JPH02286821A - Manufacture of auxiliary combustion chamber of diesel engine - Google Patents

Manufacture of auxiliary combustion chamber of diesel engine

Info

Publication number
JPH02286821A
JPH02286821A JP1110331A JP11033189A JPH02286821A JP H02286821 A JPH02286821 A JP H02286821A JP 1110331 A JP1110331 A JP 1110331A JP 11033189 A JP11033189 A JP 11033189A JP H02286821 A JPH02286821 A JP H02286821A
Authority
JP
Japan
Prior art keywords
hole
chamber
combustion chamber
nozzle hole
rough
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1110331A
Other languages
Japanese (ja)
Inventor
Makoto Yoshida
信 吉田
Masahiro Nakagawa
仲川 政宏
Haratsugu Koyama
原嗣 小山
Kazuaki Nishino
和彰 西野
Hiroyuki Takamiya
博之 高宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Toyota Central R&D Labs Inc
Original Assignee
Toyota Motor Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Toyota Central R&D Labs Inc filed Critical Toyota Motor Corp
Priority to JP1110331A priority Critical patent/JPH02286821A/en
Publication of JPH02286821A publication Critical patent/JPH02286821A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Combustion Methods Of Internal-Combustion Engines (AREA)

Abstract

PURPOSE:To manufacture aux. combustion chamber simply, easily, and uncostly by forming a blocking part which encloses at least part of one end or both of a hole, at the time of precision casting in such a way as consolidated with a coarse work for chamber. CONSTITUTION:A coarse work 1 for chamber made of austenite type heat- resistant steel having eaves-shaped blocking parts 4 at the ends of a hole 3A is prepared through precision casting. Therein casting material 5 within the hole 3A remains approx. perfectly even after sand shakeoff process. Then the portions 6A, 6B as acute angle part of the jet are subjected to re-melting process by means of TIG arc. The remaining blocking parts 4 are removed in the finish process. Thus existence of the casting material 5 within the hole 3A allows formation of a layer turned into alloy while the shape of the hole 3A is kept as it was even under the condition that high-density energy 7 is impressed at the time of re-melting process. This enables manufacturing coarse works 1 for chamber simply. easily, and uncostly.

Description

【発明の詳細な説明】 産業上の利用分野 この発明はディーゼルエンジンにおいて副燃焼室を形成
するためにシリンダヘッドに組込まれる副燃焼室チャン
バの製造方法に関ブるものである。
DETAILED DESCRIPTION OF THE INVENTION FIELD OF INDUSTRIAL APPLICATION This invention relates to a method for manufacturing a sub-combustion chamber which is incorporated into a cylinder head to form a sub-combustion chamber in a diesel engine.

従来の技術 周知のようにディーゼルエンジンにおける副燃焼室チャ
ンバは、エンジン出力に大きな影響を及ぼす部品であり
、その材料特性としては、高温ガスに曝されるところか
ら耐熱亀裂性(耐熱11i撃性)が優れていることが要
求され、また高温酸化性雰囲気であるところから耐酸化
性も優れていることが要求される。さらに副燃焼室チャ
ンバはシリンダヘッドに組込んで使用される部品である
から、高温圧縮耐力が低ければシリンダヘッド母材との
熱膨張差による圧縮応力等により変形してシリンダヘッ
ドから脱落してしまう危険性があり、そこで高温強度、
特に高温圧縮耐力が優れていることが要求される。
Conventional Technology As is well known, the auxiliary combustion chamber in a diesel engine is a component that greatly affects engine output, and its material properties include heat cracking resistance (heat resistance 11i) due to exposure to high temperature gas. It is required to have excellent oxidation resistance, and since it is a high temperature oxidizing atmosphere, it is also required to have excellent oxidation resistance. Furthermore, since the auxiliary combustion chamber is a component that is assembled into the cylinder head, if its high-temperature compression strength is low, it will deform due to compressive stress caused by the difference in thermal expansion with the cylinder head base material, and it will fall off from the cylinder head. There is a risk of high temperature strength,
In particular, it is required to have excellent high-temperature compression yield strength.

従来一般のaj燃焼室チャンバとしては、オーステナイ
ト系耐熱鋼、フェライト系耐熱鋼、マルテンサイト系耐
熱鋼などの各種耐熱鋼の単一材料が使用されているが、
前述のような諸要求を単一材料で同時に全て満足させる
ことは極めて困難であリ、特に高温強度と耐熱亀裂性と
は同時に満たすことが困難であるから、両者の妥協点の
特性を有する材料を選択して使用せざるを得ず、そのた
め高温強度と耐熱亀裂性の両名ともに充分とは言えない
のが実情であった。
Conventionally, a single material of various heat-resistant steels such as austenitic heat-resistant steel, ferritic heat-resistant steel, and martensitic heat-resistant steel has been used for the general AJ combustion chamber.
It is extremely difficult to simultaneously satisfy all of the above-mentioned requirements with a single material, especially high-temperature strength and heat cracking resistance. Therefore, the reality is that both high temperature strength and heat cracking resistance are not sufficient.

