JPH02282477A - Method and device for vacuum deposition - Google Patents

Method and device for vacuum deposition

Info

Publication number
JPH02282477A
JPH02282477A JP10316889A JP10316889A JPH02282477A JP H02282477 A JPH02282477 A JP H02282477A JP 10316889 A JP10316889 A JP 10316889A JP 10316889 A JP10316889 A JP 10316889A JP H02282477 A JPH02282477 A JP H02282477A
Authority
JP
Japan
Prior art keywords
cylindrical body
vapor deposition
resistance heating
heating wire
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10316889A
Other languages
Japanese (ja)
Inventor
Izumi Yanagida
柳田 泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nok Corp
Original Assignee
Nok Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nok Corp filed Critical Nok Corp
Priority to JP10316889A priority Critical patent/JPH02282477A/en
Publication of JPH02282477A publication Critical patent/JPH02282477A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To efficiently form a thin film on the inner circumferential surface of a cylindrical body by coating the evaporating substance on the outer circumference of a long-sized resistance heating wire heater and forming the material for vapor deposition of this coated resistance heating wire heater and movably providing this material for vapor deposition in the cylindrical body while allowing current to flow. CONSTITUTION:A resistance heating wire heater 2 is obtained by forming high-m.p. metal such as W, Ta, Mo into a wire shape or a lamellar shape. The material 1 for vapor deposition is coaxially formed by coating the evaporating substance 3 consisting of metal such as platinum, gold and silver having m.p. lower than the heater 2 on the outer circumference thereof. One end of this material 1 for vapor deposition is connected to a feed roller 7 and the other end is connected to a winding roller 8 and also inserted into a cylindrical body 4 being a body to be deposited by evaporation. Further voltage is impressed between the rotary rollers 5, 6 being an electrode for movably supporting the material 1 in the vicinities of both end parts of the cylindrical body 4. These members are provided in a vacuum tank A held at the prescribed vacuum. The substance 3 is vaporized by current allowed to flow in the heater 2 and a uniform thin film is formed on the inner circumferential surface of the cylindrical body 4. When the whole substance 3 has been vaporized, the material 1 is wound and can be continuously supplied. Further the cylindrical body 4 is rotated by a roller 10.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は真空蒸着方法およびその装置に関し、特に、筒
状体の内周面に効率的に蕉発¥!IJ質を蒸着して薄膜
を形成できる真空蒸着方法およびその装置に関するもの
である。
[Detailed Description of the Invention] [Industrial Field of Application] The present invention relates to a vacuum deposition method and an apparatus thereof, and in particular, to a vacuum deposition method and an apparatus for the vacuum deposition method, and in particular to a method for efficiently depositing vapor on the inner circumferential surface of a cylindrical body. The present invention relates to a vacuum evaporation method and apparatus capable of forming a thin film by evaporating IJ quality.

〔従、来技術および解決しようとする課題〕従来、真空
蒸着における蒸発源は、第5図(al(b) (C)に
示すようなものが知られている。
[Conventional Art, Prior Art and Problems to be Solved] Conventionally, as an evaporation source for vacuum evaporation, one shown in FIG. 5 (al(b)(C)) is known.

すなわち、第5図(a)に示すものは、プラチナ(Pt
)などの線状の蒸発物質22をタングステン(W)など
の高融点金属からなる抵抗加熱線ヒータ21に接触させ
るとともに、その抵抗加熱線ヒータ21に通電し、前記
蒸発物質22を加熱して蒸発させるフィラメント方式で
ある。
That is, what is shown in FIG. 5(a) is platinum (Pt
) is brought into contact with a resistance heating wire heater 21 made of a high melting point metal such as tungsten (W), and electricity is applied to the resistance heating wire heater 21 to heat the evaporation material 22 and evaporate it. It is a filament method.

第5図(b)に示すものは、Wなどの高融点金属からな
る抵抗加熱材料からなるボート31内にptなどの粒子
状の蒸発物質32を入れて、前記ボート31に通電し、
前記原発物質32を加熱して原発させるボート方式であ
る。
In the system shown in FIG. 5(b), a particulate evaporated substance 32 such as PT is placed in a boat 31 made of a resistance heating material made of a high melting point metal such as W, and the boat 31 is energized.
This is a boat method in which the nuclear material 32 is heated to generate nuclear power.

第5図(C)に示すものは、高融点材料からなるるつぼ
41内にPtなどの粒子状の蒸発物質42を入れて、こ
のるつぼ41内の蒸発物質42にイオンビーム43を当
て戻発物質42を加熱して蒸発させる電子ビーム方式で
ある。
In the system shown in FIG. 5(C), a particulate evaporated substance 42 such as Pt is placed in a crucible 41 made of a high-melting point material, and an ion beam 43 is applied to the evaporated substance 42 in the crucible 41 to return the returned material. This is an electron beam method that heats and vaporizes 42.

しかしながら、これらの蒸発源は、平板状の被蒸着体で
ある基板に対向して位置させて成膜する場合には、その
基板上に前記蒸発物質22.32.42の薄膜を効率的
に形成することができるが、蒸着面が前記蒸発源に対向
していない、たとえば立体的な基体の側面、裏面又は円
筒体の内周面などの場合にあっては、前記蒸発源から蒸
発する蒸発物質22.32.42が到達しにくり、薄膜
形成が困難となり、特に、被蒸着体として口径の小さな
筒状体の内周面に薄膜を形成することは不可能であると
いう問題点を有していた。
However, when these evaporation sources are positioned opposite to a flat plate-shaped substrate to form a film, it is difficult to efficiently form a thin film of the evaporation substance 22, 32, 42 on the substrate. However, in cases where the evaporation surface does not face the evaporation source, such as the side surface of a three-dimensional substrate, the back surface, or the inner peripheral surface of a cylindrical body, the evaporation material that evaporates from the evaporation source 22.32.42 is difficult to reach, making it difficult to form a thin film, and in particular, it is impossible to form a thin film on the inner peripheral surface of a cylindrical body with a small diameter as the object to be deposited. was.

