JPH0228464B2 - KOTAISHOKUSEIYOSETSUKANOTOSOKOHAN - Google Patents

KOTAISHOKUSEIYOSETSUKANOTOSOKOHAN

Info

Publication number
JPH0228464B2
JPH0228464B2 JP18734485A JP18734485A JPH0228464B2 JP H0228464 B2 JPH0228464 B2 JP H0228464B2 JP 18734485 A JP18734485 A JP 18734485A JP 18734485 A JP18734485 A JP 18734485A JP H0228464 B2 JPH0228464 B2 JP H0228464B2
Authority
JP
Japan
Prior art keywords
zinc
paint
weldable
weight
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP18734485A
Other languages
Japanese (ja)
Other versions
JPS6248539A (en
Inventor
Yoshio Shindo
Katsushi Saito
Fumio Yamazaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP18734485A priority Critical patent/JPH0228464B2/en
Publication of JPS6248539A publication Critical patent/JPS6248539A/en
Publication of JPH0228464B2 publication Critical patent/JPH0228464B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)
  • Laminated Bodies (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、電気抵抗溶接ができる耐食性の優れ
た溶接可能塗装鋼板に関するもので、溶接性と耐
食性が要求される分野、例えば自動車用鋼板とし
て適用できるものである。 〔従来の技術〕 近年融雪塩による自動車の腐食が問題化したの
に対応して、自動車メーカーでは化成処理や塗装
面での改善、構造面での改善と併行して、表面処
理鋼板の使用による耐食性の向上対策を行つてい
る。自動車防錆用の表面処理鋼板としては、亜鉛
めつき鋼板あるいは亜鉛合金めつき鋼板等の金属
めつき鋼板の他、ジンクリツチ塗料を塗布した溶
接可能塗装鋼板が使われている。 ジンクリツチ塗料を塗布した塗装鋼板の場合、
塗料中の亜鉛末の含有量は塗膜の加工密着性、溶
接性、耐食性を左右する。すなわち溶接性の点か
らは亜鉛末含有量が多い方が好ましいが、加工密
着性は低下し、亜鉛末含有量が約80重量%を超え
ると、ドアーやフエンダーなどにプレス成形する
際、塗膜が剥がれたり、バウダリングと呼ばれる
塗膜が粉状に脱落する現象があらわれ、プレス作
業性に支障が生じる。一方耐食性については、亜
鉛末含有量が90重量%を超えないと犠牲防食効果
を示されないことはよく知られているが、90重量
%以上亜鉛末を含有させると、プレス成形性の点
で全く実用性が損われる。 このように亜鉛末塗料で塗布した溶接可能塗装
鋼板では加工密着性、溶接性、耐食性のすべてを
満足したものを得ることは難かしく、現状では加
工密着性にやや重点を置いた製品が実用化されて
いる。従つて、犠牲防食効果が乏しく、塗膜に傷
がついた場合や、切断面など鉄素地が露出した箇
所では、短期間に赤錆が発生するという欠点をも
つていた。 この欠点を解消する方法として、特公昭54−
11331号として低含有量の亜鉛末を含有する塗料
を塗布した鋼板が提案された。また、亜鉛めつき
鋼板に代つて、腐食速度の小さな亜鉛−ニツケル
−コバルト合金めつき鋼板を原板とし、これに亜
鉛末あるいは亜鉛末と硬質導電性粉末を含んだ溶
接可能塗料を塗布した耐食性の優れた溶接可能塗
装鋼板が特開昭57−18984号に開示されている。
さらに、特開昭57−189844号では、原板を亜鉛−
ニツケル−鉄−クロム合金めつき鋼板とした溶接
可能塗装鋼板が、特開昭58−157995号では原板を
亜鉛−アルミニウム系複合電気めつき鋼板とした
溶接可能塗装鋼板が、それぞれ開示されている。 〔発明の解決しようとする問題点〕 これらは、何れも原板に耐食性の優れた亜鉛系
合金めつき鋼板を用い、この上に溶接可能塗膜を
有する高耐食性の溶接可能塗装鋼板である。しか
し、ユーザー側からの要求性能がより高度化する
に従つて、自動車車体の下廻り部の構造的に化成
処理や電着塗装が施され難い部位での耐穴あき性
や、傷付部の耐食性の点で尚、改良の必要があ
り、本発明はかかる高耐食性溶接可能塗装鋼板を
目的とするものである。 〔問題点を解決するための手段〕 本発明者らは、上記実情に鑑み、種々の実験を
重ねた結果、特定寸法の非金属微粒子を単独ある
いは複合で所定量範囲含有する亜鉛もしくは亜鉛
合金めつき層を有する亜鉛系複合めつき鋼板を原
板とした溶接可能塗装鋼板は、従来の溶接可能塗
装鋼板に比べ、特に耐穴あき性と傷付部の耐食性
において、良好であることを見出した。これは、
めつき層中に含有された非金属微粒子が、腐食の
進行に対して1種のバリヤー効果を発揮し、耐食
性が向上したものと考えられる。 また、非金属微粒子の寸法及び含有量が、ある
上限を超えなければ、溶接性や加工密着性も、従
来材に対して遜色のないものであることがわかつ
た。 本発明は、以上の如き知見に基づいてなされた
もので、その要旨とするところは、平均粒径2μ
m以下の非金属微粒子を0.1〜10重量%含有する
亜鉛もしくは亜鉛合金をめつきした鋼板上に、亜
鉛末あるいは亜鉛末と硬質導電性粉末を含んだ溶
接可能塗料を塗布したことを特徴とする高耐食性
の溶接可能塗装鋼板にある。 〔作用〕 以下、本発明について詳細に説明する。 亜鉛合金めつき鋼板に塗布すべき溶接可能塗料
は、公知のジンクリツチ塗料、すなわち80重量%
以上の亜鉛末と、必要により少量のアルミニウ
ム、マグネシウムなどの金属粉末やカーボン粉を
含有した塗料が使用しうる。しかし、ジンクリツ
チ塗料では前にも述べたように、亜鉛末等の含有
量に対し、加工密着性と溶接性に背反現象が見ら
れるので、より好ましい塗料としては、本発明者
らの発明による亜鉛末と硬質導電性粉末を併用含
有し、必要により更に少量のアルミニウム、グラ
フアイト、スズ、マグネシウム、カーボンなどの
粉末を含有させた溶接可能塗料が使用できる。 ここで言う硬質の導電性粉末とは鉄、ニツケ
ル、コバルト、マンガン、クロム、鉛、銅の粉末
およびこれらを基金属とする合金の粉末、および
チタン、ジルコニウム、ハフニウム、バナジウ
ム、ニオブ、タンタル、クロム、タングステン、
モリブデンおよびこれらの混合物の炭化物粉末か
ら選ばれた1種または2種以上の粉末のことで、
これを亜鉛末に併用することによつて、亜鉛末単
独系に比べ、少ない全金属含有量で同等の溶接性
がえられ、したがつて加工密着性がすぐれるとい
う特徴がえられる。 硬質導電性粉末を併用した溶接可能塗料におけ
る亜鉛粉末の含有量は、塗料全不揮発分に対し
て、耐食性の点から5重量%以上、好ましくは30
重量%以上必要である。また硬質導電性粉末の含
有量は、主として溶接性の観点から決められるべ
きもので、全導電性粉末の含有量、硬質導電性の
粉末の種類によつて左右されるもので一概に言え
ないが、炭化物系統の粉末の場合5重量%以上、
金属粉末の場合20重量%以上で効果が顕著にな
る。もちろん第三成分としてアルミニウム、ス
ズ、グラフアイト、カーボン、マグネシウムなど
の粉末を添加することも導電性、耐食性の点で効
果がある。 硬質導電性粉末の粒径については、溶接性、加
工性の点から平均粒径1〜30μmが適当である。
さらに、塗膜の導電性の上では、 d−1<D<d+1 (dは塗膜厚、Dは硬質導電性粉末の粒径、単位
μm) なる粒径の粉末を塗膜中の全硬質導電性粉末の
内、20重量%以上含有することが好ましい。 本発明で用いられる亜鉛系複合めつき鋼板は、
マトリツクスとなるめつきとして、亜鉛単独、あ
るいは亜鉛−鉄、亜鉛−ニツケル、亜鉛−コバル
ト、亜鉛−クロム、亜鉛−スズ、亜鉛−カドミウ
ム、亜鉛−チタン、亜鉛−ニツケル−コバルト、
亜鉛−ニツケル−チタン、亜鉛−ニツケル−鉄−
クロム等の亜鉛合金めつきを用いることができ
る。より高い耐食性を狙う意味では、腐食速度の
小さい合金めつき系が有効であるが、めつき層の
犠牲防食効果を維持する点で合金成分の総量は20
%以下が望ましい。 本発明においては、かかる亜鉛あるいは亜鉛合
金をマトリツクスとして、非金属微粒子を単独あ
るいは複合で含有せしめた亜鉛系複合めつき層を
塗装下地とする点に最大の特徴がある。 ここで、非金属微粒子とは、金属単体あるいは
金属合金の微粒子以外の微粒子であり、具体的に
は、金属、非金属、あるいは半金属の酸化物、炭
化物、窒化物、及び黒鉛、有機物などである。こ
の内、特に耐食性上有効な非金属微粒子は、酸化
物では、SiO2、TiO2、Al2O3、ZrO2、炭化物で
はSiC、TiC、窒化物ではSiN、TiN、AlN、及
び黒鉛である。これらは、単独あるいは複合で用
いても効果がある。 また、非金属微粒子の性状は、粉末状、あるい
はコロイダルシリカのようなコロイド状、何れで
もよく、特に限定するものではない。微粒子の大
きさとしては、平均粒径が2μm以下であること
が必要であり、特に0.1μm以下の超微粒子が耐食
性、加工性共に最も効果がある。2μm超では、
加工性、溶接性が劣化する。なお、平均粒径と
は、全粒子の内最も分布量の大である粒径を意味
する。非金属微粒子のめつき層中の含有量は、
0.1〜10重量%である。0.1%未満では、耐食性向
上の効果が無く、10%を超えると加工性や溶接性
が劣化する。 本発明に用いられる亜鉛系複合めつき鋼板は、
例えば公知の硫酸塩系、塩化物系の亜鉛あるいは
亜鉛合金めつき液中に非金属微粒子の粉末、ある
いはコロイド溶接を非金属粒子として10〜150
g/分散させた液から得られる。この際、非金
属微粒子に特異吸着して電荷を付与させる性質の
ある、ニツケル、鉄、コバルトといつた鉄族イオ
ンを含む合金めつき浴を使用すると、めつき層中
への非金属微粒子の共析が効率よく行なわれ、こ
れらを含まないめつき浴に比べ、非金属微粒子を
より多く含む複合めつき層が得られる。 本発明において、めつき量は特に制約が無く、
めつき量に応じてそれ相応の耐食性を持つた鋼板
が得られるが、めつきの効果が発揮されるために
は、最低1g/cm2以上、好ましくは3g/m2、コ
ストをも考慮に入れると、より好ましくは5〜20
g/m2が適当である。また、塗膜厚についても同
様で、特に制約する理由はないが、塗膜の効果を
発揮できることと、コストを考えれば3〜20μm
が適当であり、より適切な範囲としては5〜15μ
mがあげられる。塗装前処理は、通常使われるり
ん酸塩処理、クロメート処理、酸化皮膜処理、そ
の他の処理すべてが適用できる。 以下、本発明の効果を更に明らかにするため、
実施例をもつて具体的に説明する。 〔実施例〕 本発明鋼板の内代表的な鋼板のめつき層組成、
塗装前処理、塗膜組成及び加工性、耐食性、溶接
性試験結果について、第1表にまとめて示す。実
施例1〜60が本発明例であり、比較例1〜14は、
本発明の特許請求の範囲を逸脱する例、又、比較
例15〜20は従来例である。塗料用樹脂は、日本油
脂(株)製プレカラー用エポキシワニスを用い、焼付
は250℃×50℃で行なつた。塗料中の硬質導電性
粉末としては、平均粒径10μmのものを用いた。 一方、性能試験の方法と評価基準は以下の通り
である。 (加工性) 2T〜4T折曲後 テープテスト黒化度 〇 10%未満 △ 10%以上、25%未満 × 25%以上 (耐蝕性) 耐穴あき性…サイクル腐食試験200サイクル
後、最大穴あき深さ ◎…0.1mm未満 〇…0.1mm以上0.2mm未満 △…0.2mm以上0.3mm未満 ×…0.3mm以上 傷付部耐食性…サイクル腐食試験200サイク
ル後、最大ふくれ巾 ◎…1mm未満 〇…1mm以上2mm未満 △…3mm以上5mm未満 ×…5mm以上 サイクル腐食試験は、塩水噴霧試験(JIS.
Z2371)と40℃、5%食塩水浸漬と60℃乾燥を1
サイクルとし、1サイクルの時間は8時間とし
た。 (溶接性) スポツト溶接時の連続打点数 第1表に示すように、本発明は、比較例15〜20
の従来例に比較して、耐穴あき性、傷付部の耐食
性の向上効果が大であり、溶接性、加工性も同等
レベルで良好である。比較例1〜13は、微粒子の
含有率やサイズが本発明の範囲を逸脱しているた
め、加工性、耐食性、溶接性の内、1つ以上が不
良である。比較例14は塗膜中の亜鉛含有率が、本
発明の範囲より低いため性能不良である。また、
めつき層中の微粒子は単独で含有するのみでな
く、本発明例47〜60に示す通り、複合で含有して
もその効果は大である。
[Industrial Field of Application] The present invention relates to a weldable coated steel plate with excellent corrosion resistance that can be electrically resistance welded, and can be applied to fields where weldability and corrosion resistance are required, such as steel plates for automobiles. [Conventional technology] In response to the recent problem of corrosion of automobiles caused by snow-melting salt, automobile manufacturers have implemented chemical conversion treatments, improved painted surfaces, and improved structural aspects by using surface-treated steel sheets. Measures are being taken to improve corrosion resistance. Surface-treated steel sheets for automobile rust prevention include metal-plated steel sheets such as galvanized steel sheets and zinc alloy-plated steel sheets, as well as weldable painted steel sheets coated with zinc-rich paint. In the case of painted steel plates coated with zinc-rich paint,
The content of zinc powder in the paint affects the processing adhesion, weldability, and corrosion resistance of the paint film. In other words, from the point of view of weldability, it is preferable to have a high zinc dust content, but processing adhesion deteriorates, and if the zinc dust content exceeds about 80% by weight, the coating film will be difficult to form when press-forming into doors, fenders, etc. A phenomenon called bordering, in which the paint film peels off or the paint film falls off in powder form, occurs, which impedes press workability. On the other hand, regarding corrosion resistance, it is well known that the sacrificial corrosion protection effect is not exhibited unless the zinc powder content exceeds 90% by weight. Practicality is impaired. In this way, it is difficult to obtain a weldable coated steel sheet coated with zinc dust paint that satisfies all of the requirements for processing adhesion, weldability, and corrosion resistance, and currently products with a slight emphasis on processing adhesion are being put into practical use. has been done. Therefore, the sacrificial corrosion protection effect is poor, and red rust occurs in a short period of time when the coating is scratched or where the iron base is exposed, such as on a cut surface. As a way to overcome this drawback,
No. 11331 proposed a steel plate coated with a paint containing a low content of zinc dust. In addition, instead of galvanized steel sheets, we use zinc-nickel-cobalt alloy coated steel sheets, which have a low corrosion rate, as base sheets, and weldable paints containing zinc dust or zinc dust and hard conductive powder are applied to these sheets. An excellent weldable painted steel plate is disclosed in Japanese Patent Application Laid-Open No. 18984/1984.
Furthermore, in Japanese Patent Application Laid-open No. 57-189844, the original plate was made of zinc.
A weldable painted steel sheet made of a nickel-iron-chromium alloy plated steel sheet is disclosed, and JP-A-58-157995 discloses a weldable painted steel sheet whose original sheet is a zinc-aluminum composite electroplated steel sheet. [Problems to be Solved by the Invention] These are highly corrosion-resistant weldable coated steel sheets that use a zinc-based alloy plated steel sheet with excellent corrosion resistance as the base plate and have a weldable coating film thereon. However, as the performance demands from users become more sophisticated, improvements have been made to improve puncture resistance in areas of the underbody of automobiles that are structurally difficult to apply chemical conversion treatment or electrodeposition coating to, and corrosion resistance in damaged areas. There is still a need for improvement in this respect, and the object of the present invention is to provide such a highly corrosion-resistant weldable coated steel plate. [Means for solving the problem] In view of the above-mentioned circumstances, the present inventors have conducted various experiments and have developed a zinc or zinc alloy metal containing non-metal fine particles of a specific size, singly or in combination, within a predetermined amount. It has been found that a weldable coated steel sheet made from a zinc-based composite coated steel sheet having a bonded layer has better puncture resistance and corrosion resistance in damaged areas compared to conventional weldable coated steel sheets. this is,
It is thought that the nonmetal fine particles contained in the plating layer exerted a kind of barrier effect against the progress of corrosion, resulting in improved corrosion resistance. It was also found that weldability and processing adhesion were comparable to conventional materials as long as the size and content of the nonmetallic particles did not exceed a certain upper limit. The present invention was made based on the above findings, and its gist is that the average particle size is 2 μm.
A weldable paint containing zinc dust or zinc dust and hard conductive powder is applied onto a steel plate plated with zinc or zinc alloy containing 0.1 to 10% by weight of non-metallic particles of 0.1 to 10% by weight. Made of highly corrosion resistant weldable painted steel. [Function] The present invention will be explained in detail below. The weldable paint to be applied to zinc alloy coated steel sheets is the known zinc-rich paint, i.e. 80% by weight.
A paint containing the above zinc powder and, if necessary, a small amount of metal powder such as aluminum or magnesium or carbon powder may be used. However, as mentioned above, zinc-rich paints exhibit contradictory phenomena in process adhesion and weldability depending on the content of zinc powder, etc., so a more preferable paint is the zinc-rich paint developed by the present inventors. It is possible to use a weldable paint containing a combination of powder and hard conductive powder, and further containing a small amount of powder of aluminum, graphite, tin, magnesium, carbon, etc., if necessary. The hard conductive powders mentioned here include powders of iron, nickel, cobalt, manganese, chromium, lead, copper, and alloys containing these as base metals, as well as titanium, zirconium, hafnium, vanadium, niobium, tantalum, and chromium. ,tungsten,
One or more powders selected from carbide powders of molybdenum and mixtures thereof.
By using this in combination with zinc powder, it is possible to obtain the same weldability with a lower total metal content than when using zinc powder alone, and therefore to have excellent processing adhesion. The content of zinc powder in the weldable paint combined with hard conductive powder is 5% by weight or more, preferably 30% by weight based on the total nonvolatile content of the paint, from the viewpoint of corrosion resistance.
% or more by weight is required. In addition, the content of hard conductive powder should be determined mainly from the viewpoint of weldability, and cannot be definitively stated as it depends on the total conductive powder content and the type of hard conductive powder. , 5% by weight or more in the case of carbide-based powders,
In the case of metal powder, the effect becomes noticeable at 20% by weight or more. Of course, adding powders of aluminum, tin, graphite, carbon, magnesium, etc. as a third component is also effective in terms of conductivity and corrosion resistance. Regarding the particle size of the hard conductive powder, an average particle size of 1 to 30 μm is appropriate from the viewpoint of weldability and workability.
Furthermore, regarding the conductivity of the coating film, the total hardness of the powder in the coating film is d-1<D<d+1 (d is the coating thickness, D is the particle size of the hard conductive powder, unit: μm). The content of the conductive powder is preferably 20% by weight or more. The zinc-based composite plated steel sheet used in the present invention is
As the plating for the matrix, zinc alone, zinc-iron, zinc-nickel, zinc-cobalt, zinc-chromium, zinc-tin, zinc-cadmium, zinc-titanium, zinc-nickel-cobalt,
Zinc-nickel-titanium, zinc-nickel-iron
Zinc alloy plating such as chromium can be used. In terms of aiming for higher corrosion resistance, an alloy plating system with a low corrosion rate is effective, but in order to maintain the sacrificial corrosion protection effect of the plating layer, the total amount of alloy components is 20%.
% or less is desirable. The main feature of the present invention is that a zinc-based composite plating layer containing such zinc or zinc alloy as a matrix and a zinc-based composite plating layer containing non-metal fine particles singly or in combination is used as a coating base. Here, non-metal fine particles are fine particles other than fine particles of metals or metal alloys, and specifically include metal, non-metal, or metalloid oxides, carbides, nitrides, graphite, organic substances, etc. be. Among these, non-metal fine particles that are particularly effective in terms of corrosion resistance include oxides such as SiO 2 , TiO 2 , Al 2 O 3 , and ZrO 2 , carbides such as SiC, TiC, and nitrides such as SiN, TiN, AlN, and graphite. . These are effective when used alone or in combination. Further, the shape of the nonmetallic fine particles may be either a powder or a colloid such as colloidal silica, and is not particularly limited. Regarding the size of the fine particles, it is necessary that the average particle size is 2 μm or less, and in particular, ultrafine particles of 0.1 μm or less are most effective in both corrosion resistance and workability. If it exceeds 2 μm,
Workability and weldability deteriorate. Note that the average particle size means the particle size that has the largest distribution among all particles. The content of nonmetallic fine particles in the plating layer is
It is 0.1-10% by weight. If it is less than 0.1%, there is no effect of improving corrosion resistance, and if it exceeds 10%, workability and weldability will deteriorate. The zinc-based composite plated steel sheet used in the present invention is
For example, powder of non-metal fine particles in known sulfate-based or chloride-based zinc or zinc alloy plating solution, or colloidal welding as non-metal particles of 10 to 150
g/obtained from the dispersed liquid. At this time, if an alloy plating bath containing iron group ions such as nickel, iron, and cobalt, which have the property of specifically adsorbing to nonmetallic particles and imparting an electric charge, is used, the nonmetallic particles will be absorbed into the plating layer. Eutectoid is efficiently carried out, and a composite plated layer containing more non-metallic fine particles can be obtained compared to a plating bath that does not contain these. In the present invention, there is no particular restriction on the amount of plating,
Depending on the amount of plating, a steel plate with corresponding corrosion resistance can be obtained, but in order for the plating to be effective, it must be at least 1 g/cm 2 or more, preferably 3 g/m 2 , and cost must also be taken into consideration. and more preferably 5 to 20
g/m 2 is suitable. The same goes for the coating thickness; there is no particular reason to limit it, but considering the effectiveness of the coating and the cost, it should be 3 to 20 μm.
is appropriate, and a more appropriate range is 5 to 15 μ
m can be given. As pre-painting treatments, all commonly used treatments such as phosphate treatment, chromate treatment, oxide film treatment, and other treatments can be applied. Below, in order to further clarify the effects of the present invention,
This will be explained in detail with examples. [Example] Plating layer composition of representative steel sheets of the present invention steel sheets,
The pre-painting treatment, coating film composition, workability, corrosion resistance, and weldability test results are summarized in Table 1. Examples 1 to 60 are examples of the present invention, and Comparative Examples 1 to 14 are
Examples that deviate from the scope of the claims of the present invention and Comparative Examples 15 to 20 are conventional examples. As the paint resin, precolor epoxy varnish manufactured by Nippon Oil & Fats Co., Ltd. was used, and baking was performed at 250°C x 50°C. The hard conductive powder in the paint had an average particle size of 10 μm. On the other hand, the performance test method and evaluation criteria are as follows. (Workability) After bending 2T to 4T Tape test Blackening degree 〇 Less than 10%△ 10% or more, less than 25% Depth◎…Less than 0.1mm〇…0.1mm or more and less than 0.2mm△…0.2mm or more and less than 0.3mm×…0.3mm or more Corrosion resistance of scratched area…Maximum swelling width after 200 cycles of cycle corrosion test ◎…Less than 1mm〇…1mm 2 mm or more△…3 mm or more and less than 5 mm×…5 mm or more The cycle corrosion test is based on the salt spray test (JIS.
Z2371) and immersed in 5% saline at 40℃ and dried at 60℃.
It was set as a cycle, and the time of one cycle was 8 hours. (Weldability) Number of continuous dots during spot welding As shown in Table 1, the present invention
Compared to the conventional example, the effect of improving puncture resistance and corrosion resistance of damaged parts is large, and the weldability and workability are also good at the same level. Comparative Examples 1 to 13 are defective in one or more of workability, corrosion resistance, and weldability because the content and size of fine particles are outside the scope of the present invention. Comparative Example 14 has poor performance because the zinc content in the coating film is lower than the range of the present invention. Also,
The effect is great not only when the fine particles in the plating layer are contained alone, but also when they are contained in a composite form, as shown in Examples 47 to 60 of the present invention.

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

〔発明の効果〕〔Effect of the invention〕

以上述べた如く、本発明の溶接可能塗装鋼板
は、下地めつきとして非金属微粒子を含有する亜
鉛系複合めつき層を有するため、従来の溶接可能
塗装鋼板に比べ、耐穴あき性、傷付部の耐食性に
優れ、かつ加工性、溶接性も従来と同等であり、
その実用的価値は、誠に大きいものである。
As described above, since the weldable painted steel sheet of the present invention has a zinc-based composite plating layer containing non-metallic fine particles as the base plating, it has better puncture resistance and scratch resistance than conventional weldable painted steel sheets. It has excellent corrosion resistance, and has the same workability and weldability as conventional products.
Its practical value is truly great.

Claims (1)

【特許請求の範囲】 1 平均粒径2μm以下の非金属微粒子を単独あ
るいは複合で0.1〜10重量%含有する亜鉛もしく
は亜鉛合金をめつきした鋼板上に、塗料不揮発分
に対し、80重量%以上の亜鉛粉末を含有した塗料
を塗布したことを特徴とする高耐食性溶接可能塗
装鋼板。 2 平均粒径2μm以下の非金属微粒子を単独あ
るいは複合で0.1〜10重量%含有する亜鉛もしく
は亜鉛合金をめつきした鋼板上に、鉄、ニツケ
ル、コバルト、マンガン、クロム鉛、銅およびこ
れらの合金、チタン、ジルコニウム、ハフニウ
ム、バナジウム、ニオブ、タンタル、クロム、タ
ングステン、モリブデンおよびこれらの混合物の
炭化物のうち少なくとも1種以上の粉末と、全塗
料不揮発分に対して、5重量%以上の亜鉛粉末を
含んだ塗料を塗布したことを特徴とする高耐食性
溶接可能塗装鋼板。 3 非金属微粒子としては、SiO2、TiO2
Al2O3、ZrO2、SiC、TiC、SiN、TiN、AlN、
黒鉛の内1種以上を含むことを特徴とする特許請
求の範囲第1項及び第2項記載の溶接可能塗装鋼
板。
[Scope of Claims] 1. On a steel plate plated with zinc or zinc alloy containing 0.1 to 10% by weight of non-metallic fine particles with an average particle size of 2 μm or less, singly or in combination, 80% by weight or more based on the non-volatile content of the paint. A highly corrosion-resistant weldable coated steel sheet coated with a paint containing zinc powder. 2. Iron, nickel, cobalt, manganese, chromium lead, copper, and alloys of these are plated on a steel plate plated with zinc or zinc alloy containing 0.1 to 10% by weight of nonmetallic fine particles with an average particle size of 2 μm or less, singly or in combination. , titanium, zirconium, hafnium, vanadium, niobium, tantalum, chromium, tungsten, molybdenum, and at least one carbide of a mixture thereof, and at least 5% by weight of zinc powder based on the nonvolatile content of the total paint. A highly corrosion-resistant, weldable coated steel plate characterized by being coated with a paint containing paint. 3. Non-metal fine particles include SiO 2 , TiO 2 ,
Al 2 O 3 , ZrO 2 , SiC, TiC, SiN, TiN, AlN,
The weldable painted steel sheet according to claims 1 and 2, characterized in that it contains one or more types of graphite.
JP18734485A 1985-08-28 1985-08-28 KOTAISHOKUSEIYOSETSUKANOTOSOKOHAN Expired - Lifetime JPH0228464B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18734485A JPH0228464B2 (en) 1985-08-28 1985-08-28 KOTAISHOKUSEIYOSETSUKANOTOSOKOHAN

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18734485A JPH0228464B2 (en) 1985-08-28 1985-08-28 KOTAISHOKUSEIYOSETSUKANOTOSOKOHAN

Publications (2)

Publication Number Publication Date
JPS6248539A JPS6248539A (en) 1987-03-03
JPH0228464B2 true JPH0228464B2 (en) 1990-06-25

Family

ID=16204353

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18734485A Expired - Lifetime JPH0228464B2 (en) 1985-08-28 1985-08-28 KOTAISHOKUSEIYOSETSUKANOTOSOKOHAN

Country Status (1)

Country Link
JP (1) JPH0228464B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2707085B2 (en) * 1987-08-06 1998-01-28 新日本製鐵株式会社 Zinc-chromium composite electroplated steel sheet
JP2562607B2 (en) * 1987-08-06 1996-12-11 新日本製鐵株式会社 Method for producing zinc-chromium composite electroplated steel sheet
CN106086953B (en) * 2016-08-10 2018-05-15 江苏鑫冶金属板业有限公司 A kind of preparation method of combined electrolysis plate

Also Published As

Publication number Publication date
JPS6248539A (en) 1987-03-03

Similar Documents

Publication Publication Date Title
EP0277640B1 (en) Zn-based composite-plated metallic material and plating method
EP0237140B1 (en) Coated metal
CA1200723A (en) Weldable paint-coated steel sheets having excellent corrosion resistance
JPH0610358B2 (en) Multi-layer electric plated steel sheet
JPH0228464B2 (en) KOTAISHOKUSEIYOSETSUKANOTOSOKOHAN
JP2936651B2 (en) Galvanized multi-layer steel sheet with excellent spot weldability
JPS5918765A (en) Coating material composition for coated steel plate
JPH0142356B2 (en)
EP0342585B1 (en) Coated steel sheets and process for producing the same
JPS6220024B2 (en)
JPH0617259A (en) High corrosion resistant surface treated aluminum sheet
JPH025839B2 (en)
JPH0120057B2 (en)
JPH0468139B2 (en)
JPS6220025B2 (en)
JPS58157995A (en) Weldable painted steel plate having excellent corrosion resistance
JP3211413B2 (en) Surface treatment method for Al or Al alloy material
JPS6220026B2 (en)
JPH0557239A (en) Aluminum surface treated plate superior in spot weldability and electrodeposition coating property
JPS63153299A (en) Zn-based double-layer electroplated steel sheet having high corrosion resistance
JPH03219950A (en) Organic composite coated steel plate
JPH0248638B2 (en)
JPH09276786A (en) Weldable organic composite plated steel sheet excellent in corrosion resistance of cut face
JPH04154976A (en) Organic multiply coated steel sheet
JPH09276790A (en) Weldable organic composite plated steel sheet excellent in corrosion resistance