JPH02288072A - Solid electrolyte fuel cell module - Google Patents

Solid electrolyte fuel cell module

Info

Publication number
JPH02288072A
JPH02288072A JP1108185A JP10818589A JPH02288072A JP H02288072 A JPH02288072 A JP H02288072A JP 1108185 A JP1108185 A JP 1108185A JP 10818589 A JP10818589 A JP 10818589A JP H02288072 A JPH02288072 A JP H02288072A
Authority
JP
Japan
Prior art keywords
fuel cell
electrode
current collector
fuel
collector tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1108185A
Other languages
Japanese (ja)
Other versions
JP2816471B2 (en
Inventor
Hiroshi Yamanouchi
山之内 宏
Ryuichi Okiayu
置鮎 隆一
Shotaro Yoshida
昭太郎 吉田
Shoichi Hasegawa
正一 長谷川
Masayuki Tan
丹 正之
Masakatsu Nagata
雅克 永田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP1108185A priority Critical patent/JP2816471B2/en
Publication of JPH02288072A publication Critical patent/JPH02288072A/en
Application granted granted Critical
Publication of JP2816471B2 publication Critical patent/JP2816471B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PURPOSE:To heighten the voltage per one stack by connecting a plurality of fuel cell single bodies in series in their circumferential direction between an inside electron collecting tube and an outside electron collecting tube. CONSTITUTION:Hydrogen is supplied to a space inside an outside electron collecting tube 3 and oxygen is supplied as oxidizer to the hollow portion of each fuel cell single body 4, so that in each single body 4 water is produced by chemical reaction of hydrogen with oxygen and also that electrons are collected to the side of an oxygen electrode 6 which is an anode. The electrons collected by the electrode 6 are caused to flow from an interconnector 9 to other adjacent fuel cell single bodies 4 via a conductive fiber felt 24 and an electron collecting plate 23 and through the conductive fiber felt 24. Thus, by connecting six single bodies 4 in series, electromotive force of individual single cells 4 is accumulated so that electric power with a high voltage is taken out.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、固体電解質を使用した燃料電池のうち、内
部集電子管と外部集電子管との間に複数の燃料電池単体
を配設した構造の固体電解質型燃料電池モジュールに関
するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to a fuel cell using a solid electrolyte, in which a plurality of individual fuel cells are arranged between an internal current collector tube and an external current collector tube. The present invention relates to a type fuel cell module.

従来の技術 この種の電池の原理的な構成は、イオン伝導性のある固
体の電解質を挟んで酸素や空気などの酸化剤と水素ガス
などの還元剤とを配置し、その酸化剤および還元剤をそ
れぞれ電極とするものであり、電解質を介した酸化還元
反応に伴って電力を得るものである。このような構成の
燃料電池単体(セル)の1個のみで得られる電力は少な
いから、実用上は、特願平1−11433Mの明II[
l閤に記載されているように、複数の燃料電池単体をイ
ンターコネクタで接続して1個の固体電解質型燃料電池
(スタック)を41!1成し、そのスタックを更に複数
個接続して必要とする電圧・電流が得られるようにして
いる。第2図は多数のスタックからなる集合型燃料電池
(第4図参照)を構成する1ユニツトとしてモジュラ化
された従来の固体電解質型燃料電池の一例を示すもので
、ここに示す固体電解質型燃料電池1は、同心円筒状に
設けられた金属製の内部集電子管2と外部集電子管3と
、この両者間に配設された6個の燃料電池単体4とから
構成されている。
Conventional technology The basic structure of this type of battery is that an oxidizing agent such as oxygen or air and a reducing agent such as hydrogen gas are placed between an ionically conductive solid electrolyte. Each serves as an electrode, and electricity is obtained through redox reactions via an electrolyte. Since the amount of power that can be obtained from a single fuel cell with such a configuration is small, in practical use, the method described in Japanese Patent Application No. 1-11433M, Mei II [
As described in 1, multiple single fuel cells are connected with an interconnector to form one solid oxide fuel cell (stack), and multiple stacks are further connected to form a single solid oxide fuel cell (stack). This ensures that the desired voltage and current can be obtained. Figure 2 shows an example of a conventional solid oxide fuel cell that is modularized as one unit constituting an aggregate fuel cell (see Figure 4) consisting of many stacks. The battery 1 is composed of an internal current collector tube 2 and an external current collector tube 3 made of metal, which are provided in a concentric cylindrical shape, and six fuel cells 4 disposed between the two.

