JPH02285003A - Method for molding metal powder - Google Patents

Method for molding metal powder

Info

Publication number
JPH02285003A
JPH02285003A JP1109993A JP10999389A JPH02285003A JP H02285003 A JPH02285003 A JP H02285003A JP 1109993 A JP1109993 A JP 1109993A JP 10999389 A JP10999389 A JP 10999389A JP H02285003 A JPH02285003 A JP H02285003A
Authority
JP
Japan
Prior art keywords
metal powder
powder
zinc
activated
yield strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1109993A
Other languages
Japanese (ja)
Other versions
JPH0711014B2 (en
Inventor
Shuhei Tomita
修平 富田
Hiroya Yamamoto
山本 博也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Munekata Co Ltd
Original Assignee
Munekata Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Munekata Co Ltd filed Critical Munekata Co Ltd
Priority to JP1109993A priority Critical patent/JPH0711014B2/en
Publication of JPH02285003A publication Critical patent/JPH02285003A/en
Publication of JPH0711014B2 publication Critical patent/JPH0711014B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a molded product having superior hardness and yield strength by filling a mixture of activated metal powder with nonactivated metal powder into a vessel and compression molding the filled mixture under induction heating. CONSTITUTION:Activated metal powder is mixed with nonactivated metal powder and this powdery mixture 1 is filled into a filling vessel 2, induction-heated with a high frequency coil 3 and compression molded under induction heating. By this method, an internal melt is ejected from cracks in the surface film of the activated metal powder, the powdery mixture 1 is sintered and the hardness and yield strength of the resulting molded product are improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、亜鉛を主成分とするアルミニウム。[Detailed description of the invention] [Industrial application field] This invention uses aluminum whose main component is zinc.

シリカ、ニッケル、鉄等の合金粉末を用いて成形用金型
や機械部品等となる金属粉末成形品を成形する金属粉末
成形方法に関するものである。
The present invention relates to a metal powder molding method for molding metal powder molded products such as molding dies and machine parts using alloy powders such as silica, nickel, and iron.

〔従来の技術〕[Conventional technology]

亜鉛の金属は、融点が415°C程度と低い金属であり
、また空気中でも表面に塩基性薄膜を生じて内部の酸化
を防ぎ、海水に対しても耐食性があるなど、取扱い易い
金属である。
Zinc metal is a metal with a low melting point of about 415°C, and it is also an easy metal to handle, as it forms a basic thin film on its surface to prevent internal oxidation even in the air, and is corrosion resistant to seawater.

その反面、柔らかくて脆いという欠点がある。On the other hand, it has the disadvantage of being soft and brittle.

そのため、亜鉛金属成形品において、強度や硬度を上げ
て用途の拡大を図ることが望まれるでいる。
Therefore, it is desired to increase the strength and hardness of zinc metal molded products to expand their uses.

近年、粉末冶金技術の進歩につれて、亜鉛粉末に急冷凝
固法でアルミニウムを混入し、従来の溶解法により平衡
状態で得た合金では容易に達成できない物性を得ている
0例えば、防振合金やアルミニウムの含有量を増やすこ
とにより、脆さを減少させ、耐力も増加させることがで
きる。
In recent years, as powder metallurgy technology has progressed, aluminum has been mixed into zinc powder by rapid solidification to obtain physical properties that cannot be easily achieved with alloys obtained in an equilibrium state by conventional melting methods.For example, anti-vibration alloys and aluminum By increasing the content of , brittleness can be reduced and yield strength can also be increased.

このような亜鉛合金粉末を成形する成形方法として、第
2図に示すように電気炉で焼結する方法がある。
As a method of forming such zinc alloy powder, there is a method of sintering it in an electric furnace as shown in FIG.

すなわち、ヒータ31を備えた鋼製の電気炉32内に円
筒状の充填容器33を配置し、金属粉末34を充填する
。この金属粉末34を電気炉32で加熱しながら、一対
の圧縮棒35で加圧し、半溶融焼結状態の圧粉体に成形
する。
That is, a cylindrical filling container 33 is placed in a steel electric furnace 32 equipped with a heater 31 and filled with metal powder 34 . While heating this metal powder 34 in an electric furnace 32, it is pressed with a pair of compression rods 35 to form a green compact in a semi-molten sintered state.

