JPH02288048A - Photoionized ion source - Google Patents

Photoionized ion source

Info

Publication number
JPH02288048A
JPH02288048A JP11153989A JP11153989A JPH02288048A JP H02288048 A JPH02288048 A JP H02288048A JP 11153989 A JP11153989 A JP 11153989A JP 11153989 A JP11153989 A JP 11153989A JP H02288048 A JPH02288048 A JP H02288048A
Authority
JP
Japan
Prior art keywords
molecules
source
electrode
ion
electric field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11153989A
Other languages
Japanese (ja)
Inventor
Aritono Teraoka
寺岡 有殿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP11153989A priority Critical patent/JPH02288048A/en
Publication of JPH02288048A publication Critical patent/JPH02288048A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain ion source whose ion beam intensity is great by constituting the photoionized ion source used for a heavy ion accelerator out of a supply source of electron molecules, an electrode for forming electrostatic inductive resonant conditions in molecules, and an exciting light source for exciting molecules in resonant conditions. CONSTITUTION:Potassium atoms are ejected from an atom molecule supply source 3 into a vacuum vessel not shown in the figure, and are let pass between a low poten tial electrode 1 for parallel electronstatic field to which proper voltage is applied and a high potential electrode for electrostatic field application. Moreover, the beams from an exciting light source 4, that is, the second higher harmonics, which are generat ed by condensing the fundamentals of the pigment laser for nitrogen laser excitation in DKP crystals, are introduced between the electrodes 1 and 2 so as to produce photoi onization. Next, the produced ions are accelerated immediately in the direction of the electric field, and those are added in an electrostatic lens system 5 and are made into beams. Hereupon, a metallic mesh is spread beforehand in the small hole 6 of the electrode through which ions pass, so as to make the electric field of an ionization area uniform as far as possible. Thus, the low ionization efficiency having a normal photoionizing source to do photoionization in zero magnetic field can be improved sharply.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は原子核物理学研究、原子分子物理学研究、物理
化学研究、放射線医療、および半導体電子デバイス製造
等に用いられる重イオン加速器、またはイオンビーム装
置のイオン源に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention is applicable to heavy ion accelerators or ion accelerators used in nuclear physics research, atomic molecular physics research, physical chemistry research, radiation medicine, semiconductor electronic device manufacturing, etc. This invention relates to an ion source of a beam device.

〔従来の技術〕[Conventional technology]

重イオン加速器およびイオンビーム装置に用いられるイ
オン源には従来から放電型、表面電離型、および電子衝
撃型イオン源が主に使用されてきたく例えば、日刊工業
新聞社による昭和61年9月第二版発行の「電子・イオ
ンビームハンドブック」第175頁から第248頁、ま
たは株式会社朝倉書店による昭和60年6り初版発行の
[マイクロビームアナリシス]第94頁から第111頁
)。
Conventionally, discharge type, surface ionization type, and electron impact type ion sources have been mainly used as ion sources used in heavy ion accelerators and ion beam devices. ``Electron/Ion Beam Handbook'' published by Japan, pages 175 to 248, or [Microbeam Analysis] published by Asakura Shoten Co., Ltd., first published in June 1985, pages 94 to 111).

放電型イオン源は気体の放電によってプラズマを生成さ
せ、その中に存在するイオンを電場を印加することによ
って引き出してビームとするものである。プラズマの生
成方法によってアーク放電型、グロー放電型、高周波放
電型、マイクロ波放電型、電子衝撃型、ペニングイオン
ゲージ型、電子ビーム入射型、デュオプラズマトロン型
等に分類される。放電気体と放電方法を選べば生成可能
なイオンの種類に特に制限はない。同一のイオン源から
多種類のイオンを生成できる特徴がある。
A discharge type ion source generates plasma by gas discharge, and extracts the ions present in the plasma into a beam by applying an electric field. Depending on the plasma generation method, it is classified into arc discharge type, glow discharge type, high frequency discharge type, microwave discharge type, electron impact type, Penning ion gauge type, electron beam injection type, duoplasmatron type, etc. There are no particular restrictions on the types of ions that can be generated as long as the discharge material and discharge method are selected. It is characterized by the ability to generate many types of ions from the same ion source.

