  l lsl.l ITI)≧ε3
・max(l IRI.l Isl,l IT+)ここ
で、比率係数ε3は主変流器IR,  Is.  I丁
の誤差とアナログ人力郎誤差と零相循環電流とマージン
を考慮して決められ、例えば定格の20〜30%にされ
る。
max(l IRI .l Isl .l Itl)m
in(l IRI l lsl.l ITI)≧ε3
・max(l IRI.l Isl,l IT+) Here, the ratio coefficient ε3 is the main current transformer IR, Is. It is determined by taking into account the error of I-cho, the analog error, the zero-phase circulating current, and the margin, and is set to, for example, 20 to 30% of the rating.

上述の(1)式に基づいた判定結果は、各相の電流値の
最大値と最小値の差が最大値の係数ε,バーセント以上
あること、即ち となるときにアナログ入力部の異常と判定する。
The judgment result based on the above equation (1) is that the difference between the maximum and minimum current values of each phase is greater than or equal to the coefficient ε of the maximum value, that is, the analog input section is judged to be abnormal. do.

従って、ブロック11〜15の演算は各相の電流検出値
を相対的に監視することになり、系統電流が大小に変化
ずるもこれに伴って(2)式の分母の最大値ら変化し、
従来の零相又は逆相による監視では検出できない数パー
セントの系統電流状態でも異常検出できる。
Therefore, the calculations in blocks 11 to 15 relatively monitor the detected current values of each phase, and as the grid current changes in magnitude, the maximum value of the denominator in equation (2) changes accordingly.
Abnormalities can be detected even in grid current conditions of several percent, which cannot be detected using conventional zero-phase or negative-phase monitoring.

例えば、R,S相についての異常検出は、ε3一0.2
と設定しておき、llRl>llsfのとき、 In      rsl  ≧εsl  IRIn  
 ≧l  25   Is となって、系統電流IR,Isの比率から判定される。
For example, abnormality detection for R and S phases is ε3-0.2
When llRl>llsf, In rsl ≧εsl IRIn
≧l 25 Is and it is determined from the ratio of the grid currents IR and Is.

同様に、ITRI<11s1のとき、Is    IR
  ≧ε3  Is 1  1RI  ≦0.8  1  Isとなる。
Similarly, when ITRI<11s1, Is IR
≧ε3 Is 1 1RI ≦0.8 1 Is.

次に、比較部I6による最大値MAXと設定値ε,との
比較は、 max(l  IRI,   l  夏 sl,   
l  Itl) ≧ ε4・・・(3) の演算になる。ここで、ε4は定格の数パーセントに設
定され、アナログ人力値が極めて小さくなってその最大
値M’A Xが設定値ε4よりも小さくなるときにはア
ナログ入力部での量子化誤差か大きくなることによる異
常判定を禁止する。即ち、比較部l6の判定式が成立す
るときのみ比較郎I5の判定出力を有効として条件部l
7を通して正常・異常の監視出力を得る。
Next, the comparison unit I6 compares the maximum value MAX and the set value ε, as follows: max(l IRI, l summer sl,
l Itl) ≧ ε4 (3). Here, ε4 is set to several percent of the rating, and when the analog human input value becomes extremely small and its maximum value M'A Prohibit abnormality determination. In other words, the judgment output of the comparator I5 is valid only when the judgment formula of the comparator l6 is established, and the condition part l
Obtain normal/abnormal monitoring output through 7.

なお、系統の実際の事故発生によっても電流IR,Is
,Itのアンバランスが発生し、而述の(1)式が成立
してしまうが、これはアナログ入力部の異常と区別する
ために、条件郎17の出力条件に系統事故の異常処理(
保護動作)に要する時間を上回る遅延要素を付加すれば
良い。
Note that the current IR,Is may also change due to the occurrence of an actual fault in the system.
, It occurs, and Equation (1) described below is established. However, in order to distinguish this from an abnormality in the analog input section, the output condition of conditioner 17 is set to the system fault abnormality processing (
It is sufficient to add a delay element that exceeds the time required for the protection operation.

また、電圧のアナログ入力部の常時監視は実施例の電流
1 tRl,  l tsl,  l ttlを電圧検
出信号に替えたm算によって実現される。
Further, constant monitoring of the voltage analog input section is realized by m calculation in which the currents 1 tRl, l tsl, and l ttl of the embodiment are replaced with voltage detection signals.