金属粉末34には、前記亜鉛合金粉末を機械的粉砕によ
り活性化させたものと未粉砕の非活性化状態のものとの
混合粉末を使用する。
As the metal powder 34, a mixed powder of the zinc alloy powder activated by mechanical pulverization and an unpulverized non-activated powder is used.

焼結を行う場合、亜鉛または亜鉛を主体とする合金の未
粉砕粉末は核となり、粉砕超微粉末がその回りを覆って
凝固する。このとき、核とその外面を覆う材質とが同じ
亜鉛類であるため、溶融の際に分離しない、そのため強
度が強い、また、焼結により亜鉛は部分的に酸化して酸
化亜鉛(ZnO)になり、セラミック化する。そのため
焼結体の硬度が高くなる。
When sintering is performed, the unpulverized powder of zinc or a zinc-based alloy serves as a nucleus, which is surrounded by the pulverized ultrafine powder and solidified. At this time, since the core and the material covering its outer surface are the same zinc, they do not separate during melting, so they are strong. Also, during sintering, zinc partially oxidizes to zinc oxide (ZnO). It becomes ceramic. Therefore, the hardness of the sintered body increases.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、熱源として電気炉32を使用するため、加熱が
徐々にしか行えず、そのため金属粉末340表面に形成
されるセラミック膜が加熱に伴って固くなり、焼結が充
分に行えないという問題点がある。
However, since the electric furnace 32 is used as a heat source, heating can only be done gradually, which causes the problem that the ceramic film formed on the surface of the metal powder 340 becomes hard as it is heated, making it impossible to perform sufficient sintering. be.

この問題点につき詳述する。金属粉末34にはつぎのよ
うにして活性化したものを使用する。すなわち、亜鉛ま
たは亜鉛を主体とする合金の粉末を機械的方法により粉
砕した場合、その粉砕した微粉末の表面は黒色を帯び、
練り時間が継続するほど濃色となる。黒色を帯びるのは
、粒子が一部超粉末化したことと、一部が不完全酸化し
たこととを示し、同時に表面が固くなり、亀裂が発生し
ていることが、電子顕微鏡写真でも分かる。
This problem will be explained in detail. The metal powder 34 is activated as follows. In other words, when zinc or zinc-based alloy powder is mechanically pulverized, the surface of the pulverized fine powder becomes blackish;
The longer the kneading time continues, the darker the color becomes. The black color indicates that some of the particles have become super powdered and some have been incompletely oxidized, and at the same time, the electron micrograph also shows that the surface has become hard and cracks have occurred.

この粒子に硅酸塩基類の複合溶液を添加する。A complex solution of silicate bases is added to the particles.

この複合溶液は、pH10〜12のアルカリ溶液である
This composite solution is an alkaline solution with a pH of 10-12.

この複合溶液を例えば活性炭で濾過した溶液5重量部を
酢酸水で希釈してpH7〜lO程度の溶液とする。これ
に黒色化した金属粉末を添加して泥状とし、例えば2〜
3時間接触させる。硅酸塩類が NazSiOs + 2LO−’+ 2NaOH十H1
Si03の反応により、次第にpH値が上昇し、30分
程度経過すれば、pH1o〜10.5以上となる。この
後、濾過し、被濾過物を高純度のアルコール液中に浸す
、3〜4時間放置すると、アルコール液は粘ってくる。
For example, 5 parts by weight of this composite solution is filtered through activated carbon and diluted with aqueous acetic acid to obtain a solution having a pH of about 7 to 1O. Add blackened metal powder to this to make it muddy, for example 2~
Leave in contact for 3 hours. Silicates are NazSiOs + 2LO-'+ 2NaOH+H1
Due to the reaction of Si03, the pH value gradually increases, and after about 30 minutes, the pH value becomes 1o to 10.5 or more. After that, it is filtered and the filtered material is immersed in a high-purity alcohol solution, and when left for 3 to 4 hours, the alcohol solution becomes sticky.

再び濾過し、さらさらの粉末とする。Filter again to make a smooth powder.