表面電離型イオン源は、表面に吸着した原子分子から電
子がトンネリングで固相の伝導体に流れてイオン化する
という原理に基づいている。固体の仕事関数と吸着原子
分子のイオン化ポテンシャルの差が大きいほどイオン化
の効率が高い。イオン化ポテンシャルの小さいアルカリ
金属イオン源として使用されることが多い。放電型イオ
ン源と同様に、引き出し電極によってイオンを加速して
表面から引き出し、以後適当な静電レンズ系でビーム化
する。
Surface ionization type ion sources are based on the principle that electrons tunnel from atoms and molecules adsorbed on the surface to a solid phase conductor and are ionized. The larger the difference between the work function of the solid and the ionization potential of the adatom molecules, the higher the ionization efficiency. It is often used as an alkali metal ion source with a low ionization potential. Similar to a discharge type ion source, ions are accelerated by an extraction electrode and extracted from the surface, and then converted into a beam by an appropriate electrostatic lens system.

電子衝撃型イオン源は熱フィラメントから放出される電
子を100電子ボルト程度に加速して原子分子線と交差
、衝突させてイオンを得る方法であるため、放電型イオ
ン源の場合はどイオンビームの強度に不安定性はない。
An electron impact ion source is a method of obtaining ions by accelerating electrons emitted from a hot filament to about 100 electron volts, intersecting and colliding with atomic and molecular beams. There is no instability in strength.

またフィラメントはスパッタされないため放電型イオン
源の場合よりも寿命が長い。イオンの速度分布は原子分
子線の速度分布とほぼ同じで、イオンは一般に熱エネル
ギー領域より高エネルギーに加速されるので、速度分解
能としても放電型イオン源に比べて改善されている。ま
た放電型イオン源と同様に原子分子線にする気体を選ぶ
ことによって、同一イオン源で多様なイオンを得ること
ができる特長を有する。
Additionally, since the filament is not sputtered, it has a longer lifetime than a discharge type ion source. The velocity distribution of ions is almost the same as that of atomic and molecular beams, and since ions are generally accelerated to higher energies than in the thermal energy region, the velocity resolution is also improved compared to discharge-type ion sources. Also, similar to the discharge type ion source, by selecting the gas to be used as the atomic and molecular beam, it has the advantage of being able to obtain a variety of ions with the same ion source.

光イオン化型イオン源は放電型、表面電離型、電子衝撃
型イオン源にはない多くの特長を備えている。すなわち
、電子衝撃型イオン源と同様にイオンの初速分布は原子
分子線の速度分布とほぼ同じで初速幅が狭い。また光を
集光してイオン化するのでイオン化領域が非常に小さく
なる。そのために電場でイオンを引き出す際に電場がイ
オンに与える運動エネルギーの幅を狭くできる。さらに
光の波長を蓮根することによって特定の内部状fiにあ
るイオンを選択的に生成できる。光源と原子分子線の安
定性は放電型イオン源でのプラズマの安定性に比べてよ
いので、イオンビームの強度の経時変化を比較的小さく
押さえることができる。
Photoionization type ion sources have many features that discharge type, surface ionization type, and electron impact type ion sources do not have. That is, like the electron impact ion source, the initial velocity distribution of ions is almost the same as the velocity distribution of atomic and molecular beams, and the initial velocity width is narrow. Furthermore, since the light is focused and ionized, the ionization region becomes extremely small. Therefore, when extracting ions using an electric field, it is possible to narrow the range of kinetic energy that the electric field imparts to the ions. Furthermore, by adjusting the wavelength of light, ions in a specific internal state fi can be selectively generated. Since the stability of the light source and the atomic and molecular beam is better than the stability of the plasma in a discharge type ion source, it is possible to keep the change in the intensity of the ion beam relatively small over time.

且つ、放電型イオン源でのフィラメントのような消耗の
激しい部品を使用しないので長時間の連続運転が可能で
ある。またイオン源内部の汚染がほとんどない。
In addition, since the discharge type ion source does not use highly consumable parts such as filaments, continuous operation for a long time is possible. Also, there is almost no contamination inside the ion source.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

