JPH02283605A - Continuous production of aluminum nitride powder and device therefor - Google Patents

Continuous production of aluminum nitride powder and device therefor

Info

Publication number
JPH02283605A
JPH02283605A JP10399189A JP10399189A JPH02283605A JP H02283605 A JPH02283605 A JP H02283605A JP 10399189 A JP10399189 A JP 10399189A JP 10399189 A JP10399189 A JP 10399189A JP H02283605 A JPH02283605 A JP H02283605A
Authority
JP
Japan
Prior art keywords
powder
gas
aln
reaction
heating reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10399189A
Other languages
Japanese (ja)
Inventor
Koichiro Fukui
福井 紘一郎
Yuichi Furukawa
裕一 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Altemira Co Ltd
Original Assignee
Showa Aluminum Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Aluminum Corp filed Critical Showa Aluminum Corp
Priority to JP10399189A priority Critical patent/JPH02283605A/en
Publication of JPH02283605A publication Critical patent/JPH02283605A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/072Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with aluminium
    • C01B21/0722Preparation by direct nitridation of aluminium

Abstract

PURPOSE:To improve purity of aluminum nitride powder by dropping Al powder into a powder- dropping tube in which N2 gas flows upward, subjecting Al powder having different granule size to nitrifying reaction in upper and lower heat reaction parts and transferring the produced AlN powder to a catching part using a N2 gas. CONSTITUTION:When Al powder 12 having about <=50mum granule size is fed from a Al powder feed inlet 6 into a powder dropping tube 1, Al powder 12a having relatively large granule size is dropped from a N2 gas feed inlet 7 for opposition and sent to a lower heat reaction part 5 and Al powder 12b having relatively small granule size is carried with N2 gas, raised, sent to lower heat reaction part 4 and when the Al powder 12 is passed through heat reaction parts 4 and 5, the Al powder 12 is heated to about 1600 deg.C in heating devices 2 and 3 to nitrify Al powder. At early stage of nitrifying reaction, Al powder 12 is cured on only surface to form rigid AlN coating film and in the course dropping or raising the heat reacting parts 4 and 5, Al powder 12 is subjected to chain nitrifying reaction to achieve nitrification and simultaneously granulate AlN powder 13. The resultant AlN powder 13 is raised by N2 gas and deposited through a transferring tube 9 in a AlN powder catching vessel 10. Unreacted Al powder 14 is descended against a gas current and deposited in unreacted Al catching vessel 15.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、熱伝導性、耐熱性、電気絶縁性に優れたセ
ラミックス)イ料として、半導体基板、金属溶融器、そ
の他金属精練工業等の分野に使用される窒化アルミニウ
ム粉末(以下AlN粉末という)の連続的製造方法及び
装置に関する。
[Detailed Description of the Invention] Industrial Application Fields This invention is used as a ceramic material with excellent thermal conductivity, heat resistance, and electrical insulation properties in the fields of semiconductor substrates, metal melters, and other metal smelting industries. The present invention relates to a method and apparatus for continuously producing aluminum nitride powder (hereinafter referred to as AlN powder).

従来の技術 窒化アルミニウム(AlN)の製造方法としては、Al
粉末からの直接窒化法やアルミナ粉末からの炭素還元法
などがあるが、工業的には直接窒化法が一般に用いられ
ている。
Conventional technology Aluminum nitride (AlN) manufacturing methods include
There are methods such as direct nitriding from powder and carbon reduction from alumina powder, but direct nitriding is generally used industrially.