硅酸塩基類の複合溶液は、次の作用がある0機械的粉砕
と超微粉末の炭化硅素との相互作用により、黒色化した
亜鉛または亜鉛を主体とする合金の粉末は、超微粉末化
し、活性化の状態となる。
A composite solution of silicate bases has the following effects.Due to mechanical crushing and interaction with ultra-fine powder of silicon carbide, blackened zinc or zinc-based alloy powder becomes ultra-fine powder. , enters the activated state.

すなわち、硅酸塩類の複合液(pH9〜lO位のアルカ
リ性液)を前記粉末と混合すると、硅酸塩類と柔らかく
反応し、PHは減少し、同時に硅酸ソーダが膜となって
、黒色化された、または黒色化されていない粉末を包む
形となる。また、珪酸ソーダのアルカリ液が、機械的に
粉砕して表面に生じた亀裂部分より粒子内部に進入し、
外部の作用と合わせてZn (OH) zあるいはNa
意Zn(OH)aのようなヒドロキシ塩と種々の形の亜
鉛の化合物が表面に生成する。この泥状物を濾過し、被
濾過物に高純度のアルコール(純度99%)を添加して
しばら(放置すると、初め、さらさらしていたのが次第
に粘度を増して来る。上述の混合物の他にアルコキソ塩
Na (Zn (OET)4 )が発生すると思われる
That is, when a composite solution of silicates (an alkaline solution with a pH of 9 to 10) is mixed with the powder, it reacts softly with the silicates, the pH decreases, and at the same time, sodium silicate forms a film and becomes black. It becomes a shape that envelops powder that has not been blackened or has not been blackened. In addition, the alkaline solution of sodium silicate enters the inside of the particles through the cracks created on the surface by mechanical crushing.
Zn (OH) z or Na in conjunction with external action
Hydroxy salts such as Zn(OH)a and compounds of various forms of zinc are formed on the surface. This slurry is filtered, and high-purity alcohol (99% purity) is added to the filtered material for a while (if left for a while, the viscosity will gradually increase although it was initially smooth. It is thought that the alkoxo salt Na (Zn (OET)4) is generated.

これらの粒子の表面は、硅酸塩の膜とZn (OH) 
tの膜、NaxZn (OH) aの膜、アルコキソ塩
と化したZnの膜ができ、これらが熱処理によってSi
ng、 ZnOのセラミックの膜の分子状に細かくでき
たものとなる。そのため、単に粒子にSing、 Zn
Oの粒子を混練したのとは違って来る。
The surface of these particles is covered with a film of silicate and Zn(OH)
A film of NaxZn(OH)a, a film of Zn converted to an alkoxo salt, and a film of Zn converted to an alkoxo salt are formed, and these are converted into Si by heat treatment.
It is made up of fine molecules in the form of a ZnO ceramic film. Therefore, simply adding Sing, Zn to the particles
The result is different from that obtained by kneading O particles.

しかし、反面、上記の膜から生成されるSiO□ZnO
のセラミックの膜が粒子を包んでおり、粒子内部のZn
、またはZn粉末合金を溶かすのに熱伝導性が悪くなる
。また、焼結時に熱を徐々に受けた場合は膜そのものも
次第に強固となり、焼結には不都合となる。
However, on the other hand, the SiO□ZnO produced from the above film
A ceramic film surrounds the particles, and the Zn inside the particles
, or the thermal conductivity becomes poor when melting the Zn powder alloy. Furthermore, if the film is gradually exposed to heat during sintering, the film itself will gradually become stronger, which is inconvenient for sintering.

第2図に示すように、熱源として、電気炉32を使用す
る場合は、瞬間的に高いエネルギを与えることができず
、徐々に温度が上昇するので、所定の温度に至るまでに
、膜が固くなってしまい、粒子内部の溶解物を膜から流
出させることができない、そのため焼結が不充分となり
、硬度や耐力が不足し、切削加工等に耐えることができ
ない。
As shown in FIG. 2, when an electric furnace 32 is used as a heat source, it is not possible to provide high energy instantaneously, and the temperature gradually rises. The particles become hard, and the dissolved substances inside the particles cannot flow out from the film, resulting in insufficient sintering, resulting in insufficient hardness and yield strength, and cannot withstand cutting.