前記各燃料電池単体4は、例えば第3図に示すように、
イツトリア安定化ジルコニア(YSZ)等を管状に形成
した固体電解質5と、この固体電解質5の内側に形成さ
れた酸凧電4fi6と、外側に形成された燃料電極7と
の3層#ll造となっており、酸素電極6は、酸素イオ
ン透過性を有する酸化物、例えばペロプスカイト型ラン
タン系複合酸化物を木材とする多孔質体であり、また燃
料層44ii7は、ニッケル(Ni)等の金属またはニ
ッケル等の金属とジルコニアとのサーメットの多孔質体
から形成されている。また、最外層の前記燃料電極7と
中間層の固体電解質5との両者には、長手方向に連続す
る1本のスリット8が形成され、このスリット8内には
インターコネクタ9が嵌装されており、このインターコ
ネクタ9は、前記最外層の燃料電極7と非接触状態で、
かつ最内層の酸素電極6と接触した状態に設けられてい
る。そして、酸素電極の内側の中空部分には酸素(02
)を含んだ空気が供給され、また燃料電極の外側には水
素(H2) 、−酸化炭素(Co)等の燃料が供給され
るようになっている。
Each fuel cell unit 4 has, for example, as shown in FIG.
A three-layer structure consisting of a solid electrolyte 5 made of yttoria stabilized zirconia (YSZ) etc. in a tubular shape, an acid kite electrode 4fi6 formed inside this solid electrolyte 5, and a fuel electrode 7 formed on the outside. The oxygen electrode 6 is a porous body made of an oxide having oxygen ion permeability, such as a perovskite-type lanthanum-based composite oxide, and the fuel layer 44ii7 is made of a metal such as nickel (Ni). Alternatively, it is formed from a porous body of cermet made of metal such as nickel and zirconia. Further, a single slit 8 continuous in the longitudinal direction is formed in both the fuel electrode 7 in the outermost layer and the solid electrolyte 5 in the intermediate layer, and an interconnector 9 is fitted into the slit 8. This interconnector 9 is in a non-contact state with the outermost fuel electrode 7,
It is also provided in contact with the oxygen electrode 6 in the innermost layer. Then, oxygen (02
) is supplied, and fuel such as hydrogen (H2) and -carbon oxide (Co) is supplied to the outside of the fuel electrode.

そして、6個の燃料電池単体4は内部集電子管2の外周
を被包するニッケル製の4電!a稚フエルト10にイン
ターコネクタ9をそれぞれ当接するとともに、外部集電
子管3の内周面に配設されたニッケル製の導電ranフ
ェルト11に外周の燃料電極7をそれぞれ当接して並列
に接続され、これら6個の燃料電池単体4で1個の固体
電解質型燃料電池(スタック)1が構成され、このスタ
ック1を20個個直列に接続して集合型燃料電池が構成
されている(第4図参照)。そして内部集電子管2は、
外部集電子管3に対して絶縁膜12aで絶縁されている
電極板(第4図でそれぞれ上側に位置する電極板)12
に所定の手段(図示せず)によって導通されており、し
たがって各燃料電池単体4の酸素電極6の内側に空気を
流通させ、かつその燃料電極7の外周に水素ガスを流通
させることにより、固体電解質5を介した酸化・還元反
応により第4図の上側の電極板12がViA極となり、
下側の電極板12が陰極となる。
And, the six fuel cells 4 are made of nickel and are made of nickel and cover the outer periphery of the internal current collector tube 2! a The interconnectors 9 are brought into contact with the young felts 10, and the fuel electrodes 7 on the outer periphery are brought into contact with the nickel conductive felts 11 arranged on the inner peripheral surface of the external current collector tube 3, so that they are connected in parallel. These six individual fuel cells 4 constitute one solid oxide fuel cell (stack) 1, and 20 stacks 1 are connected in series to constitute an aggregate fuel cell (Fig. 4). reference). And the internal current collector tube 2 is
Electrode plates 12 (electrode plates located on the upper side in FIG. 4) are insulated from the external current collector tube 3 by an insulating film 12a.
Therefore, by passing air inside the oxygen electrode 6 of each fuel cell unit 4 and passing hydrogen gas around the outer periphery of the fuel electrode 7, solid Due to the oxidation/reduction reaction via the electrolyte 5, the upper electrode plate 12 in FIG. 4 becomes a ViA electrode,
The lower electrode plate 12 becomes a cathode.