直接窒化法は、Al粉末と窒素(N2)ガスとを直接接
触反応せしめるものであるが、Al粉末の表面が窒化さ
れると初期段階でその表面に硬い安定な窒化アルミニウ
ム被膜ができ、種のシェル構造を形成して内部への窒化
反応が抑制されてしまうため、形成されたAlN被膜を
破ってから更に窒化反応せしめる必要を生じる。このた
め、AlN粉末の製造では、窒化反応と粉砕を繰返す必
要を生じ、粉砕工程での汚染による純度低下の問題があ
った。また、特公昭36−21164号公報に見られる
ように、/l粉末とAlN粉末とを所定割合に混合し、
この混合物を窒化反応することによって高純度のAlN
粉末を得る方法が知られており、一般にも採用されてい
るが、この場合は収率が悪いという本質的な問題点を有
している。
The direct nitriding method involves a direct contact reaction between Al powder and nitrogen (N2) gas. When the surface of the Al powder is nitrided, a hard and stable aluminum nitride film is formed on the surface in the initial stage, and the seeds are removed. Since a shell structure is formed and the nitriding reaction inside is suppressed, it becomes necessary to break the formed AlN film and then carry out the nitriding reaction further. For this reason, in the production of AlN powder, it is necessary to repeat the nitriding reaction and pulverization, and there is a problem of a decrease in purity due to contamination during the pulverization process. In addition, as seen in Japanese Patent Publication No. 36-21164, /l powder and AlN powder are mixed in a predetermined ratio,
High purity AlN is produced by nitriding this mixture.
Methods for obtaining powder are known and generally employed, but this method has the essential problem of poor yield.

上記のような従来の製造法に対し、最近、特開昭61−
205606号公報に記載のように、窒化反応を1次と
2次に分けて2工程で行うものとし、−次反応において
Al粉末をN2ガス気流中で短時間直接窒化反応し、そ
の表面に硬いAlN被膜を形成した中間粒子をつくり、
続いて二次反応において該中間粒子をN2ガス気流中に
一次反応時より長持間保持し、AlN被膜に破断を生じ
させて粒子内部まで窒化反応を進行せしめるものとして
、高純度の微細なAlN粉末を効率よく製造しようとい
う試みが提案されている。
In contrast to the conventional manufacturing method mentioned above, recently, Japanese Patent Application Laid-open No. 61-
As described in Japanese Patent No. 205606, the nitriding reaction is divided into two steps, a primary and a secondary reaction. Create intermediate particles with an AlN coating,
Subsequently, in the secondary reaction, the intermediate particles are held in an N2 gas stream for a longer period of time than in the primary reaction, and high-purity fine AlN powder is used to cause rupture in the AlN coating and allow the nitriding reaction to proceed to the inside of the particles. Attempts have been made to efficiently manufacture .

しかしながら、この先行提案の方法は、反応工程を2段
階に分けて、少量ずつバッチ式に遂行するものであるた
め、連続操業性に欠け、もとより生産性に劣る欠点があ
る。
However, in this previously proposed method, the reaction process is divided into two stages and carried out batchwise in small quantities, so it lacks continuous operability and has the disadvantage of poor productivity.

そこで、本出願人は先に連続的なAlN粉末の製造方法
及び装置として、特開昭63−195102号により、
第2図に示すように、粉末容器(51)に収納したAl
粉末をN2ガス流に乗せて浮遊状態で上昇させて、加熱
装置(53)を周設した加熱反応管(54)内に導入し
、そこでN2ガスと反応せしめてAlN粉末を生成し、
これを連結管(55)を介して捕集容器(56)内に捕
集するものを提案した。なお、同図中、(57)はN2
ガスボンベ、(58)はガス管、(59)はアジテータ
−(BO)はフィルター(60a )付きのN2ガス排
出口である。
Therefore, the present applicant previously proposed a method and apparatus for producing continuous AlN powder in Japanese Patent Application Laid-open No. 195102/1983.
As shown in Figure 2, the Al powder contained in the powder container (51)
The powder is lifted up in a floating state in a N2 gas flow and introduced into a heating reaction tube (54) surrounded by a heating device (53), where it is reacted with N2 gas to produce AlN powder,
A method was proposed in which this was collected in a collection container (56) via a connecting pipe (55). In addition, in the same figure, (57) is N2
The gas cylinder (58) is a gas pipe, and the agitator (BO) (59) is an N2 gas outlet with a filter (60a).