放電型イオン源では生成されるプラズマ状態の安定性が
ガス圧、温度、フィラメントの形状、器壁の汚染状況に
よって微妙に変化する。従ってそこから収り出されるイ
オン電流は一般に不安定である。またフィラメントが荷
電粒子によってスパッタされるので消耗が激しく切れや
すい。そのため連続稼働時間が短く、頻繁にフィラメン
ト交換、電極研磨等の保守のための工数を要する。プラ
ズマ内部ではイオン、電子、中性原子分子が数十ないし
数百電子ボルトの運動エネルギーで頻繁に衝突を繰り返
しているため、イオンや中性粒子の大部分は振動回転励
起されており、また一部は電子励起されている。そのた
め内部状態が不特定のイオンビームとなる。
In discharge type ion sources, the stability of the plasma state generated varies slightly depending on gas pressure, temperature, filament shape, and contamination of the vessel wall. Therefore, the ionic current extracted therefrom is generally unstable. Furthermore, since the filament is sputtered by charged particles, it is subject to severe wear and tear and is easily broken. Therefore, continuous operation time is short, and maintenance work such as frequent filament replacement and electrode polishing is required. Inside the plasma, ions, electrons, and neutral atomic molecules repeatedly collide with each other with kinetic energies of tens to hundreds of electron volts, so most of the ions and neutral particles are vibrationally and rotationally excited. part is electronically excited. Therefore, the ion beam has an unspecified internal state.

電子衝撃型イオン源では、電子衝撃によって生成するイ
オンが様々な内部状態に励起されるので、放電型イオン
源の場合と同様に内部状態が不特定のイオンビームとな
る。また分子線を電子衝撃して分子を解離性イオン化さ
せ、生成する多種類のフラグメントイオンの中から特定
のイオンを引き出してビーム化する場合、フラグメント
イオンの収率は一般に小さい。
In an electron impact ion source, ions generated by electron bombardment are excited to various internal states, resulting in an ion beam whose internal state is unspecified, as in the case of a discharge ion source. Furthermore, when a molecular beam is bombarded with electrons to dissociatively ionize molecules, and specific ions are extracted from among the many types of fragment ions generated and converted into a beam, the yield of fragment ions is generally small.

光イオン化型イオン源は前記「従来の技術」の項で述べ
たように放電型イオン源や電子衝撃型イオン源に比べて
多くの特長を備えているが、イオンの強度に関しては放
電型イオン源並のイオン電流を達成することは極めて困
難である点が欠点である。
As mentioned in the ``Prior Art'' section, photoionization type ion sources have many features compared to discharge type ion sources and electron impact type ion sources, but in terms of ion intensity, discharge type ion sources have many advantages. The disadvantage is that it is extremely difficult to achieve moderate ionic currents.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の光イオン化イオン源は、原子分子供給源と、原
子分子に静電場誘起共鳴状態を形成させるための電極と
、静電場誘起共鳴状態にある原子分子を励起できる励起
光源とを具備し、その静電場誘起共鳴状態を励起して生
成するイオンを用いることを特徴とする構成になってい
る。
The photoionization ion source of the present invention includes an atomic molecule supply source, an electrode for causing the atomic molecules to form an electrostatic field induced resonance state, and an excitation light source capable of exciting the atomic molecules in the electrostatic field induced resonance state, The structure is characterized by using ions generated by exciting the electrostatic field-induced resonance state.

〔作用〕[Effect]

光イオン化型イオン源を用いることによって放電型イオ
ン源、電子衝撃型イオン源、表面電離型イオン源の実用
性を増すためにはイオンの収率を増大させなければなら
ない。そのためには、■光の強度を強くする、■原子分
子の供給量を増す、および■光と原子分子の相互作用を
強くすればよい。本発明では静電場を印加することによ
って形成される静電場誘起共鳴状態をもちいることにと
って、「■光と原子分子の相互作用を強くする」ことを
実現した。それによって光イオン化イオン源の問題点で
あるイオン強度の不足に大きな改良を加えることができ
た。
In order to increase the practicality of discharge type ion sources, electron impact type ion sources, and surface ionization type ion sources by using photoionization type ion sources, the ion yield must be increased. To achieve this, it is necessary to 1) increase the intensity of light, 2) increase the amount of atoms and molecules supplied, and 2) strengthen the interaction between light and atoms and molecules. In the present invention, by using an electrostatic field-induced resonance state formed by applying an electrostatic field, we have achieved "■ strengthening the interaction between light and atoms and molecules." As a result, we were able to significantly improve the lack of ion strength, which is a problem with photoionization ion sources.

イオン化に供する原子分子に静電場を印加することによ
ってその原子分子に静電場誘起共鳴状態が多数形成され
る。その中でも特に量子力学的トンネリング寿命を極め
て短い共鳴状態を選択的に光励起することで、電場を印
加しないで光イオン化させる場合よりも光イオン化効率
を数倍増加させることができる。
By applying an electrostatic field to the atomic molecules to be ionized, a large number of electrostatic field-induced resonance states are formed in the atomic molecules. Among them, by selectively photoexciting resonant states that have extremely short quantum mechanical tunneling lifetimes, it is possible to increase photoionization efficiency several times more than when photoionization is performed without applying an electric field.