発明が解決しようとする課題 したがって、前述した従来の固体電解質型燃料電池1は
、内部集電子管2および外部集電子管3が金属製のため
、電池全体の均熱化が図れて高発電特性が保持されると
ともに、機械的強度に優れ、また集合型燃料電池に組立
てる際に、組立てが容易である等の優れた点を有してい
るが、一方、固体電解質型燃料電池(スタック)1の各
燃料電池単体4からは約1Vの電圧しか得られず、また
この燃料電池単体4を並列に接続している各スタック1
も、発生する電圧は約1Vと低いという問題があり、こ
のスタック1を多数接続して構成する場合に集合型燃料
電池が大型化するという問題があった。はだ、電圧が低
い一方、その電流は100Aまで達するといわれ、その
ため低電圧・高電流となり、発生した電流が、スタック
1の各集電子管2.3を流れる際の抵抗ロスが大きくな
るという問題があり、この抵抗ロスを減少させるために
も電圧を高くすることが望まれていた。
Problems to be Solved by the Invention Therefore, in the conventional solid oxide fuel cell 1 described above, since the internal current collector tube 2 and the external current collector tube 3 are made of metal, the temperature of the entire battery can be equalized and high power generation characteristics can be maintained. In addition, it has excellent mechanical strength and is easy to assemble when assembled into a collective fuel cell. Only about 1V of voltage can be obtained from the single fuel cell 4, and each stack 1 in which the single fuel cells 4 are connected in parallel
However, there is a problem that the generated voltage is as low as about 1 V, and when a large number of stacks 1 are connected, the aggregate fuel cell becomes large. However, while the voltage is low, the current is said to reach up to 100A, so the problem is that the voltage is low and the current is high, and the resistance loss increases when the generated current flows through each collector tube 2.3 of the stack 1. Therefore, it has been desired to increase the voltage in order to reduce this resistance loss.

この発明は上記事情に鑑みなされたもので、高電圧を発
生する固体電解質型燃料電池モジュールを提供すること
を目的としている。
This invention was made in view of the above circumstances, and an object thereof is to provide a solid oxide fuel cell module that generates high voltage.

課題を解決するための手段 この発明は、上記の目的を達成するために、空間を存し
て同心円筒状に設けられた内部集電子管と外部集電子管
との間に、管状の固体電解質の内側に酸素電極または燃
料電極を、外側に燃料電極または酸素電極を設けた燃料
電池単体を複数個配設した固体電解質型燃料電池モジュ
ールにおいて、前記複数個の燃料電池単体が周方向に直
列に接続されていることを特徴としている。
Means for Solving the Problems In order to achieve the above-mentioned object, the present invention provides a structure in which a tube-shaped solid electrolyte is connected between an inner current collector tube and an outer current collector tube that are provided in a concentric cylindrical shape with a space therebetween. In a solid oxide fuel cell module in which a plurality of fuel cells each having an oxygen electrode or a fuel electrode on the outside and a plurality of fuel cells each having an oxygen electrode or a fuel electrode on the outside, the plurality of fuel cells are connected in series in the circumferential direction. It is characterized by

作   用 上記のように固体電解質型燃料電池モジュールの同心状
に設けられた内部集電子管と外部集電子管との間に、複
数個の燃料電池単体を、周方向に直列に接続することに
より、内部集電子管と外部集電子管との間に複数個の燃
料電池単体を配設した構造の固体電解質型燃料電池の持
つ均熱性、組立て性に優れ、礪械的強度も大きい等の特
徴を損なうことなく、固体電解質型燃料電池モジュール
の1スタック当りの電圧を高くすることができる。
Function As described above, by connecting a plurality of individual fuel cells in series in the circumferential direction between the internal current collector tube and the external current collector tube that are provided concentrically in the solid oxide fuel cell module, internal Without sacrificing the characteristics of solid oxide fuel cells, which have a structure in which multiple fuel cells are arranged between a current collector tube and an external current collector tube, such as excellent heat uniformity, ease of assembly, and high mechanical strength. , the voltage per stack of solid oxide fuel cell modules can be increased.