発明が解決しようとする課題 しかしながら、上記のような浮遊上R法では、Al粉を
N2ガスに乗せて上昇させるものであるため、単位時間
当りに上昇させうるAl粉末の量に限界があり、AlN
粉末の酸二を多くできないという問題があった。また、
粉末を構成するAl粒子の粒径に大小のバラツキがある
と、Al粒子の移送速度がそれぞれに相違するものとな
り、完全な窒化反応が達成されていない中間体粒子を含
む未反応Al粉が多くなるという問題もあった。
Problems to be Solved by the Invention However, in the floating R method as described above, Al powder is placed on N2 gas and raised, so there is a limit to the amount of Al powder that can be raised per unit time. AlN
There was a problem in that it was not possible to increase the amount of di-acid in the powder. Also,
If there are variations in the particle size of the Al particles that make up the powder, the transport speed of the Al particles will be different, and there will be a large amount of unreacted Al powder that contains intermediate particles that have not undergone a complete nitriding reaction. There was also the problem of becoming.

この発明は、上記のような問題点に鑑み、AlN粉末の
収量増加を図ることができ、しかも原料Al粉の粒径に
大小のバラツキがある場合であっても未反応Al粉の発
生を低く抑えつつ支障なく窒化反応を遂行することが可
能な窒化アルミニウム粉末の連続的製造方法及び装置を
提供することを目的とする。
In view of the above-mentioned problems, this invention can increase the yield of AlN powder, and can also reduce the generation of unreacted Al powder even when the particle size of the raw material Al powder varies in size. It is an object of the present invention to provide a method and apparatus for continuously producing aluminum nitride powder that can carry out the nitriding reaction without any problems while suppressing the nitriding reaction.

課題を解決するための手段 上記目的を達成するため、この発明は、窒化アルミニウ
ム粉末の連続的製造方法に関し、N2ガスの上向き気流
中にAl粉を落下せしめることにより、相対的に粒径の
大きいAl粉をその落下経路中に設けられた下部加熱反
応部に浮遊状態で送込むと共に、相対的に粒径の小さい
Al粉を前記N2ガスに乗せて上昇させ、該上昇経路中
に設けられた上部加熱反応部に浮遊状態で送込み、両A
l粉をそれぞれの加熱反応部においてN2ガス雰囲気下
で窒化反応せしめ、該反応により生成されたAlN粉を
前記N2ガスに乗せて移送し、これをAlN粉捕集部に
捕集することを特徴とするものである。
Means for Solving the Problems In order to achieve the above object, the present invention relates to a method for continuously producing aluminum nitride powder, in which aluminum powder is made to fall into a relatively large particle size by falling into an upward flow of N2 gas. The Al powder is sent in a floating state to the lower heating reaction section provided in the falling path, and the Al powder with a relatively small particle size is placed on the N2 gas and raised. Feed into the upper heating reaction section in a floating state, and both A
1 powder is subjected to a nitriding reaction in an N2 gas atmosphere in each heating reaction section, the AlN powder produced by the reaction is transferred on the N2 gas, and is collected in the AlN powder collecting section. That is.

更に、この発明は、窒化アルミニウムの連続的製造装置
に関し、上下方向に向けて配置された粉末落下管の長さ
方向の中間部上下位置に上部加熱反応部と下部加熱反応
部とが設けられ、該上部加熱部と下部加熱反応部との間
の位置において前記粉末落下管にはAl粉供給口が設け
られると共に、前記下部加熱反応部の下方位置において
前記粉末落下管には該管内に上向きのN2ガス気流を生
じさせるN2ガス供給口が設けられ、かつ前記上部加熱
反応部の上方位置において前記粉末落下管がAlN粉捕
集部に連通接続されてなることを特徴とするものである
Furthermore, the present invention relates to an apparatus for continuously producing aluminum nitride, in which an upper heating reaction section and a lower heating reaction section are provided at upper and lower positions in the middle part in the longitudinal direction of a powder falling tube arranged in the vertical direction, The powder drop tube is provided with an Al powder supply port at a position between the upper heating section and the lower heating reaction section, and an aluminum powder supply port is provided in the powder drop tube at a position below the lower heating reaction section. The present invention is characterized in that a N2 gas supply port for generating a N2 gas flow is provided, and the powder drop tube is connected to an AlN powder collecting section at a position above the upper heating reaction section.