ところで前述のような諸要求特性のうち、耐熱亀裂性は
、チャンバ内から高温ガスが噴出する噴孔部の周縁部、
特にその周縁部のうち鋭角状断面をなす部分(鋭角部)
に要求される。すなわち噴孔部の周縁部は高温ガスの噴
流に直接接する部分であり、そのうち特に鋭角部は内部
への熱伝達性が劣るため熱がたまり易いとともに応力集
中が生じ易く、そのため鋭角部には熱応力による亀裂が
極めて生じやすいから、特にその部分の耐熱亀裂性が優
れていることが必要である。一方高温強度、特に高温圧
縮耐力は、むしろチャンバの本体部分に要求される。
By the way, among the various required characteristics as mentioned above, heat cracking resistance is important for the periphery of the nozzle hole where high-temperature gas is ejected from inside the chamber,
Particularly the part of the periphery that has an acute angle cross section (acute angle part)
required. In other words, the periphery of the nozzle hole is the part that comes into direct contact with the jet of high-temperature gas, and the sharp corners in particular have poor heat transfer to the inside, making it easy for heat to accumulate and stress concentration to occur. Since cracks are extremely likely to occur due to stress, it is necessary that the heat cracking resistance is particularly excellent in that portion. On the other hand, high-temperature strength, particularly high-temperature compression yield strength, is rather required for the main body portion of the chamber.

そこで靜j燃焼室チャンバの本体部分と噴孔部の周縁部
特に鋭角部とを別材料で構成して、本体部分に要求され
る118強度と噴孔部の鋭角部に要求される耐熱亀裂性
とを同時に満足させようとする技術が提案されている。
Therefore, the main body of the combustion chamber and the periphery of the nozzle hole, especially the sharp corner, are made of different materials to achieve the 118 strength required for the main body and the heat cracking resistance required for the acute corner of the nozzle hole. Techniques have been proposed that attempt to satisfy both of these requirements at the same time.

その代表的な例としては特開昭61−275524号に
おいて提案されているように、副燃焼室チャンバの本体
部分をマルテンサイト系耐熱鋼の如き高温強度に優れる
材料で形成し、噴孔部の特に鋭角部となるべき部分に、
オーステナイト系耐熱鋼の如く耐熱亀裂性に優れた材料
を溶射等により肉盛して鋭角部を形成した副燃焼室チャ
ンバが知られている。
A typical example of this is proposed in JP-A No. 61-275524, in which the main body of the auxiliary combustion chamber is made of a material with excellent high-temperature strength such as martensitic heat-resistant steel, and the nozzle holes are Especially in the parts that should be sharp corners,
A sub-combustion chamber is known in which an acute corner portion is formed by overlaying a material with excellent heat crack resistance, such as austenitic heat-resistant steel, by thermal spraying or the like.

発明が解決しようとするi題 しかしながら上記提案のように、副燃焼室チャンバの噴
孔部の鋭角部となるべき部分に、本体材料とは興なる材
料を溶射等により肉盛して鋭角部を形成する場合、本体
の肉盛すべき部分に予め凹部を形成しておかなければな
らないから、その凹部形成のための加工コストが嵩む問
題があり、またその凹部を本体と一体に成形する場合で
もダイスヤ金型が複雑となってそのためのコストが嵩む
問題がある。さらに肉盛部分は本体との密着性が必ずし
も充分ではないことが多く、そのため−j燃焼室チャン
バをエンジンのシリンダヘッドに組込んで使用した場合
、肉盛部分と本体との界面から剥離が生じて、肉盛部分
が欠けたり脱落したりしてしまうおそれがある。
Problem to be Solved by the Invention However, as in the above proposal, a material that is different from the main body material is overlaid by thermal spraying or the like on the part that should be the acute corner of the nozzle hole of the auxiliary combustion chamber to form the acute corner. When forming a recess, it is necessary to form a recess in advance in the part of the main body that is to be overlaid, so there is a problem that the processing cost for forming the recess increases, and even if the recess is molded integrally with the main body. There is a problem that the diamond mold becomes complicated and the cost increases accordingly. Furthermore, the adhesion of the built-up part to the main body is often not always sufficient, so when the -j combustion chamber is assembled into the cylinder head of an engine, separation may occur from the interface between the built-up part and the main body. There is a risk that the built-up part may chip or fall off.

そこで本発明者等は既に特願平1−29505号におい
て、高温強度、特に高温圧縮耐力の優れた耐熱鋼からな
るチャンバ本体の噴孔部の周縁部分のうち鋭角部に、T
IGアークヤレーザ、電子ビーム、プラズマ等の高密度
エネルギを用いて再溶融処理を施すことを提案している
。このように高密度エネルギを用いて再溶融処理を施し
た部分(再溶融処理層)は、その処理が急冷処理である
ために均一微細な組織を有するものとなっており、しか
も再溶融処理時に母材中の炭素の一部が分解消失してい
るため炭素量が母材の耐熱鋼よりも少なくなっている。
Therefore, the present inventors have already proposed in Japanese Patent Application No. 1-29505 that a T-shaped part is formed at the acute angle part of the periphery of the nozzle hole of the chamber body, which is made of heat-resistant steel with excellent high-temperature strength, especially high-temperature compressive yield strength.
It is proposed that the remelting process be performed using high-density energy such as IG Arkya laser, electron beam, or plasma. The part that has been remelted using high-density energy (remelted layer) has a uniform fine structure because the treatment is a rapid cooling process. Because some of the carbon in the base metal has decomposed and disappeared, the carbon content is lower than that of the base metal, heat-resistant steel.

