JPH0228527A - Measuring method and device for power of vehicle or the like - Google Patents

Measuring method and device for power of vehicle or the like

Info

Publication number
JPH0228527A
JPH0228527A JP6056989A JP6056989A JPH0228527A JP H0228527 A JPH0228527 A JP H0228527A JP 6056989 A JP6056989 A JP 6056989A JP 6056989 A JP6056989 A JP 6056989A JP H0228527 A JPH0228527 A JP H0228527A
Authority
JP
Japan
Prior art keywords
output
voltage
proportional
detection means
phase difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6056989A
Other languages
Japanese (ja)
Inventor
Shigeru Kitagawa
茂 北川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON HIHAKAI KEISOKU KENKYUSHO KK
Original Assignee
NIPPON HIHAKAI KEISOKU KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON HIHAKAI KEISOKU KENKYUSHO KK filed Critical NIPPON HIHAKAI KEISOKU KENKYUSHO KK
Priority to JP6056989A priority Critical patent/JPH0228527A/en
Publication of JPH0228527A publication Critical patent/JPH0228527A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L3/00Measuring torque, work, mechanical power, or mechanical efficiency, in general
    • G01L3/24Devices for determining the value of power, e.g. by measuring and simultaneously multiplying the values of torque and revolutions per unit of time, by multiplying the values of tractive or propulsive force and velocity
    • G01L3/242Devices for determining the value of power, e.g. by measuring and simultaneously multiplying the values of torque and revolutions per unit of time, by multiplying the values of tractive or propulsive force and velocity by measuring and simultaneously multiplying torque and velocity

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

PURPOSE:To easily detect the characteristic of a vehicle while running by detecting a torque to actuate a rotating shaft as the rotation phase difference due to a twisting distortion and converting to a horse-power in the manner of multiplying the phase difference by a voltage signal proportional to the number of rotation. CONSTITUTION:The torque T to actuate the rotating shaft 8 is proportional to a twist angle theta of the rotation shaft 8, that is, T=(pid<4>G/32l)theta [where, (d) expresses a diameter (m) of the rotating shaft 8, (l) is a length (m) of the rotating shaft 8 and G is a shearing elastic modulus (N/m<2>)]. The torque T is directly detected by means of measuring this twist angle theta. A rotation angular velocity U of the rotating shaft 8 is given as U=2pif using the number of rotation (f) (rotation/second), so the horse-power (PS) given by the product of the torque T and the rotation angular velocity U, PS=UT is measured by means of detecting a quantities corresponding to the twist angle theta and the number of rotation (f).

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、車両等の出力計測方法及びその装置に係わり
、更に詳しくは車両等の走行中にリアルタイムでその馬
力等の出力を計測する方法及び装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method and device for measuring the output of a vehicle, etc., and more specifically to a method of measuring the output such as horsepower of a vehicle in real time while the vehicle is running. and devices.

〔従来の技術〕[Conventional technology]

従来、自動車には、その原動機の回転数を表示するタコ
メーターは通常装備されているものが多いが、馬力換算
した出力計を装備している例は全くなく、走行中の自動
車の特性を知るうえでその出力計に対する要望が高くな
っている。原動機の出力測定に於いては、原動機に電磁
的又は流体摩擦による負荷を与えてトルクを測定する方
法が用いられているが、現地走行中の動力車又は自動車
等の車両の出力を馬力として正確に測定することは、大
きな負荷を与えることから不可能である。
Traditionally, many cars have been equipped with a tachometer that displays the rotational speed of the prime mover, but none have been equipped with an output meter that converts horsepower, making it difficult to know the characteristics of the car while it is running. Therefore, demand for such output meters is increasing. To measure the output of a prime mover, a method is used in which torque is measured by applying an electromagnetic or fluid friction load to the prime mover. It is impossible to measure this because it imposes a large load.

また、加速度と速度から馬力換算する装置は存在するが
、車両等の真の出力をリアルタイムで測定することはで
きなかった。他方、ねじり力計による軸のトルクの測定
は、既に多(の方法でなされ、そしてねじり力計は各種
のものが提供されているが、これに回転速度を乗じて出
力針として表示するリアルタイムの出力計は実験用等の
特殊の場合しか用いられてなく、現に自動車に搭載して
いる例は皆無であった。
Furthermore, although there are devices that convert acceleration and speed into horsepower, it has not been possible to measure the true output of a vehicle or the like in real time. On the other hand, shaft torque measurement using a torsional force meter has already been done in many ways, and various types of torsional force meters are available. Output meters were only used in special cases such as experiments, and there were no examples of them actually being installed in automobiles.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明が前述の状況に鑑み、解決しようとするところは
、車両等の車輪軸又はこれを駆動する動力伝達軸等の回
転軸にセンサ一部を常設し、該回転軸のトルク及び回転
数を検出し、それをきわめて容易に乗算出力を得ること
のできる回路素子を用いて乗算することにより、従来の
加速度と速度から換算する方法と異なり車両等の真の出
力をリアルタイムで真の馬力に換算して計測でき、車両
等への取付けも簡単に行え、しかも安価で計測容易な車
両等の出力計測方法及びその装置を提供する点にある。
In view of the above-mentioned situation, the present invention aims to solve the problem by permanently installing a part of a sensor on a rotating shaft such as a wheel shaft of a vehicle or a power transmission shaft that drives the wheel shaft, and measuring the torque and rotational speed of the rotating shaft. By detecting it and multiplying it using a circuit element that can extremely easily obtain the multiplication output, the true output of the vehicle, etc. can be converted into true horsepower in real time, unlike the conventional method of converting from acceleration and speed. It is an object of the present invention to provide a method and apparatus for measuring the output of a vehicle, etc., which can be easily measured, can be easily installed on a vehicle, etc., and is inexpensive and easy to measure.

〔課題を解決するための手段〕 本発明は、前述の課題解決の為に、車両等の車輪軸又は
これを駆動する動力伝達軸等の回転軸に作用する実トル
クを、該回転軸に沿って所定距離だけ離れた位置に配し
た検知手段にてそれぞれ回転を検出することにより該回
転軸に生じるねじりひずみに起因する回転位相差として
導出し、該位相差と回転数に比例する電圧信号を乗算手
段にて乗じて馬力換算するものである。
[Means for Solving the Problems] In order to solve the above-mentioned problems, the present invention aims to reduce the actual torque acting on a rotating shaft such as a wheel shaft of a vehicle or a power transmission shaft that drives the wheel shaft along the rotating shaft. The rotations are detected by detection means placed a predetermined distance apart from each other, and a rotational phase difference resulting from the torsional strain occurring in the rotating shaft is derived, and a voltage signal proportional to the phase difference and the rotational speed is generated. It is multiplied by a multiplier and converted into horsepower.

また、具体的には前記乗算手段として、電界効果トラン
ジスタと発光ダイオードからなるフォトカプラを有し、
前記位相差と回転数に比例するアナログ電圧信号を、該
電界効果トランジスタ及び発光ダイオードのそれぞれに
入力して、馬力に比例する出力を得る乗算手段を用い、
又はアナログスイッチとCR積分回路及び平滑回路を直
列に接続し、前記位相差に比例するアナログ電圧信号を
アナログスイッチに入力するとともに、一定時間幅で回
転数に比例した周波数のパルス電圧信号をアナログスイ
ッチのドライバ回路に入力して、馬力に比例する出力を
得る乗算手段を用いるとともに、前記検知手段として、
回転軸の回転によって永久磁石の作る磁束の変化でコイ
ルに電磁誘導起電力を発生させてなる検知手段を用いる
ものである。
Further, specifically, the multiplication means includes a photocoupler consisting of a field effect transistor and a light emitting diode,
Using a multiplication means that inputs an analog voltage signal proportional to the phase difference and the rotation speed to each of the field effect transistor and the light emitting diode to obtain an output proportional to the horsepower,
Alternatively, an analog switch, a CR integrating circuit, and a smoothing circuit are connected in series, and an analog voltage signal proportional to the phase difference is input to the analog switch, and a pulse voltage signal with a frequency proportional to the rotation speed is input to the analog switch with a fixed time width. A multiplication means is used to obtain an output proportional to the horsepower by inputting the multiplier into the driver circuit, and as the detection means,
This uses a detection means that generates an electromagnetic induced electromotive force in a coil due to changes in magnetic flux produced by a permanent magnet due to rotation of a rotating shaft.

そして、前記方法による出力計測装置としては、車両等
の車輪軸又はこれを駆動する動力伝達軸等の回転軸に沿
って所定距離だけ離した位置にそれぞれ設け、該回転軸
の回転に対応した電圧信号を出力する検知手段と、前記
第1検知手段の出力と第2検知手段の出力とより位相差
を検出し、その位相差に比例した時間幅のパルスを発生
させる位相差検出手段と、前記位相差検出手段により発
生したパルス幅にに対応したアナログ電圧を発生するパ
ルス幅−電圧変換手段と、前記第1検知手段又は第2検
知手段の周期的な電圧出力を回転数に対応させ且つその
回転数に比例するアナログ電圧を発生する周波数−電圧
変換手段と、前記回転軸に作用するトルクに比例した前
記パルス幅−電圧変換手段の出力信号と回転数に比例し
た前記周波数−電圧変換手段の出力信号を、電界効果ト
ランジスタと発光ダイオードからなるフォトカプラの電
界効果トランジスタの入力側のS又はD端子及び発光ダ
イオードの入力側の端子にそれぞれ入力し、両信号を乗
算して馬力に比例する信号を電界効果トランジスタの出
力側のD又はS端子から発生する乗算手段と、前記乗算
手段の出力を表示する表示手段とより構成した。
The output measuring device according to the above method is installed at a position separated by a predetermined distance along a rotating shaft such as a wheel shaft of a vehicle or a power transmission shaft that drives the same, and a voltage corresponding to the rotation of the rotating shaft is provided. a detection means for outputting a signal; a phase difference detection means for detecting a phase difference between the output of the first detection means and the output of the second detection means and generating a pulse having a time width proportional to the phase difference; pulse width-to-voltage conversion means for generating an analog voltage corresponding to the pulse width generated by the phase difference detection means; a frequency-voltage conversion means that generates an analog voltage proportional to the rotational speed; an output signal of the pulse width-voltage conversion means that is proportional to the torque acting on the rotating shaft; and an output signal of the frequency-voltage conversion means that is proportional to the rotational speed. The output signal is input to the S or D terminal on the input side of the field effect transistor of a photocoupler consisting of a field effect transistor and a light emitting diode, and the input side terminal of the light emitting diode, respectively, and both signals are multiplied to generate a signal proportional to horsepower. The multiplication means generates from the D or S terminal on the output side of the field effect transistor, and the display means displays the output of the multiplication means.