この発明の製造装置の概要を第1図に基づき説明すると
、(1)はAl粉末を自由落下させるための上下方向に
向けて配置された粉末落下管である。この粉末落下管(
1)の中間部上下位置にはそれぞれ、所定長さに亘って
上部加熱装置(2)と下部加熱装置(3)とが周設され
た上部加熱反応部(4)と下部加熱反応部(5)とが形
成されている。なお、少な(とも各加熱反応部(4)(
5)に対応する粉末落下管(1)部分は、アルミナ管の
ような耐熱性に優れた管材にて構成されている。
The outline of the manufacturing apparatus of the present invention will be explained based on FIG. 1. (1) is a powder drop tube arranged vertically for causing Al powder to fall freely. This powder drop tube (
1), an upper heating reaction section (4) and a lower heating reaction section (5) in which an upper heating device (2) and a lower heating device (3) are disposed around a predetermined length, respectively. ) are formed. In addition, each heating reaction part (4) (
The powder drop tube (1) corresponding to 5) is made of a tube material with excellent heat resistance, such as an alumina tube.

そして、粉末落下管(1)には、上部加熱反応部(4)
と下部加熱反応部(5)との間の位置にお°いて、Al
粉供給口(6)が設けられ、粉末落下管(1)内にAl
粉末(12)を供給するものとなされている。なお、へ
ρ粉(12)はAl粉キャリア用N2ガス(CG)と混
合された状態で粉末落下管(1)内に供給されるものと
なされている。
The powder drop tube (1) has an upper heating reaction section (4).
and the lower heating reaction section (5),
A powder supply port (6) is provided, and an Al
It is designed to supply powder (12). Note that the ρ powder (12) is supplied into the powder drop tube (1) in a mixed state with N2 gas (CG) for Al powder carrier.

また、下部加熱反応部(5)の下方の位置において粉末
落下管(1)には対向用N2ガス供給口(7)が設けら
れ、N2ガス(OG)が粉末落下7管(1)内を上方に
流通するものとなされている。このN2ガス(OG)の
流速は、供給されるAl粉(12)の粒径の大小に応じ
て、粒径の相対的に大きいAl粉(12a)が該N2ガ
ス(OG)の流れに対向して落下し、粒径の相対的に小
さいAl粉(12b )が該N2ガス(OG)の流れに
乗って上昇するような適当な値に設定される。なお、粉
末落下管(1)の下端は底板にて閉鎖され、そこに未反
応Al粉(14)を落下堆積させて捕集する未反応Al
粉捕集部(15)が形成されている。
In addition, an opposing N2 gas supply port (7) is provided in the powder drop tube (1) at a position below the lower heating reaction section (5), and N2 gas (OG) flows through the powder drop tube (1). It is assumed that it circulates upward. The flow rate of this N2 gas (OG) depends on the particle size of the supplied Al powder (12), so that the Al powder (12a) with a relatively large particle size is opposed to the flow of the N2 gas (OG). An appropriate value is set so that the Al powder (12b), which has a relatively small particle size, rises along with the flow of the N2 gas (OG). The lower end of the powder drop tube (1) is closed with a bottom plate, and the unreacted Al powder (14) is dropped there and collected.
A powder collecting section (15) is formed.

更に、前記粉末落下管(1)の上端は、AlN粉移送管
(9)を介してAlN粉捕集部(8)に連通接続されて
いる。このAlN粉捕集部(8)は、AlN粉の通過を
阻止する一方N2ガスの透過を許容するメツシュの微細
なスクリーンフィルター(lla )で底面が構成され
たAlN粉捕集容器(10)からなるものであって、そ
の上部にAlN粉移送管(9)が接続され、これにより
、移送されてきたAlN粉をスクリーンフィルター(l
la )上に捕集する一方、N2ガスを系外に放出する
ものとなされている。
Further, the upper end of the powder drop tube (1) is connected to an AlN powder collecting section (8) via an AlN powder transfer tube (9). This AlN powder collection section (8) is connected to an AlN powder collection container (10) whose bottom surface is made up of a fine mesh screen filter (lla) that blocks the passage of AlN powder while allowing the passage of N2 gas. An AlN powder transfer pipe (9) is connected to the upper part of the pipe, and the transferred AlN powder is passed through a screen filter (l).
N2 gas is collected on the top (la), while the N2 gas is released to the outside of the system.