ここで、耐熱鋼鋳造材からなる現行の副燃焼室チセンバ
材としてはオーステナイト系耐熱鋼例えばJIS  5
CH21,5C820等が多用されているが、このよう
な耐熱鋼においては炭素量が多い方が高温強度、特に高
温圧縮耐力が優れ、変形等によるシリンダヘッドからの
チャンバの脱落をより充分に防止することができる。し
たがってチャンバ本体の耐熱鋼としては比較的炭素量の
多い耐熱鋼の#I造材を用いることによって高温強度を
確保し、チャンバの脱落を防止プることができるが、こ
のように炭素量が多ければ晶出する共晶炭化物の割合(
面積率)が多くなりかつ共晶炭化物の大きさも大きくな
り、熱応力によって共晶炭化物に沿い亀裂が発生し易く
なる。すなわち耐熱亀裂性が劣化するから、そのままで
は噴孔部の周縁部分の特に鋭角部分で亀裂が発生し易い
チャンバとなってしまう。しかるに前記提案のチャンバ
では、噴孔部の周縁部分の鋭角部は再溶融処理層とされ
ており、この再溶融処理層は前述のように炭素量が少な
いから共晶炭化物の割合も少なくかつその大きさも小さ
く、したがってその部分は耐熱亀裂性が優れている。し
かも前述のように再溶融処理層!層は急冷によって均一
微細な組織となっているため亀裂の伝播も生じにクク、
このことも耐熱亀裂性の向上に大きく寄与している。
Here, the current auxiliary combustion chamber steel material made of heat-resistant steel casting material is austenitic heat-resistant steel, for example, JIS 5
CH21, 5C820, etc. are often used, but in such heat-resistant steels, the higher the carbon content, the better the high-temperature strength, especially the high-temperature compression yield strength, and more effectively prevents the chamber from falling off from the cylinder head due to deformation, etc. be able to. Therefore, as the heat-resistant steel for the chamber body, it is possible to ensure high-temperature strength and prevent the chamber from falling off by using #I heat-resistant steel with a relatively high carbon content. The proportion of eutectic carbide crystallized (
The area ratio) increases and the size of the eutectic carbide also increases, making it easier for cracks to occur along the eutectic carbide due to thermal stress. In other words, the heat cracking resistance deteriorates, and if left as is, the chamber becomes susceptible to cracks, particularly at acute angle portions of the periphery of the nozzle hole. However, in the proposed chamber, the sharp edge of the periphery of the nozzle hole is used as a remelting layer, and as mentioned above, this remelting layer has a small amount of carbon, so the proportion of eutectic carbides is also small. The size is also small, so that part has excellent heat cracking resistance. Moreover, as mentioned above, there is a remelting layer! Because the layer has a uniform fine structure due to rapid cooling, it is difficult for cracks to propagate.
This also greatly contributes to improving the heat cracking resistance.

したがって前記提案の副燃焼室チャンバにおいては、チ
ャンバ本体としては炭素量が比較的高い耐熱鋼を用いる
ことによって、チャンバの脱落防止のために必要な高温
強度特に高温圧縮耐力を確保すると同時に、噴孔部の周
縁部分のうち少なくとも鋭角部は再溶融処理層としてお
くことによって、その部分の耐熱亀裂性を改善すること
ができるのである。
Therefore, in the sub-combustion chamber proposed above, by using heat-resistant steel with a relatively high carbon content for the chamber body, the high-temperature strength, particularly the high-temperature compressive strength required to prevent the chamber from falling off is ensured, and at the same time, the nozzle holes are By providing a remelting layer on at least the acute angle portion of the peripheral edge portion of the portion, the heat cracking resistance of that portion can be improved.

また上述のような再溶融処理と類似する方法として、T
IGアーク等の高密度エネルギを用いて噴孔部局縁の鋭
角部に合金化処理を施す方法も考えられている。この合
金化処理は、母材に対する合金化により耐熱亀裂性を高
め得る元素を含む合金化材料を、所要の箇所に配置して
、その上からTIGアーク等の高密度エネルギを印加し
、合金化材料とその下側の母材表面層とを同時に溶融・
合金化させるものである。
In addition, as a method similar to the remelting process described above, T
A method has also been considered in which alloying is performed on the acute angle portion of the local edge of the nozzle hole using high-density energy such as IG arc. In this alloying process, alloying materials containing elements that can improve heat cracking resistance by alloying with the base material are placed at the required locations, and high-density energy such as TIG arc is applied from above to form alloys. Simultaneously melts the material and the underlying base material surface layer.
It is used for alloying.

ところで上述のように噴孔部の鋭角部に再溶融処理層や
合金化処理層等の強化処理層を有する副燃焼室チャンバ
を製造する方法としては、従来は第9図(ト)〜(C)
に示すように、先ず噴孔部に相当する孔部を持たない形
状のチャンバ粗形材1をI!i等により作製(第9図(
2))し、その状態で噴孔部の鋭角部となるべき部位に
再溶融処理や合金化処理(以下これらを強化処理と総称
する)を施して強化処理層2を形成(第9図■)し、そ
の後放電加工等によって噴孔部3を形成(第9図(C)
)L、て、副燃焼室チャンバとする方法が適用されてい
る。
By the way, as a method for manufacturing a sub-combustion chamber having a reinforced treatment layer such as a remelting treatment layer or an alloying treatment layer at the acute angle portion of the nozzle hole as described above, the conventional method is as shown in FIGS. )
As shown in FIG. 1, first, a rough chamber member 1 having a shape that does not have a hole corresponding to a nozzle hole is I! i etc. (Fig. 9 (
2)), and in this state, remelting treatment and alloying treatment (hereinafter collectively referred to as strengthening treatment) are performed on the portions of the nozzle hole that are to become acute corners to form a reinforced treatment layer 2 (Fig. 9 ), and then the nozzle hole portion 3 is formed by electric discharge machining etc. (Fig. 9(C)
) L, te, a method of making the sub-combustion chamber a chamber is applied.