また、前記装置の周波数−電圧変換手段と乗算手段の代
わりに、前記第1検知手段又は第2検知手段の周期的な
周波数に比例する出力を一定時間幅のパルスに変換する
パルス幅変換手段を用いるとともに、アナログスイッチ
とCR積分回路及び平滑回路を直列に接続し、トルクに
比例するパルス幅−電圧変換手段の出力信号を前記アナ
ログスイッチに入力するとともに、一定時間幅を有する
回転数に比例した周波数を有するパルス電圧信号をアナ
ログスイッチのドライバ回路に入力し、回転数に対応し
たパルスが入力された時間だけトルクに比例した電圧を
CR積分回路に入力して積分して昇電圧し、その他の時
間は放電させて課電圧して鋸歯状電圧を発生させ、更に
この電圧を平滑回路で平滑化して馬力に比例したアナロ
グ電圧を発生させる乗算手段を用いて構成した。
Further, instead of the frequency-voltage conversion means and the multiplication means of the device, a pulse width conversion means for converting the output proportional to the periodic frequency of the first detection means or the second detection means into a pulse having a constant time width is provided. At the same time, an analog switch, a CR integrating circuit, and a smoothing circuit are connected in series, and the output signal of the pulse width-voltage conversion means proportional to the torque is inputted to the analog switch, and the output signal proportional to the rotation speed having a fixed time width is input to the analog switch. A pulse voltage signal having a frequency is input to the driver circuit of the analog switch, and a voltage proportional to the torque is input to the CR integration circuit for the time period during which the pulse corresponding to the rotation speed is input, and the voltage is increased by integrating it. The time was configured using a multiplier that discharged and applied voltage to generate a sawtooth voltage, and further smoothed this voltage with a smoothing circuit to generate an analog voltage proportional to horsepower.

また、具体的には前記検知手段として、前記回転軸にビ
ン状の永久磁石を等間隔に突設し、コイルを巻回した強
磁性体の柱状芯材一端を前記永久磁石の回転外周の近傍
に配して非回転部に固定し、該コイルに生じた電磁誘導
起電力をコンパレータにより軸の回転に対応した矩形波
に変換してなるものを用いるか、又は外周に割溝又は突
起を等間隔に形成した強磁性体の円板を前記回転軸に同
軸伏に固定し、コイルを巻回した強磁性体の柱状芯材一
端に永久磁石を接続するとともに、他端を前記円板の回
転外周の近傍に配して非回転部に固定し、該コイルに生
じた電磁誘導起電力をコンパレータにより軸の回転に対
応した矩形波に変換してなるものを用いた。
Specifically, as the detection means, bottle-shaped permanent magnets are protruded from the rotating shaft at equal intervals, and one end of a ferromagnetic columnar core material around which a coil is wound is placed near the rotating outer periphery of the permanent magnet. The electromagnetic induced electromotive force generated in the coil is converted into a rectangular wave corresponding to the rotation of the shaft by a comparator, or a groove or protrusion is provided on the outer periphery. A ferromagnetic disc formed at intervals is coaxially fixed to the rotating shaft, a permanent magnet is connected to one end of a ferromagnetic columnar core material around which a coil is wound, and the other end is connected to the rotation of the disc. The coil was arranged near the outer periphery and fixed to a non-rotating part, and the electromagnetic induced electromotive force generated in the coil was converted by a comparator into a rectangular wave corresponding to the rotation of the shaft.

そして、回転軸に対する第1検知手段と第2検知手段の
相対設置誤差による初期位相差に起因するトルクの誤差
を補正するために、前記検知手段を予め正位相差を生じ
るように設定し、前記乗算手段に入力される前のトルク
に対応したアナログ電圧信号をリセット信号が入力され
ている間だけA/D変換器を介して記憶するデジタル記
憶回路と、前記アナログ電圧信号から該デジタル記憶回
路に記憶されている補正電圧データをD/A変換器を介
してアナログ電圧に変換した補正電圧信号を常時減算す
る減算回路を備え、該減算回路の出力を前記乗算手段に
入力してなる初期値補正手段を設けた。
In order to correct a torque error caused by an initial phase difference due to a relative installation error between the first detection means and the second detection means with respect to the rotating shaft, the detection means is set in advance to generate a positive phase difference, and the detection means is set in advance to generate a positive phase difference. a digital storage circuit that stores an analog voltage signal corresponding to the torque before being input to the multiplication means via an A/D converter only while a reset signal is being input; An initial value correction comprising a subtraction circuit that constantly subtracts a correction voltage signal obtained by converting stored correction voltage data into an analog voltage via a D/A converter, and inputting the output of the subtraction circuit to the multiplication means. The means were set up.

更に、車輪軸の上下及び回転振動に起因するトルク測定
値の誤差を補正するために、前記動力伝達軸に外周に割
溝又は突起を等間隔に形成した強磁性体の円板を同軸伏
に固定し、コイルを巻回した強磁性体の柱状芯材一端に
永久磁石を接続するとともに、他端を前記円板の回転外
周の近傍に配して車軸受部に固定し、そして一端を該車
軸受部に枢着し且つ他端を車体に枢着したアームの中間
部と車体に発振コイルと該発振コイルに出没可能に挿入
されるフェライトコアの何れか一方をそれぞれ固定し、
該発振コイルには発振回路を接続し、更に車輪軸の上下
及び回転振動による発振コイルとフェライトコアの相対
変位に起因する発振周波数の変化を周波数−電圧変換回
路により補正電圧信号に変換し、該補正電圧信号を前記
乗算手段に入力される前のトルクに対応したアナログ電
圧信号に加算する加算回路を備え、該加算回路の出力を
前記乗算手段に入力してなる1辰動補正手段を設けた。
Furthermore, in order to correct errors in torque measurement values caused by vertical and rotational vibrations of the wheel axle, a ferromagnetic disc with grooves or protrusions formed at equal intervals on the outer periphery of the power transmission shaft is installed coaxially with the power transmission shaft. A permanent magnet is connected to one end of a ferromagnetic columnar core material fixed and wound with a coil, and the other end is arranged near the rotating outer periphery of the disk and fixed to the axle bearing part. An oscillation coil and a ferrite core inserted retractably into the oscillation coil are respectively fixed to the intermediate portion of an arm that is pivotally connected to the axle bearing and the other end is pivotally connected to the vehicle body, and
An oscillation circuit is connected to the oscillation coil, and a change in oscillation frequency caused by relative displacement between the oscillation coil and the ferrite core due to vertical and rotational vibration of the wheel axle is converted into a correction voltage signal by a frequency-voltage conversion circuit. A linear motion correction means is provided, comprising an addition circuit that adds a correction voltage signal to an analog voltage signal corresponding to the torque before being input to the multiplication means, and inputting the output of the addition circuit to the multiplication means. .

〔作用〕[Effect]

以上の如き内容からなる本発明の車両等の出力計測方法
及びその装置は、回転軸に作用するトルクをねじりひず
みに起因する回転位相差として検出し、該位相差と回転
数に比例する電圧信号を乗じて馬力換算するもので、そ
の電圧信号を乗じるにあたり電界効果トランジスタと発
光ダイオードからなる双方向のフォトカプラを用い、そ
のアナログ電圧乗算特性を利用している。また、前記位
相差と回転数に対応した電圧信号より馬力に比例した電
圧信号を得るために、位相差に比例するアナログ電圧信
号をアナログスイッチに入力するとともに、一定時間幅
で回転数に比例した周波数を有するパルス電圧信号をア
ナログスイッチのドライバ回路に入力し、回転数に対応
したパルスが入力された時間だけトルクに比例した電圧
信号を通過させてCR積分回路のコンデンサに充電して
電圧を上昇させ、その他の時間はコンデンサに蓄えた電
荷を一定割合で放電させて電圧を下降させ、これをパル
ス毎に繰り返して鋸歯状電圧を発生させると、充電電荷
量と単位時間当たりの充電回数に比例した平均電圧を得
るので、更にこの電圧を平滑回路で平滑化して馬力に比
例したアナログ電圧として出力させる。また、回転数及
び回転位相差を検出するにあたり、回転軸に沿って離れ
た位置に配した永久磁石とコイルの組合わせからなる検
知手段で回転によるコイル中の磁束の変化によりコイル
に発生する電磁誘導起電力を用いている。
The method and device for measuring the output of a vehicle, etc. of the present invention having the content described above detects the torque acting on the rotating shaft as a rotational phase difference caused by torsional strain, and generates a voltage signal proportional to the phase difference and the rotation speed. In order to multiply the voltage signal, a bidirectional photocoupler consisting of a field effect transistor and a light emitting diode is used, and its analog voltage multiplication characteristics are utilized. In addition, in order to obtain a voltage signal proportional to horsepower from the voltage signal corresponding to the phase difference and the rotation speed, an analog voltage signal proportional to the phase difference is input to the analog switch, and a voltage signal proportional to the rotation speed is input in a fixed time width. A pulse voltage signal with a frequency is input to the analog switch driver circuit, and a voltage signal proportional to the torque is passed for the time that the pulse corresponding to the rotation speed is input, charging the capacitor of the CR integration circuit and increasing the voltage. During the rest of the time, the charge stored in the capacitor is discharged at a fixed rate to lower the voltage. If this is repeated for each pulse to generate a sawtooth voltage, the voltage will be proportional to the amount of charge and the number of charges per unit time. Then, this voltage is further smoothed by a smoothing circuit and output as an analog voltage proportional to the horsepower. In addition, in detecting the rotational speed and rotational phase difference, the detection means consists of a combination of a permanent magnet and a coil arranged at separate positions along the rotation axis. It uses induced electromotive force.

そして、それぞれの検知手段のコイルに発生する周期的
な電磁誘導起電力をコンパレータで矩形波に変換し、そ
れぞれの検知手段の信号を位相差検出手段にて位相差に
比例した時間幅のパルスに変換し、その信号をパルス幅
−電圧変換手段にてパルス幅に比例したアナログ電圧に
変換するとともに、一方の検知手段の信号を周波数−電
圧変換手段にて回転軸の回転数に比例するアナログ電圧
に変換し、両アナログ電圧信号を電界効果トランジスタ
と発光ダイオードからなるフォトカプラを有する乗算手
段にてアナログ的に乗じて、馬力換算したこの出力信号
を表示手段にて表示するのである。又は、一方の検知手
段の信号をパルス幅変換手段にて一定時間幅で回転数に
比例した周波数のパルス電圧信号に変換し、該信号をア
ナログスイッチのドライバ回路に入力して、該アナログ
スイッチに入力した前記同様に発生させたトルクに比例
するアナログ電圧信号を回転数に対応するパルス信号が
入力された時間間隔だけ通し、そしてその通過したアナ
ログ電圧信号をCR積分回路で積分して電圧を上昇させ
るとともに、その他の時間では放電させて電圧を下降さ
せて鋸歯状電圧を発生させ、その電圧を平滑回路により
平滑化して、結果としてトルクと回転数を乗じたアナロ
グ電圧を発生させ、この馬力換算した出力信号を表示手
段にて表示するのである。
Then, the periodic electromagnetic induced electromotive force generated in the coil of each detection means is converted into a rectangular wave by a comparator, and the signal of each detection means is converted into a pulse with a time width proportional to the phase difference by a phase difference detection means. The signal is converted into an analog voltage proportional to the pulse width by the pulse width-voltage conversion means, and the signal from one of the detection means is converted into an analog voltage proportional to the rotation speed of the rotating shaft by the frequency-voltage conversion means. Both analog voltage signals are multiplied in an analog manner by a multiplier having a photocoupler consisting of a field effect transistor and a light emitting diode, and this output signal converted into horsepower is displayed on a display means. Alternatively, the signal from one of the detection means is converted into a pulse voltage signal with a constant time width and a frequency proportional to the rotation speed by a pulse width conversion means, and the signal is input to the driver circuit of the analog switch, and An analog voltage signal proportional to the input torque generated in the same manner as above is passed through for the time interval during which a pulse signal corresponding to the rotation speed is input, and the passed analog voltage signal is integrated by a CR integration circuit to increase the voltage. At the same time, at other times, it is discharged to lower the voltage and generate a sawtooth voltage.The voltage is smoothed by a smoothing circuit, and as a result, an analog voltage is generated by multiplying the torque and the rotation speed, and this horsepower conversion is The resulting output signal is displayed on the display means.