静電場が原子分子におよぼす作用と、静電場を印加した
ときに光と原子分子の相互作用が強くなる原理を説明す
る。原子には多数の電子励起状態が存在する。そのエネ
ルギー準位はイオン化極限に収束し、主景子数nで区別
される。特にnが数十にも達して、エネルギー準位がイ
オン化極限に極めて近い状態は高すュードベリ状態と呼
ばれている。この様な状邪は分子にも存在し、励起電子
とイオン核の間にはクーロン相互作用が働いている。高
すュードベリ状態にある原子分子を静電場の中においた
場合、励起電子とイオン核の間の相互作用ハミルトニア
ンには電場の項が付加される。そのポテンシャルはクー
ロン−シュタルクポテンシャルと呼ばれる。それにはポ
テンシャル障壁が存在する(第2図参照)。その障壁の
高さはゼロ電場でのイオン化極限(Eo’)より低い。
We will explain the effect of an electrostatic field on atoms and molecules and the principle that the interaction between light and atoms and molecules becomes stronger when an electrostatic field is applied. Atoms have many electronically excited states. The energy levels converge to the ionization limit and are distinguished by the principal number n. In particular, a state where n reaches several tens and the energy level is extremely close to the ionization limit is called a high-Sudeberg state. This kind of situation also exists in molecules, where Coulomb interactions work between excited electrons and ion nuclei. When an atomic molecule in a high Sudberg state is placed in an electrostatic field, an electric field term is added to the interaction Hamiltonian between the excited electron and the ion nucleus. That potential is called the Coulomb-Stark potential. There is a potential barrier (see Figure 2). The height of the barrier is lower than the ionization limit (Eo') at zero electric field.

そのエネルギー位置は古典的電場イオン化極限(E。′
)と呼ばれている。励起電子の運動を第2図のように一
次元モデルで表す限りにおいては、ポテンシャル障壁の
頂点より高エネルギー側は連続状態であり、低エネルギ
ー側は離散状態と考えられる。 ところが、古典的電場
イオン化極限(Ec’)より高エネルギー側を光励起し
た場合にも離散的構造が現れる(第3図参照)。その離
散的量子状態はエネルギー的には連続状態と縮退してい
る。
Its energy position is the classical electric field ionization limit (E.'
)It is called. As long as the motion of excited electrons is represented by a one-dimensional model as shown in FIG. 2, the higher energy side from the apex of the potential barrier is considered to be in a continuous state, and the lower energy side is considered to be in a discrete state. However, a discrete structure also appears when the energy side higher than the classical electric field ionization limit (Ec') is optically excited (see Figure 3). The discrete quantum state is energetically degenerate to the continuous state.

その様な状態は一般に共鳴状態と呼ばれているが、連続
状態が特に電場によってつくられるときには静電場誘起
共鳴状態と呼ばれる。原子分子に静電場を印加して静電
場誘起共鳴状態を形成させ、その中でも古典的電場イオ
ン化極限(Ec’)付近の鋭いピークに光の波長を合わ
せて、トンネリング寿命の極めて短い共鳴状態を選択的
に光励起することで、ゼロ電場で光イオン化を行った場
合に比べて大きなイオンビーム強度を得ることができる
Such a state is generally called a resonant state, but when the continuous state is specifically created by an electric field, it is called an electrostatic field-induced resonant state. An electrostatic field is applied to atomic molecules to form an electrostatic field-induced resonance state, and a resonance state with an extremely short tunneling lifetime is selected by matching the wavelength of light to a sharp peak near the classical electric field ionization limit (Ec'). By optically excitation, it is possible to obtain a higher ion beam intensity than when photoionization is performed with zero electric field.

〔実施例〕〔Example〕

本発明の一実施例を第1図に示す。原子分子供給源3か
らカリウム原子を真空槽(図示省略)中に噴き出させ、
適当な電圧を印加した平行静電場印加用低電位電極1と
静電場印加用高電位電極2の間に通す。励起光源4から
の光(窒素レーザー励起の色素レーザーの基本波をKD
P結晶に集光して発生させた第二高調波)を上記の電極
間に導いて光イオン化を起こさせることができる。生成
したイオンは直ちに電場方向に加速されて静電レンズ系
5に導入されてビーム化される。イオン化領域の電場を
できるだけ均一にするために、イオンの通過する電極の
***6には金属メツシュが張られている。
An embodiment of the present invention is shown in FIG. Squirt potassium atoms from the atomic molecule supply source 3 into a vacuum chamber (not shown),
It is passed between a low potential electrode 1 for applying a parallel electrostatic field and a high potential electrode 2 for applying an electrostatic field to which an appropriate voltage is applied. Light from excitation light source 4 (KD
The second harmonic (generated by focusing on the P crystal) can be guided between the electrodes to cause photoionization. The generated ions are immediately accelerated in the direction of the electric field, introduced into the electrostatic lens system 5, and converted into a beam. In order to make the electric field in the ionization region as uniform as possible, a metal mesh is placed over the small hole 6 of the electrode through which ions pass.