このように再溶融処理等の強化処理を先に行なっておい
てから噴孔部を形成する理由は次の通りである。すなわ
ち、噴孔部が予め形成されている状態で噴孔部局縁の鋭
角部に再溶融処理等の強化処理を施せば、処理時に鋭角
部で溶融した金属が流れ落ちたり垂れ下がったりして、
噴孔部の形状を保てなくなることが多い。これに対し噴
孔部を有さない状態のチャンバ粗形材に強化処理を施し
てから噴孔部を形成すれば、このような問題の発生を防
止することができる。
The reason why the nozzle holes are formed after the strengthening treatment such as the remelting treatment is performed first is as follows. In other words, if a strengthening treatment such as remelting treatment is applied to the sharp edges of the nozzle holes after they have been formed in advance, the metal melted at the acute corners during the treatment will run down or hang down.
In many cases, the shape of the nozzle hole cannot be maintained. On the other hand, if the rough chamber material without the nozzle hole section is strengthened and then the nozzle hole section is formed, such a problem can be prevented from occurring.

発明が解決しようとする課題 前述の第9図(2)〜(C)に示すように噴孔部を形成
していない状態のチャンバ粗形材に再溶115[!11
等の強化処理を施した優、噴孔部を形成する方法では、
噴孔部形状が特異な傾斜状となっているため放電加工に
より噴孔部を形成するのが最適であるが、このような放
電加工工程では相当なFR間とコストを要しており、そ
のためチャンバ製造コストが高くならざるを得ない問題
がある。
Problems to be Solved by the Invention As shown in FIGS. 9(2) to 9(C), re-melting 115 [! 11
In the method of forming the injection hole part,
Because the shape of the nozzle hole is uniquely inclined, it is best to form the nozzle hole by electric discharge machining, but such an electric discharge machining process requires a considerable amount of FR time and cost. There is a problem that the manufacturing cost of the chamber inevitably increases.

これを解決するための方策としては、前述の特願平1−
29505号の明細間中には、先に噴孔部を有するチャ
ンバ粗形材を形成しておき、その噴孔部に水冷銅塊を挿
入して噴孔部の内面を支持し、その状態で再溶融処理を
施す方法が示されている。この方法によれば、再溶融処
理時に噴孔部形状が保てなくなることを防止でき、しか
も噴孔部はチャンバ粗形材の鋳造時に同時に形成できる
ため、第9図Q〜(C)に示した方法のように噴孔部を
放電加工によって形成する手間を省くことができる。
As a measure to solve this problem, the above-mentioned patent application No.
During the specifications of No. 29505, a rough chamber member having a nozzle hole is first formed, a water-cooled copper ingot is inserted into the nozzle hole to support the inner surface of the nozzle hole, and in that state A method for applying the remelting process is shown. According to this method, it is possible to prevent the shape of the nozzle hole from being lost during the remelting process, and the nozzle hole can be formed at the same time as casting the rough chamber material, as shown in FIGS. 9Q to (C). Unlike the method described above, it is possible to save the effort of forming the nozzle hole portion by electrical discharge machining.

しかしながら、上述のように水冷銅塊を用いる方法でも
、噴孔部形状に正確に適合した水冷銅塊を予め作製して
おかなければならないから、そのためのコストを無視す
ることができず、また再溶融処理時に水冷銅塊を挿入す
る作業が必要となり、さらには水冷銅塊の水冷のための
配管も必要となり、そのためある程度の高コスト化を招
くともに作業も複雑となるなどの問題がある。もちろん
再溶融処理のみならず、合金化処理において水冷銅塊を
用いた場合においても同様な問題がある。
However, even with the method using a water-cooled copper ingot as described above, a water-cooled copper ingot that precisely matches the shape of the nozzle hole must be prepared in advance, so the cost cannot be ignored, and the reuse is not possible. It is necessary to insert the water-cooled copper ingot during the melting process, and piping for water-cooling the water-cooled copper ingot is also required, which raises the cost to a certain extent and complicates the work. Of course, similar problems occur not only in remelting treatment but also in cases where water-cooled copper ingots are used in alloying treatment.

この発明は以上の事情を背景としてなされたものであり
、噴孔部局縁の鋭角部に再溶融処理層や合金化処理層等
の高密度エネルギを用いた強化処3!l!層を有するデ
ィーゼルエンジン用副燃焼室チャンバを、低コストで簡
単かつ容易に製造する方法を提供することを目的とする
ものである。
This invention was made against the background of the above-mentioned circumstances, and is a strengthening process using high-density energy such as a remelting layer or an alloying layer on the acute corner of the local edge of the nozzle hole. l! It is an object of the present invention to provide a method for simply and easily manufacturing a sub-combustion chamber for a diesel engine having layers at low cost.

課題を解決するための手段 この発明のディーゼルエンジン用副燃焼室チャンバの製
造方法は、ディーゼルエンジン用副燃焼室チャンバの粗
形材を精密鋳造するにあたって、チャンバの噴孔部とな
るべき孔部を有しかつその孔部の両端のうち、いずれか
一方または双方に、その孔部の開口端の少なくとも一部
を習う閉止部をチャンバ粗形材と一体に形成し、ぞの俊
約記孔部に鋳型材が充填されている状態で噴孔部の鋭角
部となるべき部分に高密度エネルギを用いた強化処理を
施し、しかる後仕上げ加工により前記閉止部を除去して
噴孔部を形成することを特徴とするものである。
Means for Solving the Problems The method of manufacturing an auxiliary combustion chamber for a diesel engine according to the present invention involves forming a hole portion that is to become an injection hole portion of the chamber when precision casting a rough-shaped material for the auxiliary combustion chamber for a diesel engine. A closing part that covers at least a part of the open end of the hole is formed integrally with the chamber rough shape on one or both of the ends of the hole, and Filled with mold material, the part that should become the acute angle of the nozzle hole is strengthened using high-density energy, and then the closing part is removed by finishing processing to form the nozzle hole. It is characterized by this.