上記製造装置では、Al粉供給口(6)から供給された
Al粉(12)は、対向用N2ガス共給口(7)からの
N2ガス(OG)の流れの中に入り、それにより、相対
的に粒径の大きなAl粉(12a )はN2ガス(OG
)の流れに逆らって落下して下部加熱反応部(5)に送
込まれ、また相対的に粒径の小さなAl粉(12b)は
N2ガス(OG)の流れに乗って上昇して上部加熱反応
部(4)に送込まれるものとなる。そして、各加熱反応
部(4)(5)を通過する過程で加熱装置(2)(3)
からの加熱を受けてAl粉とN2ガスとの反応を生じ、
へρ粉(12)の窒化が達成される。
In the above manufacturing apparatus, the Al powder (12) supplied from the Al powder supply port (6) enters the flow of N2 gas (OG) from the opposing N2 gas common supply port (7), and thereby, Al powder (12a) with a relatively large particle size is injected with N2 gas (OG
) falls against the flow and is sent to the lower heating reaction section (5), and the Al powder (12b) with a relatively small particle size rises on the flow of N2 gas (OG) and is heated in the upper part. This will be sent to the reaction section (4). Then, in the process of passing through each heating reaction section (4) (5), the heating device (2) (3)
A reaction between Al powder and N2 gas occurs due to heating from
Nitriding of the ρ powder (12) is achieved.

ここに、窒化反応の初期段階では、Al粉(12)はそ
の表面部のみが窒化されて硬いA9N被膜を形成し、内
部への窒化が阻害される現象をもたらすが、続いてその
まま加熱反応部(4)(5)を落下あるいは上昇する過
程で更に昇温されることにより、連鎖的窒化反応を生じ
て、完全なる窒化がもたらされると共に、AlN粉の微
細化が達成される。即ち、加熱温度及び反応時間の増大
とともに、反応初期段階で12粉表面に形成されたAl
N被膜と内部の未反応のAlとの熱膨張差と、更には恐
らく蒸気圧差にも基因して、AlN被膜に亀裂が発生し
、その部分でまた新しい反応が生じ、その反応熱が蓄積
された場合は反応部付近の急激な温度上昇でAl2N被
膜の崩壊とともに溶融へΩの飛び出しを伴いつ一1反応
が加速度的連鎖進行を生じ、高純度なAlN粉末に生成
される。かつ表面のAlN被膜の亀裂による粉末内部か
らの未反応溶融Alの飛び出し、あるいは流出は、それ
によって粉末の空洞化をもたらし、粉砕の容易なAl中
空粒子を形成する一方、AlN被膜の崩壊及び流出Al
の二次的窒化は実質的に粉砕に相当する効果をもたらす
At the initial stage of the nitriding reaction, only the surface of the Al powder (12) is nitrided to form a hard A9N film, which inhibits nitriding to the inside, but then the Al powder (12) is directly transferred to the heated reaction part. (4) The temperature of (5) is further increased during the process of falling or rising, thereby causing a chain nitriding reaction, resulting in complete nitriding and at the same time achieving fineness of the AlN powder. That is, as the heating temperature and reaction time increase, the Al formed on the surface of the 12 powder at the initial stage of the reaction decreases.
Due to the difference in thermal expansion between the N coating and the unreacted Al inside, and perhaps also due to the difference in vapor pressure, cracks occur in the AlN coating, new reactions occur in those areas, and the reaction heat is accumulated. In this case, a rapid temperature rise near the reaction zone causes the Al2N film to collapse and Ω to melt, causing an accelerated chain reaction to proceed, producing high-purity AlN powder. In addition, the splashing out or outflow of unreacted molten Al from inside the powder due to cracks in the AlN coating on the surface causes cavitation of the powder, forming hollow Al particles that are easy to crush, while causing collapse and outflow of the AlN coating. Al
The secondary nitriding of produces an effect substantially equivalent to comminution.