実  施  例 以下、この発明の一実施例を第1図に基づいて説明する
。なお、前記従来例と同一の構成部分には同一の符号を
付して、その詳細な説明を省略する。
Embodiment Hereinafter, an embodiment of the present invention will be described based on FIG. Note that the same components as in the conventional example are given the same reference numerals, and detailed explanation thereof will be omitted.

固体電解質型燃料電池21は、同心円筒状に設けられた
内部集電子管2と外部集電子管3とを備えており、この
内部集電子i!2の外周面および外部集電子管3の内周
面とは、それぞれセラミックan等の絶縁Ili維フェ
ルト22で覆われており、また、これら両者間の空間は
、それぞれ放射方向に配設された金属製の5枚の集電子
板23と、絶縁プレート25を介在させて積@された陽
極端子板26および陰極端子板27とによって円周方向
をほぼ6等分され、分割された各区画内には燃料電池単
体4が1個ずつ収納されている。
The solid oxide fuel cell 21 includes an internal current collector tube 2 and an external current collector tube 3 provided in a concentric cylindrical shape, and this internal current collector i! The outer circumferential surface of the external current collector tube 2 and the inner circumferential surface of the external current collector tube 3 are each covered with an insulating Ili fiber felt 22 such as ceramic an, and the space between the two is covered with a metal layer disposed in the radial direction. The circumferential direction is divided into approximately 6 equal parts by five current collector plates 23 made of aluminum and an anode terminal plate 26 and a cathode terminal plate 27 stacked with an insulating plate 25 interposed therebetween. In each case, one fuel cell unit 4 is housed.

前記各燃料電池単体4は、イツトリア安定化ジルコニア
(YSZ)等を管状に形成した固体電解質5と、この固
体電解質5の内側に形成された酸素電極6と、外側に形
成された燃料電#A7どの3層構造となっており、酸素
電極6は、酸素イオン透過性を有する酸化物、例えばL
aMnO3等のペロブスカイト型ランタン系複合酸化物
を木材とする多孔質体であり、また燃料電極7は、ニッ
タ。
Each fuel cell unit 4 includes a solid electrolyte 5 made of yttria-stabilized zirconia (YSZ) or the like in a tubular shape, an oxygen electrode 6 formed inside this solid electrolyte 5, and a fuel cell #A7 formed outside. The oxygen electrode 6 is made of an oxide having oxygen ion permeability, such as L
It is a porous body made of perovskite-type lanthanum-based composite oxide such as aMnO3 as wood, and the fuel electrode 7 is made of Nitta.

ル等の金属またはニッケル等の金属とジルコニアとのサ
ーメットの多孔質体から形成されている。
It is formed from a porous body of metal such as aluminum or cermet made of metal such as nickel and zirconia.

また最外層の前記燃料電極7と中間層の固体電解質5と
の両者には、長手方向に連続する1本のスリットが形成
され、このスリット内にはインターコネクタ9が嵌装さ
れており、このインターコネクタ9は、前記最外層の燃
料電極7と非接触状態で、かつ最内層の酸素電極7と接
触した状態に設けられている。
Further, a slit continuous in the longitudinal direction is formed in both the fuel electrode 7 in the outermost layer and the solid electrolyte 5 in the intermediate layer, and an interconnector 9 is fitted into this slit. The interconnector 9 is provided in a non-contact state with the outermost fuel electrode 7 and in contact with the innermost oxygen electrode 7.