作   用 この発明の方法では、噴孔部となるべき孔部を有するチ
ャンバの粗形材を精密1造によって作製するが、この精
密鋳造時には、孔部の両端のうち、いずれ一方または双
方に、その孔部の開口端の少なくとも一部を覆う閉止部
をチャンバ粗形材と一体に形II1.′1jる。具体的
には、例えば第1図、第2図に示すように噴孔部となる
べき孔部3Aの両端に、それぞれ開口端の一方の側から
他方の側へ向って水平に面状に延出する閉止部4.4を
精密鋳造によってチャンバ粗形材1と一体に形成するか
、あるいは例えば第3図に示すように孔部3Aの一端側
にのみ、前記同様な面状の閉止部4をチャンバ粗形材1
と一体に形成するか、さらには例えば第4図あるいは第
5図に示すように孔部3Aの一端に、その孔部3Aの開
口端を完全に覆ってしまう蓋状の閉止部4をチャンバ粗
形材1と一体に形成する。
Function: In the method of the present invention, a rough-shaped member of a chamber having a hole to become a nozzle hole is manufactured by precision casting. During this precision casting, one or both of the ends of the hole are formed. A closure portion covering at least a portion of the open end of the hole is integrally formed with the chamber profile in the shape II1. '1jru. Specifically, as shown in FIGS. 1 and 2, for example, at both ends of the hole portion 3A that is to become the nozzle hole portion, horizontally extending in a planar manner from one side of the opening end to the other side. Either the closing portion 4.4 for opening is formed integrally with the chamber rough profile 1 by precision casting, or, for example, as shown in FIG. The chamber rough shape material 1
Alternatively, as shown in FIG. 4 or FIG. It is formed integrally with the section 1.

このような閉止部4を有する形状となるようにチャンバ
粗形材1を精密鋳蚕した場合、鋳造直俊の状態では、例
えば第6図に示すように孔部3A内に鋳型材としての砂
5が充填されたままの状態となっているのが通常である
。すなわち、精密鋳造においては、孔部3Aを形成ブる
ために、鋳込み前の鋳型(モールド)には、孔部3Aに
相当する部位に鋳型材が存在しでいる。そして鋳込み後
の砂おとじの作業では振動による大まかな砂おとし、さ
らにシコットブラストによる仕上げ砂おどしが適用され
るのが通常であるが、これらの通常の砂おとし作業を適
用しても、孔部3A内の砂(鋳型材)は閉止部4によっ
てその崩壊、落下が妨げられ、孔部3A内に鋳型材が残
るのが通常である。
When the rough chamber material 1 is precision cast into a shape having such a closing portion 4, in the state of direct casting, for example, as shown in FIG. Normally, it remains filled. That is, in precision casting, in order to form the hole 3A, mold material is present in the mold before casting in a portion corresponding to the hole 3A. In sand removal work after casting, a rough sand removal process using vibration and a final sand removal process using Cicotte blasting are usually applied. The sand (mold material) in the part 3A is prevented from collapsing and falling by the closing part 4, and normally the mold material remains in the hole part 3A.

このように孔部3A内に鋳型材5が充填されたままの状
態のチャンバ粗形材1について、第7図に示すように噴
孔部の周縁の鋭角部に相当する部位6A、6BにTIG
アークヤレーザ、電子ビーム、プラズマ等の高密度エネ
ルギ7を印加して再溶融処理を施せば、噴孔部となる孔
部3A内周面は鋳型材5によって支持されているため、
溶融した金属が流れ落ちたり垂れ下がったりすることを
有効に防止して、孔部3Aの形状を保持することができ
る。すなわち、孔部3Aの形状を保持したまま、再溶融
処理層を形成することかできる。
As shown in FIG. 7, for the chamber rough-shaped material 1 with the mold material 5 still filled in the hole 3A, TIG is applied to the portions 6A and 6B corresponding to the acute angles of the periphery of the nozzle hole.
If high-density energy 7 such as arcuar laser, electron beam, plasma, etc. is applied to perform the remelting process, the inner peripheral surface of the hole 3A, which will become the injection hole, is supported by the mold material 5, so that
The shape of the hole 3A can be maintained by effectively preventing the molten metal from flowing down or hanging down. That is, the remelted layer can be formed while maintaining the shape of the hole 3A.

この後、孔部3A内に残留している鋳型材5を機械的手
段等により除去するとともに残った閉止部4を仕上げ加
工時に除去すれば、第8図に示すように噴孔部3の周縁
の鋭角部6が再溶融処理層2Aによって強化された副燃
焼室チャンバ8が得られる。この仕上げ加工は、従来の
通常の精密鋳造チャンバ粗形材に対する仕上げ加工と比
較してコスト上昇はごくわずかである。すなわち、従来
の通常の精密鋳造チャンバ粗形材の仕上げ加工でも、チ
ャンバ内面や底面、あるいは外周面等の多数の箇所に仕
上げ加工を施しており、この発明の方法の場合、これら
に加えて閉止部4の除去のための加工を行なっても、そ
れによるコスト上?はわずかに過ぎないのである。
After that, if the mold material 5 remaining in the hole 3A is removed by mechanical means or the like, and the remaining closing part 4 is removed during finishing machining, the periphery of the nozzle hole 3 will appear as shown in FIG. An auxiliary combustion chamber 8 is obtained in which the acute corner 6 of the auxiliary combustion chamber 8 is reinforced by the remelting layer 2A. This finishing process has a negligible increase in cost compared to the conventional finishing process for conventional precision casting chamber blanks. In other words, in the conventional finishing process of the rough profile of a precision casting chamber, finishing processes are performed on many parts such as the chamber inner surface, bottom surface, or outer circumferential surface, and in the case of the method of the present invention, the closure Even if we perform processing to remove part 4, will there be any cost associated with it? is only a small amount.