上記のようにして各加熱反応部(4)(5)において生
成された微細なA、QN粉(13)は、対向用N2ガス
供給口(7)からのN2ガス(OG)に乗っそ上昇し、
移送管(9)を介してAlN粉捕集容器(lO)内に捕
集される。なお、未反応Al粉(14)はN2ガス(O
G)の流れに逆らって下降し未反応Al粉捕集部(15
)に捕集される。
The fine A and QN powder (13) generated in each heating reaction section (4) and (5) as described above rises on the N2 gas (OG) from the opposing N2 gas supply port (7). death,
It is collected in an AlN powder collection container (IO) via a transfer pipe (9). Note that the unreacted Al powder (14) is treated with N2 gas (O
G) descends against the flow of the unreacted Al powder collecting section (15
) is collected.

発明の効果 上記の次第で、この発明は、基本的には、従来の浮遊上
昇法に対し、浮遊落下法によるものとしているから、加
熱反応部に供給しうるAl粉の量を従来に比べて大幅に
増加でき、AlN粉末の収量増大を図ることが可能であ
る。しかも、N2ガスの上向き気流中にAl粉を落下せ
しめることにより、相対的に粒径の大きいAl粉を下部
加熱反応部に送込むと共に、相対的に粒径の小さいAl
粉を前記N2ガスに乗せて上昇させ、上部加熱反応部に
送込み、両Al粉をそれぞれの加熱反応部においてN2
ガス雰囲気下で窒化反応せしめるものとなされているか
ら、Al粉め粒径に大小のバラツキがある場合であって
も、未反応Al粉の発生を少ないものにしつつ支障なく
窒化反応を遂行しえ、ひいては高純度のAlN粉を得る
ことができる。
Effects of the Invention As described above, this invention basically uses the floating fall method in place of the conventional floating rise method, so the amount of Al powder that can be supplied to the heating reaction section can be reduced compared to the conventional method. It is possible to significantly increase the yield of AlN powder. Moreover, by dropping the Al powder into the upward airflow of N2 gas, the Al powder with a relatively large particle size is sent to the lower heating reaction section, and the Al powder with a relatively small particle size is sent into the lower heating reaction section.
The powder is placed on the N2 gas and raised and sent to the upper heating reaction section, and both Al powders are heated with N2 gas in their respective heating reaction sections.
Since the nitriding reaction is carried out in a gas atmosphere, even if the Al powder particle size varies in size, the nitriding reaction can be carried out without any problems while minimizing the generation of unreacted Al powder. As a result, highly pure AlN powder can be obtained.

実施例 第1図に示した製造装置により、アトマイズ法によって
製造された純度99.99%、粒径50μm以下の高純
度アルミニウム粉末を原料粉末として用い、これを純度
が99.999%で平均流j110Ω/mlnのキャリ
ア用N2ガスに乗せて59/mlnの割合でAl粉供給
口(6)から粉末落下管(1)内に供給すると共に、同
じく純度99.999%の対向用N2ガスを平均流量1
0に/s1nの割合で粉末落下管(1)内に供給した。
Example Using the manufacturing apparatus shown in Figure 1, high purity aluminum powder with a purity of 99.99% and a particle size of 50 μm or less, manufactured by the atomization method, was used as the raw powder. j 110Ω/mln carrier N2 gas is supplied from the Al powder supply port (6) into the powder drop tube (1) at a rate of 59/mln, and the counter N2 gas with a purity of 99.999% is also supplied on average. Flow rate 1
The powder was supplied into the powder drop tube (1) at a ratio of 0/s1n.