そして各燃料電池単体4は、内部集電子管2の外周と内
部集電子管3の内周にそれぞれ設けられた絶縁4M維フ
ェルト22.22により両側を挾持されるとともに、そ
のインターコネクタ9を前記集電子板23(または陽極
端子板26)に導電繊維フェルト24を介して接続され
るとともに、燃料電池単体4の外周の燃料電極7上で、
かつ前記インターコネクタ9とこの燃料電池単体4の中
心とを結、S−直線の延長上となる部分、すなわちイン
ターコネクタ9に直径上で対向する部分を、同様に4電
S維フエルト24を介して他の集電子板23(または陰
極端子板27)に接続されて、611!]の燃料電池単
体4が直列に接続され、また陽極端子板26は外周側の
絶Ra1ftlフェルト22に形成されたスリットを介
して外部集電子管3に接続され、また陰極端子板27は
内周側の絶縁繊維フェルト22に形成されたスリットを
介して内部集電子管2に接続されている。
Each fuel cell unit 4 is sandwiched on both sides by insulating 4M fiber felts 22 and 22 provided on the outer periphery of the internal current collector tube 2 and the inner periphery of the internal current collector tube 3, respectively, and the interconnector 9 is connected to the collector It is connected to the plate 23 (or the anode terminal plate 26) via the conductive fiber felt 24, and on the fuel electrode 7 on the outer periphery of the fuel cell unit 4,
In addition, the interconnector 9 and the center of the fuel cell unit 4 are connected, and a portion that is an extension of the S-line, that is, a portion that is diametrically opposite to the interconnector 9, is similarly connected through the four-electric S fiber felt 24. and connected to another current collector plate 23 (or cathode terminal plate 27), 611! ] are connected in series, the anode terminal plate 26 is connected to the external current collector tube 3 through a slit formed in the Ra1ftl felt 22 on the outer circumferential side, and the cathode terminal plate 27 is connected on the inner circumferential side. It is connected to the internal current collector tube 2 through a slit formed in the insulating fiber felt 22.

そして、これら6個の燃料電池単体4で1@の固体電解
質型態n電池(スタック)1が構成され、ざらにスタッ
ク1を20個個直列に接続して乗台型燃料電池に組立て
られるとともに、各燃n電池単体4の酸素電極6の内側
の中空部分には酸素(02)を含んだ空気が供給され、
また燃料電極7の外側には水素(H2)が供給されるよ
うになっている。
These 6 individual fuel cells 4 constitute 1 @ solid electrolyte type n battery (stack) 1, and roughly 20 stacks 1 are connected in series and assembled into a platform fuel cell. , air containing oxygen (02) is supplied to the hollow part inside the oxygen electrode 6 of each single fuel N battery 4,
Further, hydrogen (H2) is supplied to the outside of the fuel electrode 7.

このように、6個の燃料電池単体4を内部集電子管2と
外部集電子管3との間に、それぞれ絶縁SFLフェルト
22.22を介して挟持するとともに、インターコネク
タ9および燃料電極7の外周部をそれぞれ4電繊維フェ
ルト23.23を介して接続することにより、多孔質で
強度の小さい画電極6,7および固体電解質5とからな
る各燃料電池単体4を緩衝するとともに、熱膨張による
外径変化時の各燃料電池単体4の破損およびインターコ
ネクタ9および燃料電極7の集電子板23゜23との接
触不良の発生を防止するようになっている。
In this way, the six fuel cells 4 are sandwiched between the internal current collector tube 2 and the external current collector tube 3 via the insulating SFL felts 22 and 22, respectively, and the outer periphery of the interconnector 9 and the fuel electrode 7 is By connecting the 4 electric fiber felts 23 and 23 respectively, each fuel cell unit 4 consisting of the porous and low-strength image electrodes 6 and 7 and the solid electrolyte 5 is buffered, and the outer diameter due to thermal expansion is This is to prevent damage to each fuel cell unit 4 and poor contact between the interconnector 9 and the fuel electrode 7 with the current collector plates 23 and 23 during the change.

次に、上記のように構成されるこの実施例の作用を説明
する。
Next, the operation of this embodiment configured as described above will be explained.

固体電解質型燃料電池1は、水素を燃料として外部集電
子管3の内側の空間に供給するとともに、各燃料電池単
体4の中空部に酸素を酸化剤として供給すると、各燃料
電池単体4内において、イオン導電性の固体電解質5を
介して水素(H2)と酸素(02)とが化学反応して水
(H20>が生成されるとともに、反応時の自由エネル
ギに相当する電子が陽極である酸素@極6側に捕集され
る。
In the solid oxide fuel cell 1, when hydrogen is supplied as a fuel to the space inside the external current collector tube 3, and oxygen is supplied as an oxidizing agent to the hollow part of each fuel cell unit 4, in each fuel cell unit 4, Hydrogen (H2) and oxygen (02) chemically react through the ionic conductive solid electrolyte 5 to generate water (H20>), and the electrons corresponding to the free energy during the reaction are used as an anode, oxygen@ It is collected on the pole 6 side.