以上の過程において、精密vI造後のチャンバ粗形材の
孔部3Aには、前述のように振動ヤシヨツトプラスト等
の通常の砂おとし作業を行なっても鋳型材5がそのまま
残っているのが通常であるが、閉止部4の形状、寸法、
あるいは砂おとし条件によっては、孔部3A内の鋳型材
5が一部脱落してしまうこもあり得る。その場合には例
えば塩等の水溶性鋳型材を不足部分に注入して、孔部3
A内が鋳型材(砂および塩)によってほぼ完全に充填さ
れた状態としてから、再溶融処理を施せば良い。
In the above process, the mold material 5 remains in the hole 3A of the chamber rough shape material after precision VI manufacturing even if normal sand removal work such as vibrating palm blasting is performed as described above. Although it is normal, the shape and dimensions of the closing part 4,
Alternatively, depending on the sand removal conditions, part of the mold material 5 within the hole 3A may fall off. In that case, for example, inject a water-soluble molding material such as salt into the missing part, and
After the inside of A is almost completely filled with the mold material (sand and salt), the remelting process may be performed.

なお以上の説明では噴孔部周縁の鋭角部に高密度エネル
ギを用いた強化処理として再溶融処理を施す場合につい
で説明したが、再溶融処理の代わりに合金化処理を施す
場合も同様な作用を奏することができる。すなわち合金
化処理の場合は、孔部3A内に鋳型材5が充填されたま
まの状態のチャンバ粗形材1について、噴孔部の周縁の
鋭角部に相当する部位の表面に、適宜の合金化材料を配
し、その上からTIGアーク等の高密度エネルギを印加
して、合金化材料とその下側の母材(チ↑・ンバ材)表
面層とを同時に溶融させることになるが、この場合も孔
部3A内の鋳型材5の存在により孔部3Aの形状を保っ
たまま合金化層を形成することができる。
In the above explanation, we have explained the case where remelting treatment is performed as a strengthening treatment using high-density energy on the sharp edges of the nozzle hole periphery, but the same effect can be obtained when alloying treatment is performed instead of remelting treatment. can be played. In other words, in the case of alloying treatment, an appropriate alloy is applied to the surface of the rough chamber material 1 with the mold material 5 still filled in the hole 3A, at a portion corresponding to the acute angle of the periphery of the nozzle hole. The alloying material is placed, and high-density energy such as TIG arc is applied from above to simultaneously melt the alloying material and the surface layer of the base material (chip material) below. In this case as well, the presence of the mold material 5 in the hole 3A makes it possible to form an alloyed layer while maintaining the shape of the hole 3A.

実  施  例 [実施例1] 第1図、第2図に示すように孔部3Aの両端に面状の閉
止部4を有する形状のオーステナイト系耐熱鋼からなる
チャンバ粗形材1を精密vI造により作製した。その際
、通常の振動およびショツトブラストからなる砂おとし
作業を行なったが、砂おとし作業俊も孔部3A内の鋳型
材5は脱落することなく第6図に示すようにはぼ完全に
残っていた。次いで、TIGアークを用いて第7図に示
すように噴孔部の鋭角部となるべき部位6A、6Bに再
溶融処理を施した。このときの処理条件は、TIGアー
クの出力220A 、処理速度Item/気とした。再
溶融処理後に仕上げ加工を施し、残っていた閉止部をこ
の仕上げ加工において除去し、チPンバを得た。なおこ
のときの仕上げ加工は、通常の精密wI造の後に行なわ
れる仕上げ加工に要する時間とさほど変らない時間で行
なうことができた。
Example [Example 1] As shown in FIGS. 1 and 2, a chamber rough-shaped material 1 made of austenitic heat-resistant steel having a planar closing portion 4 at both ends of a hole portion 3A was manufactured by precision VI manufacturing. It was made by At that time, normal sand removal work consisting of vibration and shot blasting was carried out, but even during the sand removal work, the mold material 5 in the hole 3A remained almost completely as shown in Fig. 6 without falling off. Ta. Next, using a TIG arc, as shown in FIG. 7, the parts 6A and 6B that were to become the acute angles of the nozzle holes were remelted. The processing conditions at this time were a TIG arc output of 220 A and a processing speed of Item/Q. After the remelting treatment, finishing processing was performed, and the remaining closing portions were removed during this finishing processing to obtain a tipper. The finishing process at this time could be carried out in a time that was not much different from the time required for the finishing process performed after normal precision wI construction.