G.発明の効果 以上のとおり、本発明によれば、アナログ入力部が検出
する3相のディジタル信号のうち、最大値と最小値の差
を最大値に対する比率として求めて比率係数との大小比
較でアナログ入力部の正常・異常を判定するため、3相
の検出入力が小さい場合にも判定を行うことができ、1
llA′#rlfAも確実に検出できるし、検出感度も
高くすることができる効果がある。
G. Effects of the Invention As described above, according to the present invention, among the three-phase digital signals detected by the analog input section, the difference between the maximum value and the minimum value is determined as a ratio to the maximum value, and the analog signal is calculated by comparing the magnitude with the ratio coefficient. In order to determine whether the input section is normal or abnormal, it is possible to make a determination even when the three-phase detection input is small.
llA'#rlfA can also be detected reliably, and the detection sensitivity can also be increased.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示すブロック図、第2図は
実施例における絶対値演算波形図、第3図はディジタル
形保護u.f1!装置の構成図である。 2・・・補助変成器部、3・・・アナログーディジタル
変換部、7・・・保護継電装置本体、1l・・・絶対値
演算部、l2・・・最大・最小判定部、l3・・・引算
郎、l4・・・乗算部、15.16・・・大小比較部、
l7・・・条件郎。 第2図 絶対値演算波形図 ディノタル形保護継電装R9横伎図
FIG. 1 is a block diagram showing an embodiment of the present invention, FIG. 2 is an absolute value calculation waveform diagram in the embodiment, and FIG. 3 is a digital protection u. f1! It is a block diagram of a device. 2... Auxiliary transformer section, 3... Analog-digital conversion section, 7... Protective relay device main body, 1l... Absolute value calculation section, l2... Maximum/minimum judgment section, l3. ...Hikisakuro, l4... Multiplying section, 15.16... Size comparison section,
l7...Condition. Figure 2: Absolute value calculation waveform diagram Dinotal type protective relay R9 Yokogi diagram

Claims (1)

【特許請求の範囲】[Claims] (1)3相の系統電流又は電圧をディジタル信号に変換
するアナログ入力部の正常・異常を該ディジタル信号か
ら監視するにおいて、前記3相の電流又は電圧の最大値
MAXと最小値MINを求め、比率係数値ε_3に対し
て MAX−MIN/MAX≧ε_3 の成立で前記アナログ入力部の異常と判定することを特
徴とするディジタル保護継電装置の常時監視方式。
(1) In monitoring the normality or abnormality of an analog input section that converts three-phase system current or voltage into a digital signal from the digital signal, find the maximum value MAX and minimum value MIN of the three-phase current or voltage, A constant monitoring system for a digital protective relay device, characterized in that it is determined that the analog input section is abnormal if MAX-MIN/MAX≧ε_3 holds true for a ratio coefficient value ε_3.
JP1108162A 1989-04-27 1989-04-27 Normally monitoring system for digital type protective relay Pending JPH02290124A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1108162A JPH02290124A (en) 1989-04-27 1989-04-27 Normally monitoring system for digital type protective relay

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1108162A JPH02290124A (en) 1989-04-27 1989-04-27 Normally monitoring system for digital type protective relay

Publications (1)

Publication Number Publication Date
JPH02290124A true JPH02290124A (en) 1990-11-30

Family

ID=14477539

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1108162A Pending JPH02290124A (en) 1989-04-27 1989-04-27 Normally monitoring system for digital type protective relay

Country Status (1)

Country Link
JP (1) JPH02290124A (en)

Similar Documents

Publication Publication Date Title
US7196884B2 (en) Apparatus and method for detecting the loss of a current transformer connection coupling a current differential relay to an element of a power system
US5365396A (en) Negative sequence directional element for a relay useful in protecting power transmission lines
JP3808624B2 (en) System protection relay device
US8395871B2 (en) Device and method for detecting faulted phases in a multi-phase electrical network
US7233470B2 (en) Distance relay apparatus
JPS59226615A (en) Offset compensator
JP3532182B2 (en) Ground fault detection device for ungrounded electric circuit, ground fault protection relay using the same, and ground fault detection method
JPH02290124A (en) Normally monitoring system for digital type protective relay
JP2904748B2 (en) Ground fault protection device
JP3191527B2 (en) One-phase disconnection continuous monitoring method
JP2957187B2 (en) Secondary circuit disconnection detector for instrument transformer
JP3160612B2 (en) Power system insulation deterioration detection method and apparatus
JP2866767B2 (en) AC feeder circuit failure selection relay for railways
JP3207643B2 (en) Short circuit accident high-speed judgment circuit
JPH09168226A (en) Protective relay
JP2777266B2 (en) Ratio differential relay
KR0146148B1 (en) Input circuit of 3phase overcurrent relay
JP2003092825A (en) Ground fault protective relay
JP2000261952A (en) Protective relay
JP2979813B2 (en) Distance relay
JP3128584B2 (en) Ground fault line detection method and ground fault line cutoff method
JPH0345116A (en) Protective relay
JPH073449B2 (en) Ground fault current direction determination device
JPH11225426A (en) Digital protective relay
JP3532342B2 (en) Digital type voltage balanced relay