第3図はカリウム原子の静電場中での光イオン化スペク
トルである。第3図で階段状に上がった部分に表れる多
数の細かいピークが静電場誘起共鳴状態に対応している
。それらは高すュードベリ状態のシュタルクサブレベル
に帰属されるべきものである。古典的電場イオン化極限
(Ec’)付近の鋭いピークに光の波長を合わせて光イ
オン化を行った場合と、ゼロ電場イオン化極限(Eol
)付近に光の波長を合わせて光イオン化を行った場合と
では光イオン化効率に大きな差が認められる。
FIG. 3 is a photoionization spectrum of potassium atoms in an electrostatic field. The many fine peaks that appear in the stepped portion of FIG. 3 correspond to electrostatic field-induced resonance states. They should be assigned to the Stark sublevel of the high Sudberg state. There is a case in which photoionization is performed by matching the wavelength of light to a sharp peak near the classical electric field ionization limit (Ec'), and a case in which photoionization is performed by matching the wavelength of light to a sharp peak near the classical electric field ionization limit (Ec'), and
) There is a large difference in photoionization efficiency compared to when photoionization is performed by adjusting the wavelength of light to the vicinity of ).

上段の図は励起光の偏光面と電場方向が平行の場合でパ
イ偏光と呼ぶ。下段の図は励起光の偏光面と電場方向が
垂直の場合でシグマ偏光と呼ぶ。光励起で最も光イオン
化効率の高い静電場誘起共鳴状態を選択するのに偏光方
向はひとつのパラメータになる。
The upper diagram shows the case where the polarization plane of the excitation light and the direction of the electric field are parallel, which is called pi-polarized light. The lower diagram shows the case where the polarization plane of the excitation light and the direction of the electric field are perpendicular, which is called sigma polarization. The polarization direction is one parameter in selecting the electrostatic field-induced resonance state that has the highest photoionization efficiency during photoexcitation.

〔発明の効果〕〔Effect of the invention〕

本発明は以上説明したように、原子分子の古典的電場イ
オン化極限より高エネルギー側の領域で、静電場誘起共
鳴状態(連続体に埋もれたシュタルクサブレベル)の中
でも特に量子力学的トンネリング野命を極めて短い状態
を選択的に1光子イオン化させることによって、ゼロ電
場で光イオン化を行う通常の光イオン化イオン源の持つ
低イオン化効率の欠点を改善し、数倍のイオン化効率が
達成される効果を有する。
As explained above, the present invention specifically aims at quantum mechanical tunneling in the electrostatic field-induced resonance state (Stark sublevel buried in the continuum) in the higher energy region than the classical electric field ionization limit of atoms and molecules. By selectively one-photon ionizing extremely short states, it improves the drawback of low ionization efficiency of ordinary photoionization ion sources that perform photoionization in zero electric field, and has the effect of achieving several times the ionization efficiency. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による静電場誘起光イオン化イオン源の
構成図、第2図はクーロン−シュタルクポテンシャルを
示す図、第3図はカリウム原子の電場454 V/cm
での光イオン化スペクトルを示す図である。 1・・・静電場印加用低電位電極、2・・・静電場印加
用高電位電極、3・・・原子分子供給源、4・・・励起
先竿 エネルキ゛”−(C渭−り ご3.!5 S73.θ ?72.5    q2.ρ   3〃左L−析1ネ液
5皮長団制 ¥3釦
Figure 1 is a block diagram of the electrostatic field-induced photoionization ion source according to the present invention, Figure 2 is a diagram showing the Coulomb-Stark potential, and Figure 3 is a diagram showing the electric field of a potassium atom of 454 V/cm.
It is a figure showing a photoionization spectrum at. DESCRIPTION OF SYMBOLS 1...Low potential electrode for applying an electrostatic field, 2...High potential electrode for applying an electrostatic field, 3...Atom molecule supply source, 4...Excitation destination rod energy "-(C-rigo 3) .!5 S73.θ ?72.5 q2.ρ 3〃Left L-analysis 1 liquid 5 skin length system ¥3 button

Claims (1)

【特許請求の範囲】[Claims] 原子分子の供給源と、原子分子に静電場誘起共鳴状態を
形成させるための電極と、静電場誘起共鳴状態にある原
子分子を励起できる励起光源とを少くとも具備している
ことを特徴とする光イオン化イオン源。
It is characterized by comprising at least a source of atoms and molecules, an electrode for causing the atoms and molecules to form an electrostatic field-induced resonance state, and an excitation light source that can excite the atoms and molecules in the electrostatic field-induced resonance state. Photoionization ion source.
JP11153989A 1989-04-27 1989-04-27 Photoionized ion source Pending JPH02288048A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11153989A JPH02288048A (en) 1989-04-27 1989-04-27 Photoionized ion source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11153989A JPH02288048A (en) 1989-04-27 1989-04-27 Photoionized ion source

Publications (1)

Publication Number Publication Date
JPH02288048A true JPH02288048A (en) 1990-11-28

Family

ID=14563929

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11153989A Pending JPH02288048A (en) 1989-04-27 1989-04-27 Photoionized ion source

Country Status (1)

Country Link
JP (1) JPH02288048A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6140656A (en) * 1995-01-10 2000-10-31 Mitsubishi Denki Kabushiki Kaisha Ion implantation apparatus, ion implantation method and semiconductor device
WO2001095677A1 (en) * 2000-06-02 2001-12-13 Japan Science And Technology Corporation Atomic beam generating method and device
JP2007134346A (en) * 2007-01-10 2007-05-31 National Institute Of Advanced Industrial & Technology Molecular beam apparatus
JP2013505545A (en) * 2009-09-18 2013-02-14 エフ・イ−・アイ・カンパニー Distributed ion source acceleration column

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6140656A (en) * 1995-01-10 2000-10-31 Mitsubishi Denki Kabushiki Kaisha Ion implantation apparatus, ion implantation method and semiconductor device
WO2001095677A1 (en) * 2000-06-02 2001-12-13 Japan Science And Technology Corporation Atomic beam generating method and device
US6495822B2 (en) 2000-06-02 2002-12-17 Japan Science And Technology Corporation Atomic beam generating method and device
JP2007134346A (en) * 2007-01-10 2007-05-31 National Institute Of Advanced Industrial & Technology Molecular beam apparatus
JP4538589B2 (en) * 2007-01-10 2010-09-08 独立行政法人産業技術総合研究所 Molecular beam equipment
JP2013505545A (en) * 2009-09-18 2013-02-14 エフ・イ−・アイ・カンパニー Distributed ion source acceleration column

Similar Documents

Publication Publication Date Title
Oks Plasma cathode electron sources: physics, technology, applications
Bacal Volume production of hydrogen negative ions
Belchenko et al. Ion sources at the Novosibirsk Institute of Nuclear Physics
US4739170A (en) Plasma generator
Septier Production of ion beams of high intensity
US5519213A (en) Fast atom beam source
Kistemaker et al. Some plasma-physical aspects of mono-and duo-plasmatron ion sources
US4749910A (en) Electron beam-excited ion beam source
JPH02288048A (en) Photoionized ion source
US3864575A (en) Contact ionization ion source
JPH07169425A (en) Ion source
US4704197A (en) Isotope separation using tuned laser and electron beam
Ivanov Jr Two negative ion groups in volume H− sources
JPH07142020A (en) Electron beam exciting negative ion source and negative ion generating method
Ohba et al. Removal of the plasma contained in an atomic beam produced by electron beam heating
DE19930755A1 (en) High frequency excited gas lasers with plasma confinement by magnetic multipole fields
Nagashima et al. Numerical study of laser wake field generated by two colliding laser beams
JP2614632B2 (en) Negative ion generator
Kashiwagi et al. Computational studies on primary electron orbits in an ion source
JPH10275566A (en) Ion source
Klostermann et al. Stable and unstable discharge modes of a multipole confined thermionic gas discharge at low pressure
JP3213135B2 (en) Fast atom beam source
JP4034304B2 (en) X-ray generator having an emitter formed on a semiconductor structure
Davies et al. Resonance feature in Al− photodetachment below the Al (3 s 2 4 s 2 S) threshold
Leung et al. Multicusp sources for ion beam lithography applications