更に、回転軸及び非回転部に第1検知手段と第2検知手
段を装着する際に必然的に生じる相対設置誤差による初
期位相差に起因するトルクの誤差を補正するために設置
すた初期値補正手段は、予め前記検知手段を正位相差を
生じるように設定し、回転軸に最大トルクの5%以下の
正トルクを与えて回転させた状態の該トルクの電圧信号
をデジタル記憶回路に記憶させ、その補正電圧信号を現
地走行中におけるトルクに対応したアログミ圧信号から
減算回路により常時減算し、正味のトルクに比例したア
ナログ電圧信号を得るようになしている。
Furthermore, an initial value is set to correct a torque error caused by an initial phase difference due to a relative installation error that inevitably occurs when the first detection means and the second detection means are attached to the rotating shaft and the non-rotating part. The correction means sets the detection means in advance to generate a positive phase difference, and stores in a digital storage circuit a voltage signal of the torque in a state in which a positive torque of 5% or less of the maximum torque is applied to the rotating shaft and the rotating shaft is rotated. The corrected voltage signal is constantly subtracted by a subtraction circuit from the analogue pressure signal corresponding to the torque during local driving to obtain an analog voltage signal proportional to the net torque.

また、現地走行中に生じる車輪軸の上下及び回転振動に
より動力伝達軸と車軸受部が相対的に回転することに起
因するトルクの誤差を補正するために設けた振動補正手
段は、発振回路に接続された発振コイルに挿入されたフ
ェライトコアが、車軸受部の振動により出没し、発振コ
イルのインダクタンスが変化してその発振周波数が変化
し、その変化を周波数−電圧変換回路により動力伝達軸
と車軸受部の相対回転角に対応する正負の補正電圧信号
に変換して、その補正電圧信号を通常運転時におけるト
ルクに比例したアログミ圧信号に加算回路により加算し
、正味のトルクに比例したアナログ電圧信号を得るよう
になしている。
In addition, the vibration correction means provided in order to correct torque errors caused by the relative rotation of the power transmission shaft and the axle bearing due to the vertical and rotational vibration of the wheel axle that occurs during on-site driving is installed in the oscillation circuit. The ferrite core inserted into the connected oscillation coil moves in and out due to the vibration of the vehicle bearing, and the inductance of the oscillation coil changes, causing the oscillation frequency to change, and this change is transferred to the power transmission shaft by the frequency-voltage conversion circuit. The correction voltage signal is converted into a positive and negative correction voltage signal corresponding to the relative rotation angle of the vehicle bearing, and the addition circuit adds the correction voltage signal to the analogue pressure signal proportional to the torque during normal operation. It is designed to obtain voltage signals.

〔実施例〕〔Example〕

次に添付図面に示した実施例に基づき更に本発明の詳細
な説明する。
Next, the present invention will be further described in detail based on embodiments shown in the accompanying drawings.

第1図は、本発明の代表的実施例を示すブロック図で、
図中1及び2は第1検知手段及び第2検知手段、3は位
相差検出手段、4はパルス幅−電圧変換手段、5は周波
数−電圧変換手段、6は乗算手段、7は表示手段をそれ
ぞれ示している。
FIG. 1 is a block diagram showing a typical embodiment of the present invention.
In the figure, 1 and 2 are first detection means and second detection means, 3 is phase difference detection means, 4 is pulse width-voltage conversion means, 5 is frequency-voltage conversion means, 6 is multiplication means, and 7 is display means. are shown respectively.

本発明の車両等の出力計測方法及びその装置の基本原理
は、回転軸8に作用するトルクT (N・m)が、該回
転軸8のねじれ角θ(rad)に比例する以下の関係を
用いたものである。
The basic principle of the method and device for measuring the output of a vehicle, etc. of the present invention is based on the following relationship in which the torque T (N m) acting on the rotating shaft 8 is proportional to the torsion angle θ (rad) of the rotating shaft 8. This is what I used.

T−(πa’ c/32z)θ ここで、dは回転軸8の直径(m) 、lは軸の長さ(
m) 、Gは剪断弾性係数(N/m”)をそれぞれ示し
ている。このねじれ角θを測定することによりトルクT
を直接検出することが可能であることがわかる。また、
回転軸8の回転角速度Uは、回転数r (回/5ec)
を用いて、 U=2πf で与えられるから、トルクTと回転角速度Uの積PS=
UTで与えられる馬力(PS)は、前記ねじれ角θと回
転数fに対応する量を検出することにより測定できる。
T-(πa' c/32z)θ Here, d is the diameter (m) of the rotating shaft 8, and l is the length of the shaft (
m) and G indicate the shear modulus of elasticity (N/m"). By measuring this torsion angle θ, the torque T
It can be seen that it is possible to directly detect Also,
The rotational angular velocity U of the rotating shaft 8 is the rotational speed r (times/5ec)
Since it is given by U=2πf, the product of torque T and rotational angular velocity U is PS=
The horsepower (PS) given by UT can be measured by detecting the amount corresponding to the torsion angle θ and the rotation speed f.

以下、本発明を更に詳説する。The present invention will be explained in more detail below.

第1検知手段1及び第2検知手段2は、全く同じ構造且
つ特性のもので構成され、第2図及び第4図に示すよう
に、車両等の車輪軸又はこれを駆動する動力伝達軸等の
回転軸8に沿って所定距離だけ離した位置に設けるセン
サ一部9とそれから得られた信号を矩形波に変換するコ
ンパレータ10からなる。前記センサ一部9は、回転軸
8の外周に所定間隔毎にビン状の永久磁石11.・・・
を該回転軸8と一体となり回転するように突設するとと
もに、車両等の車体12又は車軸受部の非回転部にはコ
イル13を巻回した強磁性体の柱状芯材14一端を前記
永久磁石11.・・・の回転外周の近傍に配して固定し
、前記回転軸8の回転に伴い、永久磁石11がコイル1
3の一端近傍を通過する毎にそれによる磁束の変化によ
る電磁誘導により該コイル13に波状の誘導起電力が発
生するのである。ここで、前記永久磁石11の回転外周
と芯材14の先端間の距離を車両等の現地走行中にも常
に一定に保つようになすことが重要である。
The first detection means 1 and the second detection means 2 have the same structure and characteristics, and as shown in FIG. 2 and FIG. The sensor part 9 is provided at a predetermined distance along the rotation axis 8 of the sensor, and a comparator 10 converts the signal obtained from the sensor part 9 into a rectangular wave. The sensor part 9 includes bottle-shaped permanent magnets 11 . ...
A ferromagnetic columnar core material 14 with a coil 13 wound thereon is provided on a non-rotating part of a vehicle body 12 or an axle bearing part of a vehicle or the like so as to rotate integrally with the rotating shaft 8. Magnet 11. The permanent magnet 11 is arranged and fixed near the rotating outer periphery of the coil 1 as the rotating shaft 8 rotates.
Each time the coil 13 passes near one end of the coil 13, a wave-like induced electromotive force is generated in the coil 13 due to electromagnetic induction caused by a change in magnetic flux. Here, it is important to keep the distance between the rotating outer periphery of the permanent magnet 11 and the tip of the core material 14 constant at all times even when the vehicle or the like is running on site.

第6図(A)は、第1検知手段1のコイル13aに発生
する誘導起電力1ft+の波形を示し、(B)は第2検
知手段2のコイル13bに発生する誘導起電力″Ut2
の波形を示してあり、また(C)は前記11 t i波
形をコンパレータ10にて矩形波′tr4に波形整形し
たもので、(D)は前記”Ut2波形を同様にコンパレ
ータ10にて矩形波v2に波形整形したものである。
FIG. 6(A) shows the waveform of the induced electromotive force 1 ft+ generated in the coil 13a of the first detection means 1, and FIG. 6(B) shows the waveform of the induced electromotive force "Ut2" generated in the coil 13b of the second detection means 2.
In addition, (C) is the waveform of the above 11 t i waveform shaped into a rectangular wave 'tr4 by the comparator 10, and (D) is the waveform of the above ``Ut2'' which is shaped into a rectangular wave by the comparator 10. The waveform has been shaped to v2.

また、本実施例では直接回転軸8に永久磁石11を突設
したが、図示しないリング状の取付金具の周囲に永久磁
石11を突設し、この取付金具を前記回転軸8に同軸状
に固定するようになすことも勿論可能である。尚、便宜
上、原動機に近い方を第1検知手段1とし、そのコイル
に13aを付し、また原動機から離れた方を第2検知手
段2とし、そのコイルに13bを付している。また、前
記コイル13の巻数は、低速回転でも十分な誘導起電力
が得られ、その信号をノイズから分離して処理できる程
度に多くするとともに、高速回転による過大な誘導起電
力が発生し、回路素子を破壊し得ない程度に少なく設定
してあり、更に前記永久磁石11の間隔は、前記コイル
13に連続的に生じる信号波形が分離可能な程度に開け
て設定するとともに、低速回転でも十分な精度が得られ
るように密に設定している。
Further, in this embodiment, the permanent magnet 11 is provided directly protruding from the rotating shaft 8, but the permanent magnet 11 is provided protrudingly around a ring-shaped mounting bracket (not shown), and this mounting bracket is coaxially attached to the rotating shaft 8. Of course, it is also possible to fix it. For convenience, the one closer to the prime mover is designated as the first detection means 1, and its coil is labeled 13a, and the one farther from the prime mover is designated as the second detection means 2, and its coil is labeled 13b. In addition, the number of turns of the coil 13 is set to be large enough to obtain sufficient induced electromotive force even when rotating at low speed, and to separate the signal from noise and process it, and to prevent excessive induced electromotive force from occurring due to high-speed rotation, causing the circuit The spacing between the permanent magnets 11 is set to be small enough to prevent the element from being destroyed, and the spacing between the permanent magnets 11 is set to be wide enough to separate the signal waveforms continuously generated in the coil 13. The settings are carefully set to ensure accuracy.