そして、各酸素電極6に捕集された電子はそれぞれイン
ターコネクタ9から導電繊維フェルト24および集電子
板23を介してそれぞれ隣接する別の燃料電池単体4に
導電N#ltフェルト24を経由して流れる。
The electrons collected in each oxygen electrode 6 are then transferred from the interconnector 9 to another adjacent fuel cell unit 4 via the conductive fiber felt 24 and current collector plate 23 via the conductive N#lt felt 24. flows.

したがって、6個の燃料電池単体4が直列に接続される
ことにより、個々の燃料電池単体4の起電力が積算され
て高電圧の電力を取出すことができる。
Therefore, by connecting the six fuel cells 4 in series, the electromotive forces of the individual fuel cells 4 are integrated, and high voltage power can be extracted.

このとき、内部集電子管2の外周面と外部集電子管3の
内周面とをそれぞれ絶縁繊維フェルト24で覆っである
ので、各燃料電池単体4が内部集電子管2および外部集
電子管3と直接接触づることよって並列接続となるのを
防止されている。また、直列に接続される各燃料電池1
t1体4の接続点が、11電子板23を用いることによ
って、各燃料電池単体4の外周面と、その中心を通る平
面との交差する部分、すなわち、各燃料電池単体4のイ
ンターコネクタ9と、この燃料電池単体4の燃料電極7
の外周面で、この燃料電池単体4の前記インターコネク
タ9と中心とを結ぶ直線の延長線上となる部分とにおい
て、導電m維フェルト24を介してそれぞれ集電子板2
3(または端子板26゜27)にそれぞれ接続されてい
るため、各燃料電池単体4は、その円形断面が接続点に
おいて対称となるように分割され、各燃料電池単体4内
の電流分布が対称となり、非対称に分割された場合に生
じる内部抵抗の増大、換言すれば電流密度が部分的に大
きくなることに起因する内部抵抗の増大を防止している
At this time, since the outer peripheral surface of the internal current collector tube 2 and the inner peripheral surface of the external current collector tube 3 are each covered with an insulating fiber felt 24, each fuel cell unit 4 comes into direct contact with the internal current collector tube 2 and the external current collector tube 3. This prevents parallel connections. In addition, each fuel cell 1 connected in series
By using the 11 electronic board 23, the connection point of the t1 body 4 is located at the intersection of the outer peripheral surface of each fuel cell unit 4 and a plane passing through its center, that is, the interconnector 9 of each fuel cell unit 4. , the fuel electrode 7 of this fuel cell unit 4
On the outer peripheral surface of the single fuel cell unit 4, a current collector plate 2 is connected via a conductive m-fiber felt 24 at a portion that is an extension of a straight line connecting the interconnector 9 and the center of the single fuel cell unit 4.
3 (or terminal plates 26° and 27), each fuel cell unit 4 is divided so that its circular cross section is symmetrical at the connection point, and the current distribution within each fuel cell unit 4 is symmetrical. This prevents an increase in internal resistance caused by asymmetric division, in other words, an increase in internal resistance caused by a partial increase in current density.

なお、上記実施例においては、内部集電子管2の外周と
外部集電子管31の内周とに、絶縁S維フェルト22を
それぞれ設けて、燃料電池単体4の並列接続を防止して
いるが、この絶縁S維フェルト22の代りに、内部集電
子管2の外周と外部集電子管3の内周とに絶縁コーティ
ングを施しても良い。
In the above embodiment, an insulating S fiber felt 22 is provided on the outer periphery of the internal current collector tube 2 and the inner periphery of the external current collector tube 31 to prevent parallel connection of the fuel cells 4. Instead of the insulating S fiber felt 22, an insulating coating may be applied to the outer periphery of the internal current collector tube 2 and the inner periphery of the external current collector tube 3.