なお、粉末落下管(1)の内径は80mIAとし、加熱
装置(2)(3)を周設した上下各論熱反応部(4)(
5)の長さをそれぞれ900mmに設定、これらをアル
ミナ管で構成した。そして加熱装置(2)(3)により
加熱反応部(4)(5)内の温度をそれぞれ1600℃
に設定して反応させたところ、捕集容器(lO)内には
粒径0.1μmの微細なAlN粉末を59/+*inの
割合で得ることができた。
The inner diameter of the powder drop tube (1) was 80 mIA, and the upper and lower thermal reaction sections (4) (with heating devices (2) and (3) surrounding them) were installed.
5) The length of each was set to 900 mm, and these were constructed from alumina tubes. Then, the temperature in the heating reaction sections (4) and (5) was adjusted to 1600°C using heating devices (2) and (3), respectively.
When the reaction was carried out under the settings of

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明方法を実施するための装置の一例を示
す概略構成図、第2図は従来装置を示す概略構成図であ
る。 (1)・・・粉末落下管、(4)・・・上部加熱反応部
、(5)・・・下部加熱反応部、(6)・・・Al粉供
給口、(7)・・・対向用N2ガス供給口、(8)・・
・AfiN粉捕集部、(12)・・・A塁粉、(13)
・・・AlN粉、(OG)・・・N2ガス。 以上 iOG 第1図 第2図
FIG. 1 is a schematic diagram showing an example of an apparatus for carrying out the method of the present invention, and FIG. 2 is a schematic diagram showing a conventional apparatus. (1)...Powder falling tube, (4)...Upper heating reaction section, (5)...Lower heating reaction section, (6)...Al powder supply port, (7)...Opposing N2 gas supply port, (8)...
・AfiN powder collection part, (12)...A base powder, (13)
...AlN powder, (OG)...N2 gas. That's all iOG Figure 1 Figure 2

Claims (2)

【特許請求の範囲】[Claims] (1)N_2ガスの上向き気流中にAl粉を落下せしめ
ることにより、相対的に粒径の大きいAl粉をその落下
経路中に設けられた下部加熱反応部に浮遊状態で送込む
と共に、相対的に粒径の小さいAl粉を前記N_2ガス
に乗せて上昇させ、該上昇経路中に設けられた上部加熱
反応部に浮遊状態で送込み、両Al粉をそれぞれの加熱
反応部においてN_2ガス雰囲気下で窒化反応せしめ、
該反応により生成されたAlN粉を前記N_2ガスに乗
せて移送し、これをAlN粉捕集部に捕集することを特
徴とする窒化アルミニウム粉末の連続的製造方法。
(1) By dropping Al powder into the upward airflow of N_2 gas, the Al powder with a relatively large particle size is sent in a floating state to the lower heating reaction section provided in the falling path, and Then, Al powder with a small particle size is placed on the N_2 gas and raised, and sent in a floating state to the upper heating reaction section provided in the ascending path, and both Al powders are heated in the N_2 gas atmosphere in each heating reaction section. to cause a nitriding reaction,
A method for continuously producing aluminum nitride powder, characterized in that the AlN powder produced by the reaction is transferred on the N_2 gas and collected in an AlN powder collecting section.
(2)上下方向に向けて配置された粉末落下管の長さ方
向の中間部上下位置に上部加熱反応部と下部加熱反応部
とが設けられ、該上部加熱部と下部加熱反応部との間の
位置において前記粉末落下管にはAl粉供給口が設けら
れると共に、前記下部加熱反応部の下方位置において前
記粉末落下管には該管内に上向きのN_2ガス気流を生
じさせるN_2ガス供給口が設けられ、かつ前記上部加
熱反応部の上方位置において前記粉末落下管がAlN粉
捕集部に連通接続されてなることを特徴とする窒化アル
ミニウムの連続的製造装置。
(2) An upper heating reaction section and a lower heating reaction section are provided at upper and lower positions midway in the length direction of the powder falling tube arranged in the vertical direction, and between the upper heating section and the lower heating reaction section. The powder drop tube is provided with an Al powder supply port at a position below the lower heating reaction section, and the powder drop tube is provided with an N_2 gas supply port that generates an upward N_2 gas flow within the tube. An apparatus for continuously producing aluminum nitride, characterized in that the powder drop tube is connected to an AlN powder collecting section at a position above the upper heating reaction section.
JP10399189A 1989-04-24 1989-04-24 Continuous production of aluminum nitride powder and device therefor Pending JPH02283605A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10399189A JPH02283605A (en) 1989-04-24 1989-04-24 Continuous production of aluminum nitride powder and device therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10399189A JPH02283605A (en) 1989-04-24 1989-04-24 Continuous production of aluminum nitride powder and device therefor