[実施例21 第4図に示すように孔部3Aの一端を蓋状に覆う閉止部
4を有する形状のオーステナイト系耐熱鋼からなるチャ
ンバ粗形材1を精密鋳造により作製した。この際、通常
の振動およびショツトブラストからなる砂おとし作業を
行なったところ、シミツトプラスト時に孔部3A内の鋳
型材5が一部脱落したが、リン酸カリウム系の塩からな
る鋳型材を充填して、孔部3A内がほぼ完全に鋳型材に
より充填されている状態とした。その後、実施例1と同
じ条件でTIGアークを用いた再溶融処理を施した。再
溶融処理後、チャンバ粗形材を水中に浸漬させることに
より塩を溶解させ、ざらに仕上げ加工を施して、残留し
ている閉止部4を除去した。この仕上げ加工に要する時
間は実施例1の場合と同程度であった。
[Example 21] As shown in FIG. 4, a rough chamber member 1 made of austenitic heat-resistant steel and having a closing portion 4 covering one end of the hole portion 3A in a lid-like manner was manufactured by precision casting. At this time, when sand removal work consisting of normal vibration and shot blasting was carried out, a part of the mold material 5 in the hole 3A fell off during the sand blasting, but it was filled with mold material made of potassium phosphate salt. As a result, the inside of the hole 3A was almost completely filled with the mold material. Thereafter, remelting treatment using a TIG arc was performed under the same conditions as in Example 1. After the remelting treatment, the chamber rough shape was immersed in water to dissolve the salt, and rough finishing was performed to remove the remaining closure portion 4. The time required for this finishing process was about the same as in Example 1.

〔比較例1 従来技術で示したように第9図w〜(C)に従ってチセ
ンバを作製した。すなわち先ず噴孔部を持たない形状の
チャンバ粗形材1を精密If造法によって作製し、次い
でINGアークを用いて噴孔部周縁の鋭角部となるべき
部位に再溶融処理を施した。
[Comparative Example 1] Chisenba was produced according to FIGS. 9(c) as shown in the prior art. That is, first, a rough chamber member 1 having a shape without a nozzle hole was manufactured by the precision If manufacturing method, and then a remelting process was performed on the portions that were to become acute corners around the nozzle hole using an ING arc.

ぞの後、噴孔部を形成するための放電穴あけ加工を含め
、仕上げ加工を行なフたが、この場合は仕上げ加工に要
する時間、コストが実施例1.2の場合と比較して大幅
に増加した。
After that, finish machining was performed, including electric discharge drilling to form the nozzle hole, but in this case, the time and cost required for finish machining were significantly greater than in Example 1.2. increased to

発明の効果 この発明のディーゼルニンジン用副燃焼至チャンバの製
造方法によれば、チャンバ粗形材の精密鋳造時に、噴孔
部となるべき孔部を有しかつその孔部両端のうちいずれ
か一方または双方に、その孔部の開口端の少なくとも一
部を覆う閉止部を一体に形成するため、孔部に鋳型材が
充填されたまま残留するかまたは仮に一部脱落しても塩
等の鋳型材を筒中に充填・支持させることかでき、した
がってその後の再溶融処理等の高密度エネルギを用いた
強化処理時に孔部において溶融した金属が流れ落ちたり
垂れ下がったりして孔部の形状を保てなくなるような事
態の発生を防止することができる。しかもこの発明の方
法では、精密sll待時噴孔部となるべき孔部を予め形
成しており、また再溶融処理後の閉止部除去のための加
工コストもわずかで済むため、従来技術のように噴孔部
を持たない形状のチャンバ粗形材に対して再溶融処理等
の強化を施してから噴孔部を放電加工等により形成する
場合と比較して、格段に加工コストが低く、また再1−
処理等の強化処理時における孔部内面の支持に鋳型材を
利用しているため、水冷銅塊の如き支持治具を予め作製
しておく必要がなく、したがって水冷銅塊等の支持治具
作製コストも不要てjす、全体としてチャンバ製造コス
トの著しい低コスト化を図ることができる。
Effects of the Invention According to the method of manufacturing a sub-combustion chamber for diesel carrots of the present invention, during precision casting of a chamber rough shape, it has a hole to become a nozzle hole and either one of both ends of the hole is formed. Or, both sides are integrally formed with a closing part that covers at least a part of the open end of the hole, so that the mold material remains filled in the hole, or even if some of it falls off, the salt, etc. It is possible to fill and support the material in the cylinder, so that during subsequent strengthening treatment using high-density energy such as remelting treatment, the molten metal in the hole will flow down or hang down, making it impossible to maintain the shape of the hole. It is possible to prevent such situations from occurring. Moreover, in the method of the present invention, the hole that will become the precision SLL standby nozzle hole is formed in advance, and the processing cost for removing the closed part after the remelting process is small, which is different from the conventional technology. The machining cost is significantly lower than that of forming the nozzle hole by electric discharge machining after strengthening the chamber material without the nozzle hole by re-melting or other processing. Re 1-
Since the mold material is used to support the inner surface of the hole during strengthening treatment, there is no need to prepare a support jig such as a water-cooled copper ingot in advance, and therefore it is easy to manufacture a support jig for a water-cooled copper ingot. There is no cost involved, and the overall cost of manufacturing the chamber can be significantly reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の方法において精密鋳造により作製さ
れるチャンバ粗形材の第1の例を示す縦断面図、第2図
は第1図のチャンバ粗形材の底面図、第3図はこの光間
の方法において精密鋳造により作製されるチャンバ粗形
材の第2の例を示す縦断面図、第4図はこの発明の方法
において精密鋳造により作製されるチャンバ粗形材の第
3の例を示す縦断面図、第5図はこの発明の方法におい
て精密鋳造により作製されるチャンバ粗形材の第4の9
例を示す縦断面図、第6図は第1図に示されるチャンバ
粗形材の精密flI造後の状態を示すIu断面図、第7
図は第1図に示されるチャンバ粗形材に再溶融処理を施
している状況を示す縦断面図、第8図は第1図に示され
るチャンバ粗形材を用いて最終的に得られたチャンバを
示1jII!断面図、第9図(2)〜(C)は従来のチ
ャンバ製造方法の一例を段帛的に示す縦断面図である。 1・・・チ↑・ンバ粗形材、 2A・・・再溶融処理層
、3・・・噴孔部、 3・・・孔部、 4・・・閉止部
、 5・・・鋳型材、 6・・・鋭角部、 6A、6B
・・・鋭角部となるべき部位。
FIG. 1 is a longitudinal cross-sectional view showing a first example of a chamber rough shape manufactured by precision casting in the method of the present invention, FIG. 2 is a bottom view of the chamber rough shape shown in FIG. 1, and FIG. 3 is a bottom view of the chamber rough shape shown in FIG. FIG. 4 is a vertical cross-sectional view showing a second example of a chamber rough shape manufactured by precision casting in the method of this invention, and FIG. A longitudinal sectional view showing an example, FIG.
FIG. 6 is a longitudinal cross-sectional view showing an example, and FIG.
The figure is a vertical cross-sectional view showing the state in which the rough chamber material shown in FIG. 1 is subjected to remelting treatment, and FIG. 8 is a longitudinal cross-sectional view showing the state in which the rough chamber material shown in FIG. Show chamber 1jII! The sectional views and FIGS. 9(2) to 9(C) are vertical sectional views showing stepwise an example of a conventional chamber manufacturing method. DESCRIPTION OF SYMBOLS 1... Ch↑・Mamba rough shape material, 2A... Remelting treatment layer, 3... Nozzle hole part, 3... Hole part, 4... Closing part, 5... Mold material, 6...Acute angle part, 6A, 6B
...A part that should be an acute angle.