また、上記実施例においては、隣接する燃料電池単体4
,4を直列に接続するのに集電子板23を用いた場合に
ついて説明したが、この集電子板23を用いずに、各燃
料電池単体11をリード線や3#電lli維フエルト等
の導電部材を介して直列に接aVることもできる。
In addition, in the above embodiment, the adjacent fuel cell unit 4
, 4 are connected in series, but instead of using the current collector plate 23, each fuel cell unit 11 is connected to a conductive wire such as a lead wire or 3# electric fiber felt. It is also possible to connect aV in series via a member.

発明の詳細 な説明したようにこの発明の固体電解質型燃料電池モジ
ュールは、同心円筒状に設けられた内部集電子管と外部
集電子管との間に、複数の固体電解質の内側にM素電極
または燃料電極を、外側に燃料電極または酸素電極を設
けた燃料電池単体を複数個配設した固体電解質型燃料電
池モジュールにおいて、前記複数個の燃料電池単体を周
方向に直列に接続したので、各固体電解質型燃料電池モ
ジュールの出力電圧を高めることができる。
DETAILED DESCRIPTION OF THE INVENTION As described in detail, the solid oxide fuel cell module of the present invention has M elementary electrodes or fuel inside a plurality of solid electrolytes between an internal current collector tube and an external current collector tube provided in a concentric cylindrical shape. In a solid electrolyte fuel cell module in which a plurality of fuel cells each having a fuel electrode or an oxygen electrode provided on the outside are arranged, the plurality of fuel cells are connected in series in the circumferential direction, so that each solid electrolyte It is possible to increase the output voltage of a type fuel cell module.

また、各燃料電池単体同士の接続部、づなわちインター
コネクタと他の燃料電池単体のインターコネクタが導通
する外周箇所とを、各燃料電池単体の直径上で対称とな
る位置とすることにより、各燃料電池単体の内部抵抗を
低減させ、モジュール全体としての出力増大を図ること
ができる。
In addition, by arranging the connection parts between each fuel cell unit, that is, the outer circumferential portion where the interconnector and the interconnector of another fuel cell unit are electrically connected, to be at symmetrical positions on the diameter of each fuel cell unit, By reducing the internal resistance of each individual fuel cell, it is possible to increase the output of the module as a whole.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例を示す断面正面図、第2図
は従来の燃料電池の断面正面図、第3図は燃料電池lい
体の斜視図、第4図は集合型燃料電池の断面正面図であ
る。 2・・・内部集電子管 3・・・外部!電子管、 4・
・・燃料電池単体、 5・・・固体電解質、 6・・・
酸素電極、 7・・・燃料@極、 9・・・インターコ
ネクタ、21・・・固体電解質型燃料電池、 22・・
・絶縁41雑フェルト、 フェルト、 端子板、 23・・・集電子板、 24・・・導電繊維25・・・
絶縁プレート、 26・・・陽極27・・・陰極端子板
Fig. 1 is a cross-sectional front view showing an embodiment of the present invention, Fig. 2 is a cross-sectional front view of a conventional fuel cell, Fig. 3 is a perspective view of a fuel cell body, and Fig. 4 is a collective fuel cell. FIG. 2...Internal current collector tube 3...External! electron tube, 4.
...Fuel cell alone, 5...Solid electrolyte, 6...
Oxygen electrode, 7...Fuel@electrode, 9...Interconnector, 21...Solid electrolyte fuel cell, 22...
・Insulation 41 Miscellaneous felt, felt, terminal board, 23... Current collector board, 24... Conductive fiber 25...
Insulating plate, 26... Anode 27... Cathode terminal plate.

Claims (3)