Publications (1)

Publication Number Publication Date
JPH02283605A true JPH02283605A (en) 1990-11-21

Family

ID=14368769

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10399189A Pending JPH02283605A (en) 1989-04-24 1989-04-24 Continuous production of aluminum nitride powder and device therefor

Country Status (1)

Country Link
JP (1) JPH02283605A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5126121A (en) * 1991-05-03 1992-06-30 The Dow Chemical Company Process for preparing aluminum nitride powder via controlled combustion nitridation
US5219804A (en) * 1992-01-10 1993-06-15 The Dow Chemical Company Process for preparing ultrafine aluminum nitride powder
US5525320A (en) * 1994-07-11 1996-06-11 University Of Cincinnati Process for aluminum nitride powder production
CN110203893A (en) * 2019-06-17 2019-09-06 邱瑞光 Aluminum metal directly makes the manufacturing method of ball-type aluminium nitride

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5126121A (en) * 1991-05-03 1992-06-30 The Dow Chemical Company Process for preparing aluminum nitride powder via controlled combustion nitridation
US5219804A (en) * 1992-01-10 1993-06-15 The Dow Chemical Company Process for preparing ultrafine aluminum nitride powder
US5525320A (en) * 1994-07-11 1996-06-11 University Of Cincinnati Process for aluminum nitride powder production
CN110203893A (en) * 2019-06-17 2019-09-06 邱瑞光 Aluminum metal directly makes the manufacturing method of ball-type aluminium nitride
CN110203893B (en) * 2019-06-17 2021-04-27 邱瑞光 Method for directly manufacturing spherical aluminum nitride from aluminum metal

Similar Documents

Publication Publication Date Title
US3533756A (en) Solids arc reactor method
CA1163065A (en) Consolidation of high purity silicon powder
NO174694B (en) Apparatus and method for producing uniform, fine, boron-containing ceramic powders
JPH04308011A (en) Manufacture of tungsten powder using fluidized bed
US3032398A (en) Process and furnace for the continuous production of aluminum nitride
US6168752B1 (en) Process for producing metal powders and apparatus for producing the same
CN107285287A (en) The production method and beta phase silicon nitride of a kind of beta phase silicon nitride
US6416862B1 (en) Ultrafine particulate zinc oxide and production process thereof
US3264098A (en) Fluidized bed process for the production of molybdenum
JPS61127617A (en) Manufacture of superhigh purity silicon rod
TWI579419B (en) Reactor and process for preparing granular polysilicon
JPH02283605A (en) Continuous production of aluminum nitride powder and device therefor
EP1215174A1 (en) Highly white zinc oxide fine particles and method for preparation thereof
JPH0557201B2 (en)
JPH0221938A (en) Circular heating fluidized bed reactor
JP2556460B2 (en) Continuous production method of aluminum nitride by carbonitriding alumina using current bed reactor
JPH02283604A (en) Continuous production of aluminum nitride powder and apparatus therefor
JPS63277503A (en) Continuous production of high-purity aluminum nitride powder and apparatus therefor
JPH01308813A (en) Production of aluminum nitride powder and unit therefor
JPS62237939A (en) Multistage jet stream bed apparatus using peripheral wall jet stream type fluidized bed
JPH01308812A (en) Continuous production of aluminum nitride powder and unit therefor
EP0044867B1 (en) Methods for the continuous production of silicon carbide
CN117161391B (en) Preparation device and preparation method of high-laser-absorptivity metal powder
JPH0226812A (en) Production of aluminum nitride powder having high purity
JPH01145310A (en) Production of ultrafine powder of high-purity aluminum nitride