この発明の目的は、硬度および耐力の向上が共に図れる
金属粉末成形方法を提供することである。
An object of the present invention is to provide a metal powder molding method that can improve both hardness and yield strength.

〔課題を解決するための手段〕[Means to solve the problem]

この発明の金属粉末成形方法は、活性化した金属粉末と
非活性化状態の金属粉末とを混合した混合粉末を充填容
器に充填し、この充填容器内の金属粉末を高周波コイル
により誘導加熱しながら、圧縮成形する方法である。
The metal powder forming method of the present invention involves filling a filling container with a mixed powder mixture of activated metal powder and non-activated metal powder, and heating the metal powder in the filling container by induction heating using a high-frequency coil. This is a compression molding method.

前記混合状態の金属粉末は、例えば亜鉛または亜鉛を主
体とする合金の粉末を機械的粉砕方法によって粉砕する
ことによって得られる。この粉砕により、粉砕の程度の
進んだものは活性化された状態となり、未粉砕状態のも
のは非活性化状態のものとなる。そのため、活性化した
金属粉末と非活性化状態の金属粉末とが混合された混合
粉末となる。
The metal powder in the mixed state is obtained, for example, by pulverizing powder of zinc or an alloy mainly composed of zinc using a mechanical pulverization method. As a result of this pulverization, highly pulverized materials become activated, and unpulverized materials become inactivated. Therefore, the activated metal powder and the non-activated metal powder are mixed to form a mixed powder.

〔作用〕[Effect]

この方法によると、高周波誘導加熱を行うので、金属粉
末にその表面のセラミック膜を通して瞬間的に高エネル
ギを供給することができる。そのため、金属粉末の内部
が溶融し、溶融物がセラミック膜の亀裂部分より吐出し
、金属粉末相互が焼結する。
According to this method, since high-frequency induction heating is performed, high energy can be instantaneously supplied to the metal powder through the ceramic film on its surface. Therefore, the inside of the metal powder melts, the molten material is discharged from the cracked portion of the ceramic film, and the metal powders are sintered together.

〔実施例〕〔Example〕

この発明の一実施例を第1図と共に説明する。 An embodiment of this invention will be described with reference to FIG.

この金属粉末成形方法は、金属粉末1を円筒状の充填容
器2に充填し、この充填容器2内の金属粉末1をその外
周の高周波コイル3により誘導加熱しながら、一対の圧
m捧4.5で両側から加圧し、圧粉体に成形する方法で
ある。
This metal powder compacting method involves filling a cylindrical filling container 2 with metal powder 1, and heating the metal powder 1 in the filling container 2 by induction using a high-frequency coil 3 on its outer periphery while pressing a pair of compressors 4. In this method, pressure is applied from both sides in Step 5 to form a green compact.

金属粉末1は、前記のように活性化した金属粉末と非活
性化状態の金属粉末を混合した混合粉末である。充填容
器3は高周波透磁率を良くするために、黒鉛製のものを
使用しである。圧縮環4は固定されており、圧縮環5は
加圧板6を介して加圧装置により加圧される。圧縮環4
,5は、高周波i3磁率を良くするために、先端に黒鉛
棒部4a。
The metal powder 1 is a mixed powder obtained by mixing activated metal powder and non-activated metal powder as described above. The filling container 3 is made of graphite in order to improve high frequency magnetic permeability. The compression ring 4 is fixed, and the compression ring 5 is pressurized via a pressure plate 6 by a pressure device. compression ring 4
, 5 has a graphite rod portion 4a at the tip in order to improve the high frequency i3 magnetic property.

5aを各々設けである。圧縮環4.5は例えば30閣程
度の直径のものである。充填容器2内には温度計7のセ
ンサ部7aを設けである。
5a are provided in each case. The compression ring 4.5 has a diameter of, for example, about 30 mm. A sensor section 7a of a thermometer 7 is provided inside the filling container 2.

圧縮環4.5による加圧の圧力は100kgr/cd以
上程度が適当である。また、高周波コイル3の周波数は
、10〜150KHzが適当である。
The pressure applied by the compression ring 4.5 is suitably about 100 kgr/cd or more. Further, the appropriate frequency of the high frequency coil 3 is 10 to 150 KHz.

この方法よると、高周波コイル3により誘導加熱を行う
ので、金属粉末1にぞの表面のセラミック膜を通して瞬
間的に高エネル°ギを供給することができる。そのため
、金属粉末lの内部が溶融し、溶融物がセラミック膜の
亀裂部分より吐出し、金属粉末1が相互に焼結する。し
たがって、硬度および耐力が向上する。
According to this method, since induction heating is performed by the high frequency coil 3, high energy can be instantaneously supplied to the metal powder 1 through the ceramic film on its surface. Therefore, the inside of the metal powder 1 melts, the molten material is discharged from the cracked portion of the ceramic film, and the metal powder 1 is sintered with each other. Therefore, hardness and yield strength are improved.

例えば、耐力も30kgf/c−d以上となり、硬度は
圧力によってH3=35〜50前後に上昇し、355C
の焼入れに近い効果となった。同じ材料で、硅酸塩類処
理をしない場合でも、HS 30〜35まで上昇し、耐
力については30kgf/cd前後となり、変わりない
。焼結時間は1程度度である。
For example, the yield strength is 30 kgf/c-d or more, and the hardness increases to around H3 = 35 to 50 depending on the pressure, and is 355 C.
The effect was close to that of hardening. Even when the same material is not treated with silicates, the HS increases to 30 to 35, and the yield strength remains unchanged at around 30 kgf/cd. The sintering time is about 1 degree.

この実施例のように充填容器2を黒鉛とし、また圧縮環
4,5に黒鉛棒部4a、5aを設けた場合は、これら充
填容器2等も高周波誘導加熱される。そのため、充填容
器2や黒鉛棒部4a、5aからの輻射熱も、加熱圧縮成
形に寄与する。なお充填容器2はNi合金または鋼材で
もよい。
When the filling container 2 is made of graphite and the compression rings 4 and 5 are provided with graphite rod portions 4a and 5a as in this embodiment, these filling containers 2 and the like are also heated by high frequency induction. Therefore, the radiant heat from the filling container 2 and the graphite rod parts 4a and 5a also contributes to the heating compression molding. Note that the filling container 2 may be made of Ni alloy or steel.

金属粉末1として、つぎの組成のものを使用した場合の
実験結果につき、上記実施例と第2図の従来方法とを比
較して説明する。
Experimental results using a metal powder 1 having the following composition will be explained by comparing the above embodiment with the conventional method shown in FIG. 2.

金属粉末1にはつぎの組成のものを使用する。The metal powder 1 used has the following composition.

すなわち、急冷凝固粉末の複合材からなる亜鉛合金粉末
(例えばアルミニウム含有!22wt%で超塑性合金)
を基に混練し、濾過により得たさらさらの粉末(例えば
Zn  22wt%/A/り20wt%および、Zn−
Al(例えばZ n−50wt%/Al)80%の金属
粉末に、滑剤例えばZn (SL)zO125%を添加
し、自動乳鉢で40分位攪拌する。
That is, zinc alloy powder consisting of a composite material of rapidly solidified powder (for example, containing aluminum! 22 wt% superplastic alloy)
A smooth powder obtained by kneading and filtration (for example, Zn 22wt%/A/20wt% and Zn-
A lubricant such as 125% Zn(SL)zO is added to 80% Al (eg Zn-50wt%/Al) metal powder and stirred in an automatic mortar for about 40 minutes.

この攪拌したものを金属粉末lおよび第2図の金属粉末
34として使用する。 この実施例では、高周波コイル
3の周波数を50KHz、電力を2KW、圧縮環4.5
による加圧の圧力を500kgr/cシ以上、半溶融焼
結温度を300〜500°Cとした。
This stirred material is used as metal powder 1 and metal powder 34 in FIG. In this example, the frequency of the high frequency coil 3 is 50 KHz, the power is 2 KW, and the compression ring is 4.5 KHz.
The pressurization pressure was set at 500 kgr/c or more, and the semi-molten sintering temperature was set at 300 to 500°C.

この結果、成形した圧粉体の硬度はH3=45前後、耐
力は30 kg r /cdであった。そのため、粒子
表面のセラミック膜の影響がほとんどないと考えられる
As a result, the hardness of the molded compact was approximately H3=45, and the yield strength was 30 kg r /cd. Therefore, it is thought that there is almost no effect of the ceramic film on the particle surface.

第2図の電気炉32による従来方法の場合は、圧力を1
50 kg f /cd、半溶融温度を530〜560
’Cで行った。
In the case of the conventional method using the electric furnace 32 shown in FIG.
50 kg f/cd, half melting temperature 530-560
I went with 'C.

その結果、圧粉体の硬度はH3=35前後、耐力は25
 kg f /c4であった。
As a result, the hardness of the green compact was around H3=35, and the yield strength was 25.
kgf/c4.

このように、この実施例の方法によると、圧粉体の硬度
および耐力が向上することがわかる。
Thus, it can be seen that the method of this example improves the hardness and yield strength of the green compact.

なお、上記の実施例では半溶融状態を確認せずに加圧を
行うようにしたが、次のように半溶融状態を確認しなが
ら加圧制御することが好ましい。
In addition, in the above embodiment, pressurization was performed without checking the semi-molten state, but it is preferable to control the pressurization while checking the semi-molten state as follows.

すなわち、両端から圧縮線4,5により圧力を加え、高
周波誘導加熱により金属粉末1の温度を上昇させるが、
半溶融を始めたら、金属粉末1の体積が減り、圧力計(
図示せず)の指示が減る。温度上昇はこの時点で停止す
る。このとき、圧力の低下した分だけ再び金属粉末に圧
力を加え、その後再び加熱を行い、温度上昇させる。こ
のような操作を繰り返し、金属粉末が全て半溶融状態に
なった時点で温度上昇を停止し、成形物である圧粉体を
取り出す、前記の全て半溶融状態になったか否かの判定
は、圧力が下がらなくなった時点をもって判定する。
That is, pressure is applied from both ends by the compression wires 4 and 5, and the temperature of the metal powder 1 is increased by high frequency induction heating.
When it starts to semi-melt, the volume of metal powder 1 decreases and the pressure gauge (
instructions (not shown) are reduced. The temperature rise stops at this point. At this time, pressure is applied again to the metal powder by the amount that the pressure has decreased, and then heating is performed again to raise the temperature. Repeat this operation, stop increasing the temperature when all the metal powder is in a semi-molten state, and take out the green compact, which is a molded product.To determine whether all the metal powder has become semi-molten, Judgment is made when the pressure no longer decreases.

このように、半溶融化を確認しながら加圧成形すること
により、品質が安定する。
In this way, by performing pressure molding while confirming semi-melting, quality is stabilized.

また、前記実施例では金属粉末1として、合金粉末を機
械的に粉砕する過程で、同じ粉砕容器内に粉砕の程度の
異なる粉末が残るようにして得たが、粉砕時間が例えば
、5時間、10時間等と異なる複数種の微粉末を得、こ
れを後に混合して使用しても良い。
Further, in the above example, the metal powder 1 was obtained by mechanically pulverizing the alloy powder so that powders having different degrees of pulverization remained in the same pulverizing container, but the pulverizing time was, for example, 5 hours, It is also possible to obtain a plurality of types of fine powders different from each other for 10 hours, etc., and to mix and use them later.

〔発明の効果〕〔Effect of the invention〕

この発明の金属粉末成形方法は、高周波誘導加熱を行う
ので、金属粉末にその表面のセラミック膜を通して瞬間
的に高エネルギを供給することができる。そのため、金
属粉末の内部が溶融し、溶融物がセラミック膜の亀裂部
分より吐出し、金属粉末相互が焼結する。したがって、
硬度および耐力が向上するという効果がある。
Since the metal powder forming method of the present invention performs high-frequency induction heating, high energy can be instantaneously supplied to the metal powder through the ceramic film on its surface. Therefore, the inside of the metal powder melts, the molten material is discharged from the cracked portion of the ceramic film, and the metal powders are sintered together. therefore,
It has the effect of improving hardness and yield strength.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例の成形方法を示す断面図、
第2図は従来方法の断面図である。 1・・・金属粉末、2・・・充填容器、3・・・高周波
コイル、4.5・・・圧縮線 第2図 1図
FIG. 1 is a sectional view showing a molding method according to an embodiment of the present invention;
FIG. 2 is a sectional view of the conventional method. 1... Metal powder, 2... Filling container, 3... High frequency coil, 4.5... Compression line Fig. 2 Fig. 1

Claims (1)

【特許請求の範囲】[Claims] 活性化した金属粉末と非活性化状態の金属粉末とを混合
した金属粉末を充填容器に充填し、この充填容器内の金
属粉末を高周波コイルにより誘導加熱しながら、圧縮成
形する金属粉末成形方法。
A metal powder forming method in which metal powder, which is a mixture of activated metal powder and non-activated metal powder, is filled into a filling container, and the metal powder in the filling container is compression-molded while being induction heated by a high-frequency coil.
JP1109993A 1989-04-27 1989-04-27 Metal powder molding method Expired - Lifetime JPH0711014B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1109993A JPH0711014B2 (en) 1989-04-27 1989-04-27 Metal powder molding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1109993A JPH0711014B2 (en) 1989-04-27 1989-04-27 Metal powder molding method

Publications (2)

Publication Number Publication Date
JPH02285003A true JPH02285003A (en) 1990-11-22
JPH0711014B2 JPH0711014B2 (en) 1995-02-08

Family

ID=14524368

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1109993A Expired - Lifetime JPH0711014B2 (en) 1989-04-27 1989-04-27 Metal powder molding method

Country Status (1)

Country Link
JP (1) JPH0711014B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS501943A (en) * 1973-05-10 1975-01-10
JPS61270307A (en) * 1985-05-24 1986-11-29 Ofic Co High-frequency sintering device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS501943A (en) * 1973-05-10 1975-01-10
JPS61270307A (en) * 1985-05-24 1986-11-29 Ofic Co High-frequency sintering device

Also Published As

Publication number Publication date
JPH0711014B2 (en) 1995-02-08

Similar Documents

Publication Publication Date Title
CN101168190A (en) Hard alloy and double-metal composite technique and device
CN106825587A (en) A kind of method for preparing oxide dispersion intensifying ferrous alloy
US4518441A (en) Method of producing metal alloys with high modulus of elasticity
US4123266A (en) Sintered high performance metal powder alloy
US2884688A (en) Sintered ni-al-zr compositions
JP2007251125A (en) Soft magnetic alloy consolidation object and method for fabrication thereof
JP3435223B2 (en) Method for producing sendust-based sintered alloy
CN107881391A (en) A kind of zirconium oxide base metal-ceramic material and preparation method thereof
US3184306A (en) Friction material
CN101649398B (en) Method for synthesizing TiCx particle enhanced nickel base composite material by reaction in-situ
JPH02285003A (en) Method for molding metal powder
CN101490290A (en) Method of making sputtering target and target produced
US2159604A (en) Metallic article
JPH08120393A (en) Production of iron-silicon soft magnetic sintered alloy
He et al. Compression Performance and Abrasive Wear Resistance of CuNi‐Modified Zirconium Oxide‐Toughened Alumina Particles‐Reinforced Iron Matrix Composites
CN201195198Y (en) Hard alloy bi-metal complex equipment
CN104451207B (en) Technical method for performing vacuum induction melting of 4J36 low-expansion alloy
JP2599284B2 (en) Manufacturing method of soft sintered magnetic material
CN116103522A (en) High-frequency induction smelting casting method for spherical powder of titanium, zirconium and alloy thereof
JPH04371536A (en) Production of tial intermetallic compound powder
CN106884100B (en) A kind of preparation method of nickel aluminium base multiphase alloy
Turker et al. Investigation of rheological properties of mechanically alloyed and turbula processed composite powder PIM feedstock by capillar rheometer
KR100898746B1 (en) Fabrication method of a high density and single-phased RuAl intermetallic compound by powder metallurgy process
JPH06305833A (en) Sintered diamond having high hardness and its production
JPH03264605A (en) Method for releasing metal powder green compact from mold