また、前記センサ一部9の他の実施例として第3図及び
第5図に示したものは、外周に割溝15゜・・・を等間
隔に形成した強磁性体の円板16を前記回転軸8に同軸
状となして一体的に回転するように固定し、一方前記同
様にコイル13を巻回した強磁性体の柱状芯材14の一
端にバイアス磁場発生用の永久磁石17を接続するとと
もに、地端を前記円板16の回転外周の近傍に配して前
記車体12又は車軸受部等の非回転部に固定したもので
ある。尚、前記円板16は予めリング状に一体形成し、
回転軸8の端部から嵌挿して外周面から固定用のネジ1
8で締着固定する構造のものや、前記円板16を二分割
して形成し、それぞれで前記回転軸8を挟んですング状
にネジ止め連結し、前記同様に外周面からネジ18にて
固定する構造のものが適宜採用される。
3 and 5 as another embodiment of the sensor portion 9, a ferromagnetic disc 16 having grooves 15° formed at equal intervals on the outer periphery is used. A permanent magnet 17 for generating a bias magnetic field is connected to one end of a ferromagnetic columnar core material 14 which is fixed coaxially to the rotating shaft 8 so as to rotate integrally therewith, and has a coil 13 wound thereon in the same manner as described above. At the same time, the bottom end is arranged near the rotating outer periphery of the disk 16 and fixed to a non-rotating part such as the vehicle body 12 or an axle bearing. Incidentally, the disk 16 is integrally formed in a ring shape in advance,
A screw 1 is inserted from the end of the rotating shaft 8 and fixed from the outer peripheral surface.
8, or the disc 16 is formed by dividing it into two parts, each of which is connected with a screw in the shape of a ring with the rotating shaft 8 in between, and the screw 18 is secured from the outer peripheral surface in the same manner as above. A fixed structure may be adopted as appropriate.

ここで、注意すべきことは、前記ネジ18の頭部を前記
円板16の外周面と面一となし、前記割溝15が前記コ
イル13の一端近傍を通過する際に該コイル13に生じ
る誘導起電力と混同する誘導起電力がネジ18を設けた
ことにより発生しないようにする必要がある。この等分
割の割溝の代わりに突起状としても全く同様であり、こ
のことにより固定ネジ部より生じる誤信号を軽減するこ
とができる。
Here, it should be noted that the head of the screw 18 is flush with the outer circumferential surface of the disk 16, and when the split groove 15 passes near one end of the coil 13, a formation occurs in the coil 13. It is necessary to prevent the provision of the screw 18 from generating an induced electromotive force that is confused with an induced electromotive force. The same effect can be obtained by using protrusions instead of the equally divided grooves, and this makes it possible to reduce erroneous signals generated from the fixing screw portion.

また、前記センサ一部9は、図示したように各部品をそ
れぞれ回転軸8及び車体12又は車軸受部の非回転部の
所定位置に取付けることで構成することができるが、取
付作業をより簡単に行え且つ各部品の位置設定が正確に
できるように、固定用ブラケットの内部に永久磁石11
を突設するか又は割溝15を形成したリング状の二つの
円板を所定間隔を離して同軸状に回転可能に配し、その
円板の外周近傍に前記コイル13を巻回した芯材14又
は更に永久磁石17を接続した芯材14を固定して構成
し、この固定用ブラケットを車体12の非回転部に固定
するとともに、円板を同軸状に回転軸8に固定するよう
になすことも可能である。
Further, the sensor part 9 can be constructed by attaching each part to a predetermined position on the rotating shaft 8 and the non-rotating part of the vehicle body 12 or the axle bearing part, as shown in the figure, but the mounting work is easier. A permanent magnet 11 is installed inside the fixing bracket so that each part can be positioned accurately.
A core material in which two ring-shaped disks with protruding or grooves 15 are coaxially rotatably arranged at a predetermined distance apart, and the coil 13 is wound around the outer periphery of the disks. 14 or a core member 14 to which a permanent magnet 17 is further connected is fixed, and this fixing bracket is fixed to a non-rotating part of the vehicle body 12, and the disc is coaxially fixed to the rotating shaft 8. It is also possible.

前記位相差検出手段3は、前記第1検知手段1及び第2
検知手段2により検出された回転軸8の離れた二点での
回転に対応したそれぞれの矩形波信号v1とv2の位相
差を検出し、その位相差に比例した時間幅のパルス1!
。(第6図(Iりに示す)を発生させるもので、微分回
路と双安定マルチパイプレーク等から構成されるもので
ある。
The phase difference detection means 3 includes the first detection means 1 and the second detection means 1.
The detection means 2 detects the phase difference between the rectangular wave signals v1 and v2 corresponding to the rotation of the rotating shaft 8 at two separate points, and generates a pulse 1! with a time width proportional to the phase difference.
. (shown in FIG. 6), and is composed of a differential circuit, a bistable multi-pipe rake, etc.

前記パルス幅−電圧変換手段4は、前記位相差検出手段
3から出力された時間幅に比例するパルス波形VQを、
そのパルス幅に比例したアナログ電圧vt(第6図(P
)に示す)に変換させるもので、積分回路と平滑回路等
で構成されるものである。
The pulse width-voltage conversion means 4 converts the pulse waveform VQ proportional to the time width output from the phase difference detection means 3 into
Analog voltage vt proportional to the pulse width (Fig. 6 (P
), and consists of an integrating circuit, a smoothing circuit, etc.

前記周波数−電圧変換手段5は、前記第1検知手段1又
は第2検知手段2により検出された周期的な矩形波信号
1J+又はυ2を前記回転軸8の回転数と対応させ且つ
その回転数fに比例するアナログ電圧’trr  (第
6図(旬に示す)を発生させるもので、本実施例では第
2検知手段2の信号を微分回路と単安定マルチバイブレ
ータにより一定時間幅のパルスに波形整形し、このパル
スを積分回路等で回転数fに比例するアナログ電圧1j
rに変換するものである。
The frequency-voltage conversion means 5 makes the periodic rectangular wave signal 1J+ or υ2 detected by the first detection means 1 or the second detection means 2 correspond to the rotation speed of the rotation shaft 8, and converts the rotation speed f It generates an analog voltage 'trr (shown in Figure 6) which is proportional to Then, this pulse is converted into an analog voltage 1j proportional to the rotation speed f using an integrating circuit or the like.
This is to convert it into r.

前記乗算手段6は、前記回転軸8に作用するトルクTに
起因した回転位相差に比例した前記パルス幅−電圧変換
手段4のアナログ電圧υtと、該回転軸8の回転数rに
比例した前記周波数−電圧変換手段5のアナログ電圧1
frをアナログ的に乗じて車両等の出力を馬力換算した
電圧出力υ。(第6図(+1)に示す)を発生するもの
で、電界効果トランジスタ(FET)と発光ダイオード
(LED)からなるフォトカプラ19を有し、前記トル
クTに比例した電圧υtをFETの入力側のソース(S
)又はドレイン(D)端子に入力するとともに、回転数
に比例した電圧υ、をLEDの入力側端子に入力し、両
信号を乗算するのであるが、この場合予めFETの出力
側のD又はS6s芋に接続した抵抗R8とLEDの出力
端子に接続した抵抗R1を調節し、FETとLEDに流
れる電流量を設定して該フォトカプラ19が乗算特性を
有する領域に設定する。
The multiplication means 6 outputs an analog voltage υt of the pulse width-voltage conversion means 4 which is proportional to the rotational phase difference caused by the torque T acting on the rotation shaft 8, and an analog voltage υt which is proportional to the rotational speed r of the rotation shaft 8. Analog voltage 1 of frequency-voltage conversion means 5
The voltage output υ is the output of a vehicle, etc. converted into horsepower by multiplying fr in an analog manner. (shown in Figure 6 (+1)), has a photocoupler 19 consisting of a field effect transistor (FET) and a light emitting diode (LED), and applies a voltage υt proportional to the torque T to the input side of the FET. Source (S
) or the drain (D) terminal, and a voltage υ proportional to the rotation speed is input to the input side terminal of the LED, and both signals are multiplied. In this case, D or S6s on the output side of the FET is By adjusting the resistor R8 connected to the tube and the resistor R1 connected to the output terminal of the LED, the amount of current flowing through the FET and the LED is set to a region where the photocoupler 19 has multiplication characteristics.

例えば第7図は、本実施例で使用したフォトカプラ19
に於いて、LEDに印加した電圧υrによって流れる電
流■1をパラメータとしてFETの入力側に印加した電
圧υtに対するFETの出力側の電圧υ。の特性図であ
り、vtの値をO〜20mVに設定した場合に比較的広
い範囲のIrに対してvvに比例した出力υ。が得られ
る。また、第8図は、FETの入力側に印加する電圧υ
tをパラメータとしてLEDに流れる電流!、に対する
FETの出力側の電圧υ。の特性図であり、第7図の特
性により設定した1ftの範囲内で11の値を3〜8m
Aに設定した場合にIr(vr)に対して比例した出力
υ。が得られる。従って前記1ftとIr  (υ、)
が前記設定値になるようにRoとR1を調節することに
よって、vtと’Urの乗算した値が前記R0に得られ
るのである。
For example, FIG. 7 shows the photocoupler 19 used in this example.
In , the voltage υ on the output side of the FET with respect to the voltage υt applied to the input side of the FET, using the current ■1 flowing due to the voltage υr applied to the LED as a parameter. This is a characteristic diagram of the output υ proportional to vv for a relatively wide range of Ir when the value of vt is set from O to 20 mV. is obtained. In addition, Fig. 8 shows the voltage υ applied to the input side of the FET.
Current flowing through the LED with t as a parameter! , the voltage υ on the output side of the FET for . This is a characteristic diagram of
When set to A, the output υ is proportional to Ir(vr). is obtained. Therefore, the above 1ft and Ir (υ,)
By adjusting Ro and R1 so that the value becomes the set value, the value obtained by multiplying vt and 'Ur can be obtained as R0.

前記表示手段7は、前記馬力換算した出力電圧υ。に基
づいてその電圧に対応する値をアナログ又はデジタル表
示するもので、アナログ計器又はデジタル計器の各種の
ものを採用し、更にアナログ表示とデジタル表示を同時
に行える計器を適宜採用するものとする。
The display means 7 displays the output voltage υ converted into horsepower. The value corresponding to the voltage shall be displayed in analog or digital form based on the voltage, and various types of analog or digital instruments shall be employed, and instruments capable of simultaneous analog and digital display shall be employed as appropriate.

また、前記フォトカプラ19を用いた乗算手段6の代わ
りに第9図に示すようなアナログスイッチ20とCR積
分回路21及び平滑回路22を直列に接続した乗算手段
6aも使用でき、この場合該アナログスイッチ20には
前記同様に位相差検出手段3及びパルス幅−電圧変換手
¥It4にて発生されたトルクに比例するアナログ電圧
?7t(第10図(B)に示す)を入力するとともに、
該アナログスイッチ20のドライバ回路には回転数に対
応する電圧信号を入力するが、この電圧信号は前記周波
数−電圧変換手段5の代わりに微分回路と単安定マルチ
バイブレークからなるパルス幅一定の周波数に変換する
手段5aを用い、第2検知手段2の出力を一定時間幅で
回転数に比例した周波数のパルス電圧Va  (第10
図(A)に示す)に変換したものである。ここで、前記
アナログスイッチ20は該パルス電圧v1+が入力され
ている時間(信号レベルがHのとき)だけ前記アナログ
電圧1ftを出力し、その他の時間(信号レベルがLの
とき)は出力されないものである。そして、該アナログ
スイッチ20の出力を時定数(τ=CR)を適宜値に設
定したCR積分回路21にて積分した場合、前記パルス
電圧’Ueが入力された時間だけトルクに比例した前記
アナログ電圧′trtを積分してコンデンサCの電圧が
略直線状に上昇させ、その他の時間はコンデンサCに蓄
えていた電荷を放電して略直線状に電圧をゆっくり降下
させて山形の波形を発生し、それを繰り返して結果とし
て鋸歯状電圧1j9(第10図(C)に示す)を得る。
Furthermore, instead of the multiplication means 6 using the photocoupler 19, a multiplication means 6a having an analog switch 20, a CR integration circuit 21, and a smoothing circuit 22 connected in series as shown in FIG. 9 can also be used. Similarly to the above, the switch 20 is connected to an analog voltage proportional to the torque generated by the phase difference detection means 3 and the pulse width-voltage converter It4. 7t (shown in FIG. 10(B)), and
A voltage signal corresponding to the rotational speed is input to the driver circuit of the analog switch 20, but this voltage signal is converted to a frequency with a constant pulse width by a differentiating circuit and a monostable multi-vibration circuit instead of the frequency-voltage conversion means 5. Using the converting means 5a, the output of the second detecting means 2 is converted into a pulse voltage Va (10th
(shown in Figure (A)). Here, the analog switch 20 outputs the analog voltage 1 ft only during the time when the pulse voltage v1+ is input (when the signal level is H), and does not output the other time (when the signal level is L). It is. When the output of the analog switch 20 is integrated by the CR integration circuit 21 with a time constant (τ=CR) set to an appropriate value, the analog voltage proportional to the torque is generated for the time period during which the pulse voltage 'Ue is input. 'trt is integrated to cause the voltage of capacitor C to rise approximately linearly, and for the rest of the time, the charge stored in capacitor C is discharged and the voltage slowly falls approximately linearly to generate a mountain-shaped waveform. By repeating this, a sawtooth voltage 1j9 (shown in FIG. 10(C)) is obtained as a result.

そして、その鋸歯状電圧υ、を前記平滑回路22にて平
滑化して馬力に比例するアナログ出力電圧υ。(第10
図(D)に示す)が得られる。即ち、アナログ電圧Mt
が高い程コンデンサCの電圧の上昇率が高(、またパル
ス電圧vRの周波数が高い程放電量が少なくなって全体
として電圧が上昇し、周波数が低くなれば逆に放電時間
が長いので電圧が降下し、従ってトルクに比例するアナ
ログ電圧Vtと回転数に比例する周波数を乗じた値、即
ち馬力に比例する出力が得られるのである。
Then, the sawtooth voltage υ is smoothed by the smoothing circuit 22 to obtain an analog output voltage υ proportional to horsepower. (10th
(shown in Figure (D)) is obtained. That is, the analog voltage Mt
The higher the frequency of the pulse voltage vR, the higher the rate of increase in the voltage of the capacitor C (also, the higher the frequency of the pulse voltage vR, the smaller the amount of discharge, and the overall voltage rises; the lower the frequency, the longer the discharge time is, so the voltage increases) Therefore, a value obtained by multiplying the analog voltage Vt, which is proportional to the torque, by a frequency, which is proportional to the rotational speed, is obtained, that is, an output proportional to the horsepower.

しかして、本発明の車両等の出力計測装置を実際に自動
車に装着する場合、前記センサ一部9を所定位置の回転
軸8及び車体12の非回転部に取付けた後、該回転軸8
にトルクTを与え、その大きさとねじれ角θとの関係を
予め実測しておき、そしてこのねじれ角θは前記コイル
13aと13bに生じる起電力の位相差として現れるの
で、この位相差とパルス幅−電圧変換手段4の出力電圧
1ftとの関係を求めて、トルクTと該電圧1ft と
の関係を求める。次に、回転軸8の回転角速度Uに比例
するパルス周波数fと前記電圧’Urとの関係を求めて
、回転角速度Uと該電圧Vrとの関係を求める。そして
、前記電圧′Utとり、とを算術的に乗じた値と実際の
出力電圧υ。との関係を求め、トルクTと回転角速度U
の積としての実際の馬力と該電圧υ。の絶対較正した関
係を求める。最後に、前記表示手段7が出力電圧υ。に
より前記求めた関係に応じて正確に馬力表示するように
設定する。
When the output measuring device for a vehicle or the like of the present invention is actually mounted on an automobile, the sensor part 9 is attached to the rotating shaft 8 at a predetermined position and the non-rotating part of the vehicle body 12, and then the rotating shaft 8
The relationship between the magnitude of the torque T and the torsion angle θ is measured in advance, and since this torsion angle θ appears as a phase difference between the electromotive forces generated in the coils 13a and 13b, this phase difference and the pulse width - Determine the relationship between the output voltage 1 ft of the voltage conversion means 4 and determine the relationship between the torque T and the voltage 1 ft. Next, the relationship between the pulse frequency f proportional to the rotational angular velocity U of the rotating shaft 8 and the voltage 'Ur is determined, and the relationship between the rotational angular velocity U and the voltage Vr is determined. Then, the value obtained by arithmetically multiplying the voltage 'Ut and the actual output voltage υ. Find the relationship between torque T and rotational angular velocity U
Actual horsepower as the product of and the voltage υ. Find the absolute calibrated relationship of . Finally, the display means 7 displays the output voltage υ. According to the relationship obtained above, settings are made to accurately display horsepower.

ここで、前記センサ一部9を構成する永久磁石11とコ
イルを巻回した芯材14又は円板16の割溝15と芯材
14を、前記回転軸8と車体12又は車軸受部の非回転
部に精度よく位置設定して取付ければ問題は生じないが
、実装段階で間隔を隔てた両センサ一部9.9をそれぞ
れ同位相を生じるように精度よく取付けることは不可能
であり、そのため第1検知手段1と第2検知手段2によ
り検出され前記位相差検出手段3及びパルス幅−電圧変
換手段4により発生されるアナログ電圧Vtにその初期
の位相差に起因する誤差が常に含まれるので、この誤差
を取り除く必要がある。そのため、第11図に示す如く
前記パルス幅−電圧変換手段4と乗算手段6又は6aの
間に初期値補正手段23を設けて、該乗算手段6又は6
aに入力される前のトルクに対応したアナログ電圧信号
vtを常時補正するようになしている。即ち、該初期値
補正手段23は、前記パルス幅−電圧変換手段4の出力
を分岐して、一方を減算回路24の入力側に接続し、他
方をA/D変換器25を介してデジタル記憶回路26の
入力側に接続し、そして該デジタル記憶回路26の出力
側をD/A変換器27を介して前記減算回路24の入力
側に接続し、また該減算回路24の出力側を前記乗算手
段6又は6aに接続し、更に前記デジタル記憶回路26
にはリセットスイッチ28が接続され、該リセットスイ
ッチ28を押してリセット信号が入力されている間の前
記パルス幅−電圧変換手段4の出力電圧値(アナログ電
圧Vt)を記憶するようになすとともに、その他の時間
は記憶された値を補正電圧信号として減算回路24に出
力するものである。そこで、この初期値補正手段23を
用いてトルクの補正をするには、先ず前記第1検知手段
1及び第2検知手段2の両センサ一部9.9をエンジン
ブレーキ等の逆トルクにより逆位相差を生じない程度に
予め正側に初期位相差を生じるように設定しておき、更
にユニバーサルジツイント等に含まれるバックラッシュ
の影響を除くため前記回転軸8に最大トルクの5%以下
の僅かの正トルクを与えて、この条件下おいて前記リセ
ットスイッチ28を押して前記パルス幅−電圧変換手段
4の出力電圧値(アナログ電圧−7it)を記憶させ、
現地走行中はこの記憶した値を補正電圧信号として前記
減算回路24に常時入力して、前記アナログ電圧信号v
tから減算し、正味の正確なトルクに比例するアナログ
電圧信号υ7 (補正前の電圧υ、と区別するためにU
アを用いた)を得るのである。尚、前記デジタル記憶回
路26は、バックアップ電池により1力月以上記憶保持
するので、毎回リセットする必要はないものである。
Here, the permanent magnet 11 constituting the sensor part 9 and the core material 14 around which the coil is wound, or the grooves 15 of the disc 16 and the core material 14 are connected to the rotary shaft 8 and the vehicle body 12 or the non-contact part of the axle bearing part. No problem will occur if the parts 9 and 9 of the sensors are spaced apart from each other at the mounting stage so that they are in the same phase. Therefore, the analog voltage Vt detected by the first detection means 1 and the second detection means 2 and generated by the phase difference detection means 3 and the pulse width-voltage conversion means 4 always contains an error due to the initial phase difference. Therefore, it is necessary to remove this error. Therefore, as shown in FIG. 11, an initial value correction means 23 is provided between the pulse width-voltage conversion means 4 and the multiplication means 6 or 6a.
The analog voltage signal vt corresponding to the torque before being input to a is constantly corrected. That is, the initial value correction means 23 branches the output of the pulse width-voltage conversion means 4, connects one side to the input side of the subtraction circuit 24, and stores the other side in digital storage via the A/D converter 25. The output side of the digital storage circuit 26 is connected to the input side of the subtraction circuit 24 via a D/A converter 27, and the output side of the subtraction circuit 24 is connected to the input side of the subtraction circuit 24. connected to the means 6 or 6a and further connected to the digital storage circuit 26;
A reset switch 28 is connected to the reset switch 28, and the output voltage value (analog voltage Vt) of the pulse width-voltage converting means 4 is stored while the reset switch 28 is pressed and a reset signal is input. During the time period, the stored value is output to the subtraction circuit 24 as a correction voltage signal. Therefore, in order to correct the torque using this initial value correction means 23, firstly, both the sensor parts 9.9 of the first detection means 1 and the second detection means 2 are reversely positioned by reverse torque such as engine braking. The initial phase difference is set in advance on the positive side to the extent that no phase difference occurs, and furthermore, in order to eliminate the influence of backlash included in universal bolts, etc., a slight torque of 5% or less of the maximum torque is applied to the rotating shaft 8. Applying a positive torque of , under this condition, press the reset switch 28 to memorize the output voltage value (analog voltage -7it) of the pulse width-voltage conversion means 4,
While driving locally, this stored value is constantly input to the subtraction circuit 24 as a correction voltage signal, and the analog voltage signal v
The analog voltage signal υ7 is subtracted from t and is proportional to the exact net torque (U
) using a). Note that the digital storage circuit 26 retains memory for more than one month using a backup battery, so there is no need to reset it each time.

また、現地走行中に生じる車輪軸の上下及び回転撮動に
より動力伝達軸と車軸受部が相対的に回転することに起
因する誤差を補正するため、前記同様に前記パルス幅−
電圧変換手段4と乗算手段6又は6aの間に第11図に
示すように振動補正手段29を設けている。前記センサ
一部9の装着は、第2〜5図に原理的に示したが、通常
回転軸8は振動するため、特に自動車の動力伝達軸は大
きく振動するため、該回転軸8に固定した前記円板16
と車体12の非回転部に固定した内部に芯材14を有す
るコイル13との間隔を常に一定に保つことは殆ど不可
能であり、そのため第12図及び第13図に示す如くデ
ィファレンシャルギア30から車輪31に動力を伝達す
る動力伝達軸32に円板16.16を固定するとともに
、非回転部であるディファレンシャルギア30のカバー
33及び車軸受34にコイル13a、 13bを固定し
ている。尚、前記動力伝達軸32は車輪31例の第1軸
32aとディファレンシャルギア30側の第2軸32b
をそれぞれユニーバーサルジヨイント35を介して第3
軸32cで連結したもので、該第1軸32aにコイル1
3aを第2軸32bにコイル13bを固定し、そして前
記車軸受34は前記第1軸32aを支持している。とこ
ろが、第13図に示すように前記車軸受34は上下振動
を伴って動力伝達軸32(第1軸32a)に対して相対
的に回転運動するため、コイル13も車軸のまわりに相
対的に回転することになり、位相差に誤差を生じる。該
誤差を補正するため、前記振動補正手段29の機構部と
して一端を前記車軸受34に枢着し且つ他端を車体12
に枢着したアーム36の中間部に中空の発振コイル37
を上下方向に向けて固定するとともに、該発振コイル3
7に出没可能に挿入されるフェライトコア38を車体1
2に固定し、現地走行中に車輪軸が上下及び回転1辰動
じた場合に該フェライトコア38が発振コイル37に出
没するように設置する。そして、前記振動補正手段29
は、第11゛図に示すように前記発振コイル37とフェ
ライトコア38の振動センサ一部と発振回路39、周波
数−電圧変換回路40及び加算回路41から構成し、前
記動力伝達軸32の第1軸32aの振動による車軸受3
4と前記円板16の相対的回転による位相差の変動と、
前記発振コイル37とフェライトコア38の相対変位と
を対応させ、該発振コイル37に接続した発振回路39
の前記相対変位に起因する発振周波数の変化を、周波数
−電圧変換回路40により正負の補正電圧信号に変換し
、トルクに対応した前記アナログ電圧信号″Iftと該
補正電圧信号を加算回路41に入力し、その出力電圧を
前記乗算手段6又は6aに入力するようになし、振動に
よる誤差を該振動補正手段29により補正し、正確なト
ルクに比例するアナログ電圧信号υ7を得るののである
In addition, in order to correct the error caused by the relative rotation of the power transmission shaft and the axle bearing part due to the vertical and rotational imaging of the wheel axle that occurs during on-site driving, the pulse width -
As shown in FIG. 11, a vibration correction means 29 is provided between the voltage conversion means 4 and the multiplication means 6 or 6a. The mounting of the sensor part 9 is shown in principle in FIGS. 2 to 5, but since the rotating shaft 8 normally vibrates, especially the power transmission shaft of an automobile vibrates greatly, it is fixed to the rotating shaft 8. Said disk 16
It is almost impossible to always maintain a constant distance between the coil 13 and the coil 13 having the core material 14 fixed to the non-rotating part of the vehicle body 12. Therefore, as shown in FIGS. 12 and 13, Discs 16, 16 are fixed to a power transmission shaft 32 that transmits power to wheels 31, and coils 13a and 13b are fixed to a cover 33 of a differential gear 30 and a wheel bearing 34, which are non-rotating parts. The power transmission shaft 32 includes a first shaft 32a of the wheel 31 and a second shaft 32b of the differential gear 30.
through the universal joint 35 respectively.
The coil 1 is connected to the first shaft 32a.
The coil 13b is fixed to the second shaft 32b, and the axle bearing 34 supports the first shaft 32a. However, as shown in FIG. 13, since the axle bearing 34 rotates relative to the power transmission shaft 32 (first shaft 32a) with vertical vibration, the coil 13 also rotates relative to the axle. This causes an error in the phase difference. In order to correct this error, one end of the vibration correcting means 29 is pivotally connected to the axle bearing 34 and the other end is connected to the vehicle body 12 as a mechanical part.
A hollow oscillation coil 37 is located in the middle of the arm 36 which is pivotally connected to the
The oscillation coil 3 is fixed in the vertical direction, and the oscillation coil 3
The ferrite core 38 that is removably inserted into the vehicle body 1
2, and the ferrite core 38 is installed so that it appears and disappears from the oscillation coil 37 when the wheel axle moves up and down and rotates one rotation during on-site driving. And the vibration correction means 29
As shown in FIG. Car bearing 3 due to vibration of shaft 32a
4 and the fluctuation of the phase difference due to the relative rotation of the disk 16,
An oscillation circuit 39 connected to the oscillation coil 37 and having a relative displacement between the oscillation coil 37 and the ferrite core 38 correspond to each other.
A change in the oscillation frequency caused by the relative displacement of is converted into a positive/negative correction voltage signal by a frequency-voltage conversion circuit 40, and the analog voltage signal "Ift" corresponding to the torque and the correction voltage signal are input to an adding circuit 41. Then, the output voltage is inputted to the multiplication means 6 or 6a, and the error due to vibration is corrected by the vibration correction means 29, thereby obtaining an accurate analog voltage signal υ7 proportional to the torque.

尚、このように補正した後の正確なトルクに比例したア
ナログ電圧信号v7を前記乗算手段6又は6aに入力す
ると同時に分岐させて、トルク値を表示する表示手段4
2を別途設けることも可能であり、また切り換えスイッ
チで前記表示手段7に表示することも、更に馬力と同時
にトルクも同一の表示手段7に表示させることも可能で
ある。更に、ピークホールド回路又は機械的なメータの
指針に連動させたピーク値表示針により、馬力及びトル
クのピーク値を表示するようになすことも可能である。
Note that the analog voltage signal v7 proportional to the accurate torque corrected in this manner is input to the multiplication means 6 or 6a, and at the same time, the display means 4 branches the analog voltage signal v7 to display the torque value.
2 can be provided separately, and it is also possible to display it on the display means 7 using a changeover switch, and it is also possible to display both horsepower and torque on the same display means 7 at the same time. Furthermore, it is also possible to display the peak values of horsepower and torque using a peak hold circuit or a peak value display needle linked to a mechanical meter pointer.

〔発明の効果〕〔Effect of the invention〕

以上にしてなる本発明の車両等の出力計測方法及びその
装置によれば、車両に装備した場合には、その出力をリ
アルタイムで馬力換算して計測することができ、走行中
の車両の特性を容易に知ることが可能となる。
According to the method and device for measuring the output of a vehicle, etc. of the present invention as described above, when installed in a vehicle, the output can be measured in real time in terms of horsepower, and the characteristics of the vehicle while running can be measured. It becomes possible to know easily.

また、回転軸に作用するトルクを該軸に沿って所定距離
だけ離した位置に永久磁石とコイルから構成される検出
手段を配し、永久磁石の作る磁束の変化でコイルに電磁
誘導起電力を発生させるので、該回転軸のトルクと回転
数を検出するにあたり該回転軸に何ら機械的な負荷を与
えることがなく、車両等の運転を妨げることがない。
In addition, a detection means consisting of a permanent magnet and a coil is arranged at a predetermined distance along the axis to detect the torque acting on the rotating shaft, and electromagnetic induced electromotive force is generated in the coil by changes in the magnetic flux produced by the permanent magnet. Therefore, when detecting the torque and rotational speed of the rotating shaft, no mechanical load is applied to the rotating shaft, and the operation of the vehicle etc. is not hindered.

更に、回転軸のトルクに比例する電圧信号と回転数に比
例する電圧信号を乗じて馬力換算する手段として、電界
効果トランジスタと発光ダイオードからなるフォトカプ
ラを用いたので、リアルタイムの演算となり、また極め
て安価に製作でき、しかもデジタル乗算素子を用いた場
合のように遅れやノイズによる破壊を生じる恐れが全く
なく、信頼性の高い計測が可能である。また、乗算手段
として、アナログスイッチとCR積分回路及び平滑回路
を用いた場合には、直線性がよく安価に回路を構成する
ことができるとともに、しかも面倒な微調整をする必要
がないので、工場出荷時又は実車に装着する際の作業時
間を極めて短縮することができる。
Furthermore, a photocoupler consisting of a field effect transistor and a light emitting diode was used as a means of multiplying a voltage signal proportional to the torque of the rotating shaft by a voltage signal proportional to the rotational speed to convert it into horsepower, making the calculation possible in real time and extremely simple. It can be manufactured at low cost, and there is no risk of damage caused by delay or noise, unlike when digital multiplication elements are used, and highly reliable measurement is possible. In addition, when an analog switch, CR integrating circuit, and smoothing circuit are used as the multiplication means, the circuit can be constructed at low cost with good linearity, and there is no need for troublesome fine adjustments. It is possible to extremely shorten the working time at the time of shipping or mounting on an actual vehicle.

そして、前記回転軸には、等間隔で永久磁石を突設する
か、又は割溝又は突起を周囲に形成した円板を固定し、
その周囲近傍にコイルを巻回した芯材又は更に永久磁石
を接続した芯材を配して車体等に固定するだけで、この
センサ一部を車体に取付けるために車体に殆ど改造を加
えることなく極めて容易に取付けることができる。
Permanent magnets are protruded from the rotating shaft at regular intervals, or a disk having grooves or protrusions formed around it is fixed to the rotating shaft,
Simply place a core material with a coil wound around it or a core material with a permanent magnet connected to it and fix it to the vehicle body, etc., and there is almost no modification to the vehicle body in order to attach this part of the sensor to the vehicle body. Can be installed extremely easily.

更に、コイルで検出したアナログ電圧をコンパレータに
て一旦矩形波に変換し、その矩形波から位相差検出手段
にて位相差に比例した時間幅のパルスを発生させたのち
パルス幅−電圧変換手段にてパルス幅に比例したアナロ
グ電圧に変換するとともに、前記矩形波を周波数−電圧
変換手段で回転数に比例したアナログ電圧に変換し、両
アナログ電圧をフォトカプラでアナログ的に乗算したの
で、高速回転で低トルクの状態はもとより、低速回転で
高トルクの状態をも精度よく計測することができる。
Furthermore, the analog voltage detected by the coil is once converted into a rectangular wave by a comparator, and from the rectangular wave, a pulse with a time width proportional to the phase difference is generated by a phase difference detection means, and then a pulse is generated by a pulse width-voltage conversion means. At the same time, the rectangular wave is converted into an analog voltage proportional to the rotational speed using a frequency-voltage conversion means, and both analog voltages are multiplied in an analog manner by a photocoupler. It is possible to accurately measure not only low torque conditions, but also high torque conditions at low rotation speeds.

そのうえ、初期値補正手段を設けた場合には、4゜ 回転軸に対する第1検知手段と第2検知手段の相対設置
誤差による初期位相差に起因するトルクの誤差を補正し
て正確な馬力を表示することができ、従ってそれぞれの
検出手段を設置する際に高い取付精度を要求されないの
で、その取付作業を速やかに行うことができる。
Furthermore, when an initial value correction means is provided, accurate horsepower is displayed by correcting the torque error caused by the initial phase difference due to the relative installation error of the first detection means and the second detection means with respect to the 4° rotation axis. Therefore, since high mounting accuracy is not required when installing each detection means, the mounting work can be carried out quickly.

また、振動補正手段を設けた場合には、車輪軸に大きな
上下及び回転振動が生じてセンサ一部を取付ける回転軸
と車軸受部等の非回転部に相対位相差が生じた場合にも
、振動によるトルクの誤差を補正して正確な馬力を表示
することができ、現地走行する自動車の馬力を計測する
のに極めて実用的である。
In addition, when a vibration correction means is provided, even if large vertical and rotational vibrations occur on the wheel shaft and a relative phase difference occurs between the rotating shaft on which a part of the sensor is attached and the non-rotating part such as the wheel bearing part, It can correct torque errors caused by vibrations and display accurate horsepower, making it extremely practical for measuring the horsepower of cars driving locally.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の車両等の出力計測装置の簡略化したブ
ロック図、第2図はセンサ一部の簡略断面図、第3図は
他の実施例のセンサ一部の簡略断面図、第4図は第2図
の斜視図、第5図は第3図の斜視図、第6図は第1図中
にA−Hで示した各点での電圧波形、第7図及び第8図
はフォトカプラの特性グラフ、第9図は乗算手段の他の
実施例を示す簡略回路図、第10図は第9図に(A)〜
(D)で示した各点での電圧波形、第11図は初期値補
正手段と振動補正手段を設けた出力計測装置の簡略化し
、たブロック図、第12図はセンサ一部を動力伝達軸に
装着する実施例を示すとともに振動補正手段の機構部を
取付けた状態の部分平面図、第13図は同じく振動補正
手段の機構部を装着した状態を示す省略断面図である。 1:第1検知手段、2:第2検知手段、3:位相差検出
手段、4:パルス幅−電圧変換手段、5:周波数−電圧
変換手段、6.6a:乗算手段、7:表示手段、8:回
転軸、9:センサ一部、10:コンパレータ、11:永
久磁石、12:車体、13.13a。 13b:コイル、14:芯材、15:割溝、16:円板
、17:永久磁石、18:ネジ、19:フォトカプラ、
20:アナログスイッチ、21:CRM分回路、22:
平滑回路、23:初期値補正手段、24:減算回路、2
5: A/D変換器、26:デジタル記憶回路、27:
D/A変換器、28:リセットスイッチ、29:振動補
正手段、30:ディファレンシャルギア、31 : 東
flfil、32:動力伝達軸、33:カバー、34:
車軸受、35:ユニーバーサルジツイント、36:アー
ム、37 : Q振コイル、38:フェライトコア、3
9:発振回路、40:周波数−電圧変換回路、41:加
算回路、42:表示手段。
FIG. 1 is a simplified block diagram of an output measuring device for a vehicle or the like according to the present invention, FIG. 2 is a simplified sectional view of a part of the sensor, and FIG. 3 is a simplified sectional view of a part of the sensor of another embodiment. Figure 4 is a perspective view of Figure 2, Figure 5 is a perspective view of Figure 3, Figure 6 is the voltage waveform at each point indicated by A-H in Figure 1, and Figures 7 and 8. is a characteristic graph of a photocoupler, FIG. 9 is a simplified circuit diagram showing another embodiment of the multiplication means, and FIG. 10 is a graph of (A) to FIG.
The voltage waveform at each point shown in (D), Fig. 11 is a simplified block diagram of an output measuring device equipped with initial value correction means and vibration correction means, and Fig. 12 shows a part of the sensor connected to the power transmission shaft. FIG. 13 is a partial plan view showing an embodiment in which the mechanical part of the vibration correcting means is attached, and FIG. 13 is an abbreviated sectional view showing the mechanical part of the vibration correcting means being attached. 1: first detection means, 2: second detection means, 3: phase difference detection means, 4: pulse width-voltage conversion means, 5: frequency-voltage conversion means, 6.6a: multiplication means, 7: display means, 8: Rotating shaft, 9: Part of sensor, 10: Comparator, 11: Permanent magnet, 12: Vehicle body, 13.13a. 13b: coil, 14: core material, 15: split groove, 16: disc, 17: permanent magnet, 18: screw, 19: photocoupler,
20: Analog switch, 21: CRM branch circuit, 22:
Smoothing circuit, 23: Initial value correction means, 24: Subtraction circuit, 2
5: A/D converter, 26: Digital storage circuit, 27:
D/A converter, 28: Reset switch, 29: Vibration correction means, 30: Differential gear, 31: East flfil, 32: Power transmission shaft, 33: Cover, 34:
Vehicle bearing, 35: Universal gear int, 36: Arm, 37: Q vibration coil, 38: Ferrite core, 3
9: oscillation circuit, 40: frequency-voltage conversion circuit, 41: addition circuit, 42: display means.

Claims (1)