【特許請求の範囲】[Claims] (1)空間を存して同心円筒状に設けられた内部集電子
管と外部集電子管との間に、管状の固体電解質の内側に
酸素電極または燃料電極を、外側に燃料電極または酸素
電極を設けた燃料電池単体を複数個配設した固体電解質
型燃料電池モジュールにおいて、前記複数個の燃料電池
単体が周方向に直列に接続されていることを特徴とする
固体電解質型燃料電池モジュール。
(1) An oxygen electrode or a fuel electrode is provided inside the tubular solid electrolyte, and a fuel electrode or oxygen electrode is provided outside the tubular solid electrolyte between an internal current collector tube and an external current collector tube that are provided in a concentric cylindrical shape with a space between them. What is claimed is: 1. A solid oxide fuel cell module in which a plurality of single fuel cells are arranged, characterized in that the plurality of single fuel cells are connected in series in a circumferential direction.
(2)前記複数個の燃料電池単体のそれぞれが、内側の
酸素電極または燃料電極に導通されかつ外周に突出した
インターコネクタを有し、かつ周方向に互いに隣接する
各燃料電池単体のうちの一方の燃料電池単体におけるイ
ンターコネクタに直径上で対向する外周箇所に導電性部
材を介して直列に接続されていることを特徴とする請求
項1記載の固体電解質型燃料電池モジュール。
(2) Each of the plurality of fuel cell units has an interconnector that is electrically connected to the inner oxygen electrode or fuel electrode and protrudes from the outer periphery, and one of the fuel cell units adjacent to each other in the circumferential direction. 2. The solid oxide fuel cell module according to claim 1, wherein the solid oxide fuel cell module is connected in series via a conductive member to an outer peripheral portion diametrically opposed to the interconnector of the single fuel cell.
(3)前記導電性部材として、金属プレートが使用され
ていることを特徴とする請求項2記載の固体電解質型燃
料電池モジュール。
(3) The solid oxide fuel cell module according to claim 2, wherein a metal plate is used as the conductive member.
JP1108185A 1989-04-27 1989-04-27 Solid oxide fuel cell module Expired - Fee Related JP2816471B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1108185A JP2816471B2 (en) 1989-04-27 1989-04-27 Solid oxide fuel cell module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1108185A JP2816471B2 (en) 1989-04-27 1989-04-27 Solid oxide fuel cell module

Publications (2)

Publication Number Publication Date
JPH02288072A true JPH02288072A (en) 1990-11-28
JP2816471B2 JP2816471B2 (en) 1998-10-27

Family

ID=14478155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1108185A Expired - Fee Related JP2816471B2 (en) 1989-04-27 1989-04-27 Solid oxide fuel cell module

Country Status (1)

Country Link
JP (1) JP2816471B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999039396A1 (en) * 1998-02-03 1999-08-05 Siemens Westinghouse Power Corporation Connections for solid oxide fuel cells

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999039396A1 (en) * 1998-02-03 1999-08-05 Siemens Westinghouse Power Corporation Connections for solid oxide fuel cells

Also Published As

Publication number Publication date
JP2816471B2 (en) 1998-10-27

Similar Documents

Publication Publication Date Title
JPH0159705B2 (en)
US4490444A (en) High temperature solid electrolyte fuel cell configurations and interconnections
US8323845B2 (en) Solid oxide electrolyte fuel cell plate structure, stack and electrical power generation unit
JPS60100377A (en) Fuel battery
JP2790666B2 (en) Fuel cell generator
JP2818944B2 (en) Solid oxide fuel cell module
JPH02288072A (en) Solid electrolyte fuel cell module
JP2012059707A (en) Solid oxide fuel cell module
JP2816474B2 (en) Solid oxide fuel cell module
JP2783926B2 (en) Single cell of solid oxide fuel cell and power generator using the same
JP3688305B2 (en) Cylindrical solid electrolyte fuel cell
US20130078546A1 (en) Solid oxide fuel cell and solid oxide fuel cell module
JP2933227B2 (en) Solid oxide fuel cell module
JP2013257973A (en) Solid oxide fuel cell stack
JPH0359956A (en) Fuel battery generator
JP2799880B2 (en) Fuel cell connector and fuel cell structure
JPH10106611A (en) Solid electrolytic fuel cell
JP2843995B2 (en) Structure of solid oxide fuel cell
JPH03236161A (en) Solid electrolyte type fuel cell
JP2777725B2 (en) Solid electrolyte type cylindrical fuel cell unit and its manufacturing method
JP2769629B2 (en) Cylindrical solid electrolyte fuel cell
JP2799878B2 (en) Structure of solid oxide fuel cell
JP2843994B2 (en) Structure of solid oxide fuel cell
JP2816475B2 (en) Structure of solid oxide fuel cell
JPH0215564A (en) Electrode member of solid electrolyte type fuel cell and solid electrolyte type fuel cell

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees