JPH02284353A - Button type alkaline primary cell - Google Patents

Button type alkaline primary cell

Info

Publication number
JPH02284353A
JPH02284353A JP1104909A JP10490989A JPH02284353A JP H02284353 A JPH02284353 A JP H02284353A JP 1104909 A JP1104909 A JP 1104909A JP 10490989 A JP10490989 A JP 10490989A JP H02284353 A JPH02284353 A JP H02284353A
Authority
JP
Japan
Prior art keywords
zinc
negative electrode
positive electrode
copper
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1104909A
Other languages
Japanese (ja)
Inventor
Yukio Muramatsu
村松 幸男
Hayashi Hayakawa
早川 林
Taichi Akiyama
太一 秋山
Mitsumasa Tanigawa
谷川 光政
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1104909A priority Critical patent/JPH02284353A/en
Publication of JPH02284353A publication Critical patent/JPH02284353A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/42Alloys based on zinc
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To intend less dispersion and more reliability of battery capacity by using a lath plate alloyed of zinc and copper with a specified percentage by wt. as active material for a negative electrode. CONSTITUTION:It is constituted by a positive electrode, a positive electrode ring 2 which protects the shoulder portion of positive electrode combining agent and accepts sealing pressure, a positive electrode case 3 combining a positive electrode terminal, a separator 4 which is graft-polymerization of micro-cellular film and cellophane made of polyethylene, an electrolyte impregnant 5 made of nylon nonwoven fabric or cotton, a sealing plate 6 combining a negative electrode terminal, and a sealing packing 7. In this case, a lath plate 8 alloyed of zinc and 10-20wt.% copper is used as active material for a negative electrode. This copper is required by at least 10% to prevent alloy from being weakened after punched and hardened. When copper content is 20% or more, the quantity of zinc is relatively reduced, resulting in decreased effective addition of zinc as main active material for the negative electrode. It is thus possible to intend less dispersion and more reliability of discharge capacity.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、亜鉛を負極活物質とするボタン形アルカリ一
次電池に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a button-type alkaline primary battery using zinc as a negative electrode active material.

従来の技術 従来、亜鉛を負極活物質とするボタン形アルカリ一次電
池は、氷化亜鉛粉末とカルボキシルメチルセルローズの
ナトリウム塩等のゲル化剤と混合して用いるか、あるい
は、ゲル状負極亜鉛等が用いられていた。前者の場合は
、氷化亜鉛粉末とゲル化剤粉末を一定の割合で混合した
ものを秤量し電池の負極封口板内に充填する方法であり
、後者の場合もゲル状負極亜鉛を秤量し電池の負極封口
板内に充填する方法であった。
Conventional technology Conventionally, button-type alkaline primary batteries that use zinc as the negative electrode active material are either mixed with frozen zinc powder and a gelling agent such as sodium salt of carboxymethyl cellulose, or are made with a gelled negative electrode such as zinc. It was used. In the former case, a mixture of frozen zinc powder and gelling agent powder is weighed and filled into the negative electrode sealing plate of the battery, and in the latter case, the gelled negative electrode zinc is also weighed and packed in the negative electrode sealing plate of the battery. This method was to fill the negative electrode sealing plate.

発明が解決しようとする課題 前記の従来技術の場合、電池が薄形化するに伴ない、す
なわち、電池の厚みが1.6朋あるいは1、Off等の
電池においては、その秤量精度が重要なポイントとなる
。従来の秤量精度のままでは、負極支配のこの種の電池
の場合、電池容量のバラツキが±10〜30%に達して
くる。この事は、電池を設計する上で重要な課題である
。さらに極めて小量の亜鉛粉末であっても正極対向面に
均一に分布しなければ亜鉛の放電利用率が悪くなったり
、亜鉛のかたよりによる電池寸法の変化や内部短絡にな
るという大きな問題点があった。このような問題点を解
決する目的で、次のような提案がなされている。そのひ
とつは、網目状の亜鉛をボタン形アルカリ一次電池用の
負極として用いる方法であり、また、もうひとつの提案
は、スポンジ状の多孔性亜鉛を用いる方法である。これ
らの提案について簡単に述べると、両者とも亜鉛を所定
の形状に打ち抜き、氷化したものを負極として利用する
というものである。これらの提案の趣旨は、均質な、そ
して表面積の広い網目状の亜鉛やスポンジ状の多孔性亜
鉛を用いることによって、電池容量のバラツキが少ない
均一なボタン形アルカリ一次電池を提供するというもの
である。しかし、これらの提案には次に述べるような課
題が残されている。すなわち、網目状の亜鉛やスポンジ
状の多孔性亜鉛を氷化すると、氷化後亜鉛がもろくなり
打ち抜きによって氷化亜鉛がカケたり割れたりするため
、重量に極端な大きな変化が生じる。このように1網目
状の亜鉛やスポンジ状の多孔性亜鉛ではやはり負極支配
のこの種の電池には不向きであり、容量バラツキが少な
い均一なボタン形アルカリ一次電池を製造することは困
難である。
Problems to be Solved by the Invention In the case of the prior art described above, as batteries become thinner, that is, for batteries with a thickness of 1.6 mm or 1 mm, weighing accuracy becomes important. This is the point. If conventional weighing accuracy is maintained, in the case of this type of battery dominated by the negative electrode, the variation in battery capacity will reach ±10 to 30%. This is an important issue when designing batteries. Furthermore, even if a very small amount of zinc powder is not uniformly distributed on the surface facing the positive electrode, there are major problems such as poor discharge utilization of zinc, changes in battery dimensions due to uneven zinc, and internal short circuits. Ta. In order to solve these problems, the following proposals have been made. One proposal is to use mesh-like zinc as the negative electrode for button-shaped alkaline primary batteries, and another proposal is to use sponge-like porous zinc. To briefly describe these proposals, both involve punching out zinc into a predetermined shape and using the frozen material as a negative electrode. The purpose of these proposals is to provide uniform button-shaped alkaline primary batteries with less variation in battery capacity by using homogeneous mesh-like zinc or sponge-like porous zinc with a large surface area. . However, these proposals still have problems as described below. That is, when mesh-like zinc or sponge-like porous zinc is frozen, the zinc becomes brittle after freezing and the frozen zinc chips or cracks when punched, resulting in an extremely large change in weight. As described above, single-mesh zinc and sponge-like porous zinc are unsuitable for this type of negative electrode-dominated battery, and it is difficult to manufacture uniform button-shaped alkaline primary batteries with little variation in capacity.

本発明は、上記のような従来の課題を解決し、電池容量
のバラツキが少なく、信頼性の高いボタン形アルカリ一
次電池を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned conventional problems and provide a highly reliable button-type alkaline primary battery with less variation in battery capacity.

課題を解決するだめの手段 上記のような従来の課題を解決するため本発明は、従来
の負極に変えて、亜鉛と10〜20重量係の銅からなる
合金のラス板を負極活物質として用いるものである。
Means for Solving the Problems In order to solve the above-mentioned conventional problems, the present invention uses a lath plate of an alloy consisting of zinc and 10 to 20% copper as the negative electrode active material instead of the conventional negative electrode. It is something.

作用 この亜鉛と銅の合金のラス板を用い、とくに銅の含有量
が10〜20%のものであれば前記した従来の課題を解
決することができる。この銅は、打ち抜き汞化後の合金
がもろくなることを防止するための材料であるため、少
なくとも1o%以上は必要となる。これ以下であれば、
打ち抜き汞化後の合金がもろくなってカケたシ割れたり
することを防止できなくなる。逆に、銅の含有量が20
チ以上になると相対的に亜鉛量が少なくなり、負極主活
物質としての亜鉛の有効添加量を減少させることになる
ため不利である。本発明のもうひとつの作用として、負
極の充填容量を均一にできることである。すなわち、亜
鉛と銅の合金のラス板であるため、打ち抜き方式で容量
の均一な負極を形成することができる。さらに、打ち抜
き汞化後、合金のカケや割れという問題点もなく負極支
配による電池容量のバラツキを防止することができる。
Function The above-mentioned conventional problems can be solved by using a lath plate made of an alloy of zinc and copper, especially if the copper content is 10 to 20%. Since this copper is a material for preventing the alloy from becoming brittle after being punched and made into a material, it is necessary to contain at least 10% or more. If it is less than this,
The alloy after punching becomes brittle and cannot be prevented from chipping or cracking. On the other hand, if the copper content is 20
If it exceeds 1, the amount of zinc becomes relatively small, which is disadvantageous because the effective amount of zinc added as the negative electrode main active material decreases. Another effect of the present invention is that the filling capacity of the negative electrode can be made uniform. That is, since it is a lath plate made of an alloy of zinc and copper, a negative electrode with a uniform capacity can be formed by punching. Furthermore, after punching and forming, there is no problem of chipping or cracking of the alloy, and variations in battery capacity due to the dominance of the negative electrode can be prevented.

また、銅は良好に氷化される金属であるため、電池内部
でのガス発生もなく極めて安定したボタン形アpカリ一
次電池用の負極となる。
Further, since copper is a metal that freezes well, it becomes an extremely stable negative electrode for button-type alkali primary batteries without generating gas inside the battery.

実施例 以下、本発明の一実施例を図を参照して説明する。第1
図は本発明の亜鉛と銅の合金のラス板を負極として用い
た電池の縦断面図である。図において、1は正極、2は
正極リングで、正極合剤の肩部を保護しかつ、封口圧力
を受は止める役割りを果たすものである。3は正極端子
を兼ねた正極ケース、4はポリエチレンから成る微孔性
フィルムとセロファンをグラフト重合したセハレータ−
6はナイロン不織布あるいはコツトンから成る電解液含
浸材、6は負極端子を兼ねた封口板、7は封口パツキン
であシ、−収約にはナイロン6−6゜ナイロン1−1等
からできている。8は本発明の特徴とする亜鉛と銅の合
金のラス板で形成された負極である。ここで用いた本発
明の亜鉛と銅の合金のラス板は、銅の含有量を15重量
%に設定し、必然的に亜鉛の含有量は85重量%に設定
された合金を打ち抜き汞化後負極として用いたものを電
池A、従来の網目状の亜鉛を打ち抜き汞化後負極として
用いたものを電池B、氷化亜鉛粉末とカルボキシルメチ
ルセルローズのナトリウム塩粉末とを混合したものを負
極として用いたものを電池Cとして、それぞれの電池の
放電容量を比較した結果を表−1に示す。尚、この比較
試験を行なった電池のサイズは、外径7.9朋、厚み1
.2羽の薄形酸化銀電池5R712SWである。また、
負極の亜鉛の理論電気容量は同一に設定した。
EXAMPLE Hereinafter, an example of the present invention will be described with reference to the drawings. 1st
The figure is a longitudinal sectional view of a battery using the zinc-copper alloy lath plate of the present invention as a negative electrode. In the figure, 1 is a positive electrode, and 2 is a positive electrode ring, which serves to protect the shoulder of the positive electrode mixture and to stop receiving sealing pressure. 3 is a positive electrode case that also serves as a positive electrode terminal, and 4 is a sehalator made by graft polymerizing a microporous film made of polyethylene and cellophane.
6 is an electrolyte-impregnated material made of nylon non-woven fabric or cotton; 6 is a sealing plate that also serves as a negative electrode terminal; 7 is a sealing packing; . 8 is a negative electrode formed of a lath plate of a zinc-copper alloy, which is a feature of the present invention. The zinc-copper alloy lath plate of the present invention used here has a copper content of 15% by weight, and the zinc content is necessarily 85% by weight. Battery A was used as the negative electrode, Battery B was used as the negative electrode by punching out conventional mesh zinc and forming it into a layer, and Battery B was used as the negative electrode by mixing frozen zinc powder and sodium salt powder of carboxymethyl cellulose. Table 1 shows the results of comparing the discharge capacities of the respective batteries, with the battery used as Battery C. The size of the battery used in this comparative test was 7.9 mm in outer diameter and 1 mm in thickness.
.. Two thin silver oxide batteries 5R712SW. Also,
The theoretical capacitance of zinc in the negative electrode was set to be the same.

(以下余白) 表 n=30 以上の結果より明らかなように、本発明の亜鉛と銅の合
金のラス板を負極活物質として用いた電池ムは、従来の
電池B、0より放電容量のバラツキが少ない。
(Space below) Table n = 30 As is clear from the above results, the battery using the zinc-copper alloy lath plate of the present invention as the negative electrode active material has less variation in discharge capacity than the conventional batteries B and 0. Less is.

発明の効果 以上の実施例で詳細に述べてきたように、本発明の亜鉛
と銅の合金のラス板を負極活物質として用いることによ
り、放電容量のバラツキが少なくなり信頼性の高いボタ
ン形アルカリ一次電池を提供することができる。またこ
のことは、電池設計上非常に有利なことであり、容量ア
ップも可能となる。
Effects of the Invention As described in detail in the above examples, by using the zinc-copper alloy lath plate of the present invention as a negative electrode active material, variations in discharge capacity are reduced and highly reliable button-type alkali Primary batteries can be provided. Moreover, this is very advantageous in terms of battery design, and allows for increased capacity.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例における電池の縦断面図である
。 1.4.5・・・・・・発電要素、2・・・・・・正極
リング、3・・・・・正極ケース、6・・・・・・負極
封口板、7・・・・・封口パツキン、8・・・・・・ラ
ス板状の亜鉛と銅の合金を用いた負極。
FIG. 1 is a longitudinal sectional view of a battery in an embodiment of the present invention. 1.4.5... Power generation element, 2... Positive electrode ring, 3... Positive electrode case, 6... Negative electrode sealing plate, 7... Sealing gasket, 8... Negative electrode using a lath plate-shaped zinc and copper alloy.

Claims (1)

【特許請求の範囲】[Claims] 苛性カリあるいは苛性ソーダを電解液とするボタン形ア
ルカリ一次電池において、亜鉛と10〜20重量%の銅
からなる合金のラス板を負極活物質として用いることを
特徴とするボタン形アルカリ一次電池。
1. A button-type alkaline primary battery using caustic potash or caustic soda as an electrolyte, characterized in that a lath plate of an alloy consisting of zinc and 10 to 20% by weight copper is used as a negative electrode active material.
JP1104909A 1989-04-25 1989-04-25 Button type alkaline primary cell Pending JPH02284353A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1104909A JPH02284353A (en) 1989-04-25 1989-04-25 Button type alkaline primary cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1104909A JPH02284353A (en) 1989-04-25 1989-04-25 Button type alkaline primary cell

Publications (1)

Publication Number Publication Date
JPH02284353A true JPH02284353A (en) 1990-11-21

Family

ID=14393247

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1104909A Pending JPH02284353A (en) 1989-04-25 1989-04-25 Button type alkaline primary cell

Country Status (1)

Country Link
JP (1) JPH02284353A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6536662B1 (en) * 1999-01-06 2003-03-25 Fujitsu Limited Automatic transaction apparatus and control method
JP2004538599A (en) * 1999-11-24 2004-12-24 エヴァレディー バッテリー カンパニー インコーポレイテッド Structure of electrochemical cell and method of manufacturing the same
CN113577554A (en) * 2021-07-05 2021-11-02 溥畅(杭州)智能科技有限公司 Separated fiber-based galvanic cell and preparation method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6536662B1 (en) * 1999-01-06 2003-03-25 Fujitsu Limited Automatic transaction apparatus and control method
JP2004538599A (en) * 1999-11-24 2004-12-24 エヴァレディー バッテリー カンパニー インコーポレイテッド Structure of electrochemical cell and method of manufacturing the same
CN113577554A (en) * 2021-07-05 2021-11-02 溥畅(杭州)智能科技有限公司 Separated fiber-based galvanic cell and preparation method thereof
CN113577554B (en) * 2021-07-05 2022-03-25 溥畅(杭州)智能科技有限公司 Separated fiber-based galvanic cell and preparation method thereof

Similar Documents

Publication Publication Date Title
US3457112A (en) Lead-acid storage battery
US3880672A (en) Battery barrier and battery
US8771883B2 (en) Alkaline battery
EP0477461B1 (en) Nickel/hydrogen storage battery and method of manufacturing the same
US2650945A (en) Primary dry cell
US3907598A (en) Sealed low drain rate dry cell having in situ stable divalent silver oxide depolarizer
EP0581275B1 (en) A pasted type nickel electrode for an alkaline storage battery and an alkaline storage battery
US3427203A (en) Large surface area electrodes and a method for preparing them
JPH02284353A (en) Button type alkaline primary cell
US4808499A (en) Lithium secondary battery
US4782584A (en) Alkaline cell manufacturing method
US2775534A (en) Primary dry cell
US4250234A (en) Divalent silver oxide cell
JPS6151764A (en) Zinc alkaline battery
JP3156485B2 (en) Nickel electrode for alkaline storage battery
JP2000030695A (en) Manufacture of gelatinous zinc negative electrode for zinc alkaline battery
JPH06150925A (en) Manufacture of nickel positive electrode for alkaline storage battery and alkaline storage battery equipped with electrode
US3317351A (en) Stabilized low voltage alkaline primary cell
CA1142220A (en) Cadium compound additive for cells using divalent silver oxide
JPS5852616Y2 (en) battery
JPS5852617Y2 (en) silver oxide battery
JPS6072162A (en) Button type alkaline primary battery
JPS60221959A (en) Alkaline battery
JPH0410708B2 (en)
JPS6041765A (en) Thin organic electrolyte battery