Claims (1)

【特許請求の範囲】[Claims] ディーゼルエンジン用副燃焼室チャンバの粗形材を精密
鋳造するにあたって、チャンバの噴孔部となるべき孔部
を有しかつその孔部の両端のうち、いずれか一方または
双方に、その孔部の開口端の少なくとも一部を覆う閉止
部をチャンバ粗形材と一体に形成し、その後前記孔部に
鋳型材が充填されている状態で噴孔部の鋭角部となるべ
き部分に高密度エネルギを用いた強化処理を施し、しか
る後仕上げ加工により前記閉止部を除去して噴孔部を形
成することを特徴とするディーゼルエンジン用副燃焼室
チャンバの製造方法。
When precision casting a rough-shaped material for a sub-combustion chamber for a diesel engine, the chamber has a hole that is to become the nozzle hole, and one or both ends of the hole have a A closing portion that covers at least a portion of the opening end is formed integrally with the chamber rough material, and then, while the hole is filled with mold material, high-density energy is applied to the portion that should become the acute corner of the nozzle hole. 1. A method of manufacturing a sub-combustion chamber for a diesel engine, the method comprising the steps of: applying a strengthening treatment to the auxiliary combustion chamber, and then removing the closing portion through finishing processing to form a nozzle hole portion.
JP1110331A 1989-04-28 1989-04-28 Manufacture of auxiliary combustion chamber of diesel engine Pending JPH02286821A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1110331A JPH02286821A (en) 1989-04-28 1989-04-28 Manufacture of auxiliary combustion chamber of diesel engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1110331A JPH02286821A (en) 1989-04-28 1989-04-28 Manufacture of auxiliary combustion chamber of diesel engine

Publications (1)

Publication Number Publication Date
JPH02286821A true JPH02286821A (en) 1990-11-27

Family

ID=14533034

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1110331A Pending JPH02286821A (en) 1989-04-28 1989-04-28 Manufacture of auxiliary combustion chamber of diesel engine

Country Status (1)

Country Link
JP (1) JPH02286821A (en)

Similar Documents

Publication Publication Date Title
US7722330B2 (en) Rotating apparatus disk
JP4802895B2 (en) Cast iron member manufacturing method, cast iron member, and vehicle engine
US3905415A (en) Method of casting parts of high melting point metal in molds
JPH0577042A (en) Method for reforming surface of cast iron parts
JPH02286821A (en) Manufacture of auxiliary combustion chamber of diesel engine
JP3654159B2 (en) Nonferrous metal casting tool and tool steel therefor
JP2996759B2 (en) Casting method of cast-in pipe in cylinder cooled liner for diesel engine
JPS5914294B2 (en) casting mold
KR100418451B1 (en) Tool for non-ferrous casting
JPH06269926A (en) Manufacture of bit for excavation
JPH0215866A (en) Manufacture of cylinder head
JP3164137B2 (en) Manufacturing method of aluminum cylinder head
JPH062897B2 (en) Method for remelting metal surface
JP2940988B2 (en) Remelt treatment method for cylinder head
JP2576944B2 (en) Manufacturing method of drill bit
JP3769912B2 (en) Casting method for aluminum castings
JP2775885B2 (en) Cylinder head and method of manufacturing the same
JPH01218A (en) Metal surface remelting treatment method
JP2000084645A (en) Method for continuous use of tundish
JP3888686B2 (en) Mold for glass bottle manufacturing
SU1546205A1 (en) Method of producing bimetallic tool
JPH02298212A (en) Method for repairing immersed-pipe refractory in vacuum vessel
JPH01111855A (en) Method for padding to cast-iron member
JPH10286684A (en) Build-up method with laser beam
JPS5978750A (en) External chiller for casting