【特許請求の範囲】 1)車両等の車輪軸又はこれを駆動する動力伝達軸等の
回転軸に作用する実トルクを、該回転軸に沿って所定距
離だけ離れた位置に配した検知手段にてそれぞれ回転を
検出することにより該回転軸に生じるねじりひずみに起
因する回転位相差として導出し、該位相差と回転数に比
例する電圧信号を乗算手段にて乗じて馬力換算してなる
車両等の出力計測方法。 2)前記乗算手段として、電界効果トランジスタと発光
ダイオードからなるフォトカプラを有し、前記位相差と
回転数に比例するアナログ電圧信号を、該電界効果トラ
ンジスタ及び発光ダイオードのそれぞれに入力して、馬
力に比例する出力を得る乗算手段を用いてなる特許請求
の範囲第1項記載の車両等の出力計測方法。 3)前記乗算手段として、アナログスイッチとCR積分
回路及び平滑回路を直列に接続し、前記位相差に比例し
たアナログ電圧信号を前記アナログスイッチに入力する
とともに、一定時間幅で回転数に比例した周波数のパル
ス電圧信号をアナログスイッチのドライバ回路に入力し
て、トルクに比例した電圧で且つ一定時間幅で回転数に
比例した周波数のパルス電圧を発生させ、その電圧をC
R積分回路で積分した後、平滑回路で平滑化して馬力に
比例する出力を得る乗算手段を用いてなる特許請求の範
囲第1項記載の車両等の出力計測方法。 4)前記検知手段として、回転軸の回転によって永久磁
石の作る磁束の変化でコイルに電磁誘導起電力を発生さ
せてなる検知手段を用いてなる特許請求の範囲第1項記
載の車両等の出力計測方法。 5)車両等の車輪軸又はこれを駆動する動力伝達軸等の
回転軸に沿って所定距離だけ離した位置にそれぞれ設け
、該回転軸の回転に対応した電圧信号を出力する検知手
段と、 前記第1検知手段の出力と第2検知手段の出力とより位
相差を検出し、その位相差に比例した時間幅のパルスを
発生させる位相差検出手段と、前記位相差検出手段によ
り発生したパルス幅に対応し、トルクに比例したアナロ
グ電圧を発生するパルス幅−電圧変換手段と、 前記第1検知手段又は第2検知手段の周期的な電圧出力
を回転数に対応させ且つその回転数に比例するアナログ
電圧を発生する周波数−電圧変換手段と、 前記回転軸に作用するトルクに比例した前記パルス幅−
電圧変換手段の出力信号と回転数に比例した前記周波数
−電圧変換手段の出力信号を、電界効果トランジスタと
発光ダイオードからなるフォトカプラの電界効果トラン
ジスタの入力側のS又はD端子及び発光ダイオードの入
力側の端子にそれぞれ入力し、両信号を乗算して馬力に
比例する信号を電界効果トランジスタの出力側のD又は
S端子から発生させる乗算手段と、 前記乗算手段の出力を表示する表示手段と、よりなる車
両等の出力計測装置。 6)車両等の車輪軸又はこれを駆動する動力伝達軸等の
回転軸に沿って所定距離だけ離した位置にそれぞれ設け
、該回転軸の回転に対応した電圧信号を出力する検知手
段と、 前記第1検知手段の出力と第2検知手段の出力とより位
相差を検出し、その位相差に比例した時間幅のパルスを
発生させる位相差検出手段と、前記位相差検出手段によ
り発生したパルス幅に対応し、トルクに比例したアナロ
グ電圧を発生するパルス幅−電圧変換手段と、 前記第1検知手段又は第2検知手段の周期的な周波数に
比例する電圧出力を一定時間幅のパルス電圧に変換する
パルス幅変換手段と、 アナログスイッチとCR積分回路及び平滑回路を直列に
接続し、トルクに比例するパルス幅−電圧変換手段の出
力信号を前記アナログスイッチに入力するとともに、一
定時間幅で回転数に比例した周波数を有するパルス幅変
換手段のパルス電圧信号をアナログスイッチのドライバ
回路に入力し、回転数に対応したパルスが入力された時
間だけトルクに比例した電圧をCR積分回路で積分して
昇電圧し、その他の時間は放電させて降電圧して鋸歯状
電圧を発生させ、更にこの電圧を平滑回路で平滑化して
馬力に比例したアナログ電圧を発生させる乗算手段と、 前記乗算手段の出力を表示する表示手段と、よりなる車
両等の出力計測装置。 7)前記検知手段として、前記回転軸の円周にピン状の
永久磁石を等間隔に突設し、コイルを巻回した強磁性体
の柱状芯材一端を前記永久磁石の回転外周の近傍に配し
て非回転部に固定し、該コイルに生じた電磁誘導起電力
をコンパレータにより軸の回転に対応した矩形波に変換
してなる検知手段を用いてなる特許請求の範囲第5項又
は第6項記載の車両等の出力計測装置。 8)前記検知手段として、外周に割溝又は突起を等間隔
に形成した強磁性体の円板を前記回転軸に同軸状に固定
し、コイルを巻回した強磁性体の柱状芯材一端に永久磁
石を接続するとともに、他端を前記円板の回転外周の近
傍に配して非回転部に固定し、回転体の割溝又は突起が
該コイル近くを通過するとき該コイルに生じた電磁誘導
起電力をコンパレータにより軸の回転に対応した矩形波
に変換してなる検知手段を用いてなる特許請求の範囲第
5項又は第6項記載の車両等の出力計測装置。 9)前記検知手段を予め正位相差を生じるように設定し
、前記乗算手段に入力される前のトルクに対応したアナ
ログ電圧信号をリセット信号が入力されている間だけA
/D変換器を介して記憶するデジタル記憶回路と、前記
アナログ電圧信号から該デジタル記憶回路に記憶されて
いる補正電圧データをD/A変換器を介してアナログ電
圧に変換した補正電圧信号を常時減算する減算回路を備
え、該減算回路の出力を前記乗算手段に入力してなる初
期値補正手段を設けてなる特許請求の範囲第5項又は第
6項記載の車両等の出力計測装置。 10)前記動力伝達軸に外周に割溝を等間隔に形成した
強磁性体の円板を同軸状に固定し、コイルを巻回した強
磁性体の柱状芯材一端に永久磁石を接続するとともに、
他端を前記円板の回転外周の近傍に配して車軸受部に固
定し、そして一端を該車軸受部に枢着し且つ他端を車体
に枢着したアームの中間部と車体に発振コイルと該発振
コイルに出没可能に挿入されるフェライトコアの何れか
一方をそれぞれ固定し、該発振コイルには発振回路を接
続し、更に車輪軸の上下及び回転振動による発振コイル
とフェライトコアの相対変位に起因する発振周波数の変
化を周波数−電圧変換回路により正負の補正電圧信号に
変換し、該補正電圧信号を前記乗算手段に入力される前
のトルクに対応したアナログ電圧信号に加算する加算回
路を備え、該加算回路の出力を前記乗算手段に入力して
なる振動補正手段を設けてなる特許請求の範囲第5項又
は第6項記載の車両等の出力計測装置。
[Scope of Claims] 1) Actual torque acting on a rotating shaft such as a wheel shaft of a vehicle or a power transmission shaft that drives the wheel is detected by a detection means disposed at a predetermined distance along the rotating shaft. A vehicle, etc., which is obtained by detecting the respective rotations and deriving the rotational phase difference caused by the torsional strain occurring in the rotating shaft, and converting it into horsepower by multiplying the phase difference by a voltage signal proportional to the rotation speed using a multiplier. output measurement method. 2) As the multiplication means, a photocoupler consisting of a field effect transistor and a light emitting diode is provided, and an analog voltage signal proportional to the phase difference and the rotation speed is inputted to each of the field effect transistor and the light emitting diode to calculate horsepower. 2. A method for measuring an output of a vehicle, etc. according to claim 1, which comprises using a multiplication means for obtaining an output proportional to . 3) As the multiplication means, an analog switch, a CR integrating circuit, and a smoothing circuit are connected in series, and an analog voltage signal proportional to the phase difference is input to the analog switch, and a frequency proportional to the number of rotations is input in a fixed time width. Input the pulse voltage signal of
2. The method for measuring the output of a vehicle, etc. according to claim 1, which uses a multiplication means for obtaining an output proportional to horsepower by integrating with an R integration circuit and smoothing with a smoothing circuit. 4) The output of a vehicle, etc. according to claim 1, wherein the detection means is a detection means that generates an electromagnetic induced electromotive force in a coil due to a change in magnetic flux generated by a permanent magnet due to rotation of a rotating shaft. Measurement method. 5) a detection means that is provided at a predetermined distance apart along a rotational shaft such as a wheel shaft of a vehicle or a power transmission shaft that drives the same, and outputs a voltage signal corresponding to the rotation of the rotational shaft; a phase difference detection means for detecting a phase difference between the output of the first detection means and the output of the second detection means and generating a pulse having a time width proportional to the phase difference; and a pulse width generated by the phase difference detection means. pulse width-to-voltage conversion means for generating an analog voltage proportional to the torque; and a periodic voltage output of the first detection means or the second detection means corresponding to and proportional to the rotation speed. a frequency-to-voltage conversion means for generating an analog voltage; and the pulse width proportional to the torque acting on the rotating shaft.
The output signal of the voltage conversion means and the output signal of the frequency-voltage conversion means proportional to the rotation speed are connected to the S or D terminal on the input side of the field effect transistor of a photocoupler consisting of a field effect transistor and a light emitting diode, and the input of the light emitting diode. a multiplier for generating a signal proportional to the horsepower from the D or S terminal on the output side of the field effect transistor by multiplying both signals by inputting the two signals to the respective terminals on the side; and a display means for displaying the output of the multiplier means. An output measuring device for vehicles, etc. 6) a detection means that is provided at a predetermined distance apart along a rotating shaft such as a wheel shaft of a vehicle or a power transmission shaft that drives the same, and outputs a voltage signal corresponding to the rotation of the rotating shaft; a phase difference detection means for detecting a phase difference between the output of the first detection means and the output of the second detection means and generating a pulse having a time width proportional to the phase difference; and a pulse width generated by the phase difference detection means. a pulse width-to-voltage conversion means for generating an analog voltage proportional to the torque; and converting the voltage output proportional to the periodic frequency of the first detection means or the second detection means into a pulse voltage with a constant time width. An analog switch, a CR integration circuit, and a smoothing circuit are connected in series, and an output signal of the pulse width-voltage conversion means proportional to the torque is input to the analog switch, and the rotation speed is changed over a fixed time period. The pulse voltage signal of the pulse width conversion means having a frequency proportional to a multiplier for generating an analog voltage proportional to the horsepower, and a multiplier for generating an analog voltage proportional to the horsepower by discharging the voltage at other times and lowering the voltage to generate a sawtooth voltage in a smoothing circuit; An output measuring device for a vehicle, etc., consisting of a display means for displaying information. 7) As the detection means, pin-shaped permanent magnets are protruded from the circumference of the rotating shaft at equal intervals, and one end of a ferromagnetic columnar core material around which a coil is wound is placed near the rotating outer circumference of the permanent magnet. Claim 5 or 5, which uses a detecting means arranged and fixed to a non-rotating part and converting the electromagnetic induced electromotive force generated in the coil into a rectangular wave corresponding to the rotation of the shaft by a comparator. An output measuring device for a vehicle, etc., as described in item 6. 8) As the detection means, a ferromagnetic disc having grooves or protrusions formed at equal intervals on its outer periphery is coaxially fixed to the rotating shaft, and a ferromagnetic columnar core material around which a coil is wound is attached to one end of the ferromagnetic disc. A permanent magnet is connected, and the other end is arranged near the rotating outer periphery of the disk and fixed to the non-rotating part, so that the electromagnetic force generated in the coil when the groove or protrusion of the rotating body passes near the coil. 7. An output measuring device for a vehicle or the like according to claim 5 or 6, which uses a detection means that converts induced electromotive force into a rectangular wave corresponding to rotation of a shaft by a comparator. 9) The detection means is set in advance to generate a positive phase difference, and the analog voltage signal corresponding to the torque before input to the multiplication means is set to A only while the reset signal is input.
/A digital storage circuit that stores the data via a D/D converter, and a correction voltage signal obtained by converting the correction voltage data stored in the digital storage circuit from the analog voltage signal into an analog voltage via the D/A converter. 7. An output measuring device for a vehicle or the like according to claim 5 or 6, comprising a subtraction circuit that performs subtraction, and initial value correction means for inputting the output of the subtraction circuit to the multiplication means. 10) A ferromagnetic disk having grooves formed at equal intervals on its outer periphery is coaxially fixed to the power transmission shaft, and a permanent magnet is connected to one end of a ferromagnetic columnar core material around which a coil is wound. ,
The other end is disposed near the rotational outer circumference of the disk and fixed to the axle bearing, and one end is pivotally connected to the axle bearing and the other end is pivotally connected to the vehicle body, and oscillates between the intermediate portion of the arm and the vehicle body. Either a coil or a ferrite core that is removably inserted into the oscillation coil is fixed, an oscillation circuit is connected to the oscillation coil, and the relative relationship between the oscillation coil and the ferrite core is caused by vertical and rotational vibration of the wheel axle. an addition circuit that converts a change in oscillation frequency caused by displacement into a positive/negative correction voltage signal using a frequency-voltage conversion circuit, and adds the correction voltage signal to the analog voltage signal corresponding to the torque before being input to the multiplication means; 7. An output measuring device for a vehicle or the like according to claim 5 or 6, further comprising vibration correction means for inputting the output of the adding circuit to the multiplication means.
JP6056989A 1988-04-30 1989-03-13 Measuring method and device for power of vehicle or the like Pending JPH0228527A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6056989A JPH0228527A (en) 1988-04-30 1989-03-13 Measuring method and device for power of vehicle or the like

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP10826688 1988-04-30
JP63-108266 1988-04-30
JP6056989A JPH0228527A (en) 1988-04-30 1989-03-13 Measuring method and device for power of vehicle or the like

Publications (1)

Publication Number Publication Date
JPH0228527A true JPH0228527A (en) 1990-01-30

Family

ID=26401645

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6056989A Pending JPH0228527A (en) 1988-04-30 1989-03-13 Measuring method and device for power of vehicle or the like

Country Status (1)

Country Link
JP (1) JPH0228527A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996020395A1 (en) * 1994-12-27 1996-07-04 Siemens Aktiengesellschaft Process and device for determining a power output
JP2004101526A (en) * 2002-09-06 2004-04-02 General Electric Co <Ge> High resolution torque measurement in rotary shaft

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996020395A1 (en) * 1994-12-27 1996-07-04 Siemens Aktiengesellschaft Process and device for determining a power output
JP2004101526A (en) * 2002-09-06 2004-04-02 General Electric Co <Ge> High resolution torque measurement in rotary shaft

Similar Documents

Publication Publication Date Title
US6229299B1 (en) System and method for computing the angular velocity and direction of a rotational body
CN1865891B (en) Method for monitoring torsional vibration damper
JPH0531928B2 (en)
US4416161A (en) Method and apparatus for measuring torque
US7578185B2 (en) Resolver-based wheel speed sensor and method of using same
US8970208B2 (en) Displacement measurement system and method using magnetic encodings
CN106926894A (en) Steering wheel rotation information determining device and steering wheel rotation information determine method
EP2468607A1 (en) Angle sensor
JPH02290562A (en) Speed detector with hysteresis circuit
EP0306194B1 (en) Instrument with crossed-coil type movable magnet
CN206540649U (en) Flange type torque sensor
JPH0228527A (en) Measuring method and device for power of vehicle or the like
US8594878B2 (en) Method for controlling an electric motor
NO753436L (en)
CN85203875U (en) Dynamometer steering wheel with angular velocity measuring unit
JP2711472B2 (en) Torque detector
JPH11295106A (en) Torque sensor for elastic coupling
UA26169U (en) Device for measuring drive torque
JPH0416226Y2 (en)
JP3016624B2 (en) Micro index accuracy measuring device
SU163446A1 (en)
CN112610643A (en) Magnetic fluid damper with torque self-adjusting function and driving circuit thereof
JPH085894Y2 (en) Steering wheel
SU531997A1 (en) Gear Testing Device
JP2947039B2 (en) Cross-coil instrument