本発明は上記のような従来のもののもつ問題点を解決し
たものであって、筒状体の内周面に効率的に薄膜を形成
できる真空蒸着方法およびその装置を提供することを目
的としている。
The present invention solves the problems of the conventional methods as described above, and aims to provide a vacuum evaporation method and apparatus that can efficiently form a thin film on the inner peripheral surface of a cylindrical body. .

〔課題を解決するための手段] 上記の目的を達成するために本発明の真空蒸着方法方法
は、真空槽内に配設した被蒸着体に薄膜を形成する真空
蒸着方法であって、長尺状の抵抗加熱線ヒータの外周に
原発物質を被覆して形、成され、かつ、一端が送りロー
ラに、また他端が巻取りローラにそれぞれ巻回された蒸
着用材料を、被蒸着体である筒状体内に挿通して配設し
、前記筒状体の両端部の近傍に配設した蒸着用材料を移
動可能に支持する電極を介して前記抵抗加熱線ヒータに
通電し、前記抵抗加熱線ヒータを被覆した蒸発物質を加
熱・蒸発させ、前記筒状体の内周面に蒸発物質の薄膜を
形成する手段を有しており、前記筒状体をその軸心を中
心に回転しながら薄膜を形成してもよく、また、本発明
の真空蒸着装置は、真空槽内に、非蒸着体である筒状体
と、この筒状体内に挿通されるとともに、長尺状の抵抗
加熱線ヒータの外周に蒸発物質を被覆して形成され、か
つ、一端が送りローラに、また他端が巻取りローラにそ
れぞれ巻回された蒸着用材料と、前記筒状体の両端部の
近傍に設けられ、前記蒸着用材料を移動可能に支持する
電極とを配設し、前記電極間に電圧を印加し、前記抵抗
加熱線ヒータを被覆した茎発物質を蒸発し、前記筒状体
の内周面に蒸着させる手段を有しており、前記筒状体を
その軸心を中心に回転させる回転部材を具えたものでも
よく、また、前記蒸着用材料は、前記電極で支持される
部分が、さらに、筒状体の内径より小径の他の電極で支
持されることで折り返され、蒸着用材料の折り返された
電極間の部分が筒状体の内部に位置しているようにして
もよい。
[Means for Solving the Problems] In order to achieve the above object, the vacuum evaporation method of the present invention is a vacuum evaporation method for forming a thin film on an object to be evaporated disposed in a vacuum chamber. The material for vapor deposition is formed by coating the outer periphery of a resistance heating wire heater with a nuclear material, and is wound around a feed roller at one end and a take-up roller at the other end. Electricity is supplied to the resistance heating wire heater through an electrode that is inserted into a certain cylindrical body and movably supports the vapor deposition material disposed near both ends of the cylindrical body, and the resistance heating is performed by energizing the resistance heating wire heater. It has a means for heating and evaporating the evaporation material coated with the wire heater to form a thin film of the evaporation material on the inner circumferential surface of the cylindrical body, while rotating the cylindrical body around its axis. A thin film may be formed, and the vacuum evaporation apparatus of the present invention includes a cylindrical body that is a non-evaporated body in a vacuum chamber, and a long resistance heating wire that is inserted into the cylindrical body. A vapor deposition material formed by coating the outer periphery of the heater with an evaporation substance and wound around a feed roller at one end and a take-up roller at the other end, and a vapor deposition material provided near both ends of the cylindrical body. and an electrode that movably supports the material for vapor deposition, and a voltage is applied between the electrodes to evaporate the stem material covering the resistance heating wire heater, and to heat the inner periphery of the cylindrical body. The material for vapor deposition may have a means for vapor deposition on a surface, and may include a rotating member for rotating the cylindrical body around its axis, and the vapor deposition material may have a portion supported by the electrode, Furthermore, it may be folded back by being supported by another electrode having a smaller diameter than the inner diameter of the cylindrical body, so that the portion of the deposition material between the folded electrodes is located inside the cylindrical body.

〔作用〕[Effect]

本発明は上記の手段を採用したことにより、被蕉着体で
ある筒状体内に配設した長尺状の蒸着用材料に、前記筒
状体の両端の近傍に配設した電極を介して通電し、抵抗
加熱線ヒータの外周に被覆した蒸発物質を加熱して蒸発
させ、前記筒状体の内周面に蒸発物質を蒸着して薄膜を
形成できるとともに、前記蒸着用材料の一端に接続した
送りローラまたは他端に接続した巻取りローラにより筒
状体内に連続的に蒸着用材料を供給でき、薄膜をを連続
的に形成できることとなる。
By employing the above-mentioned means, the present invention has a long vapor deposition material disposed in a cylindrical body which is an object to be evaporated, through electrodes disposed near both ends of the cylindrical body. Electricity is supplied to heat and evaporate the evaporation substance coated on the outer periphery of the resistance heating wire heater, and the evaporation substance can be evaporated on the inner peripheral surface of the cylindrical body to form a thin film, and connected to one end of the evaporation material. The material for deposition can be continuously supplied into the cylindrical body by the feeding roller or the take-up roller connected to the other end, and a thin film can be continuously formed.

〔発・明の具体的構成] 以下、本発明を具体的に説明する。[Specific structure of the invention] The present invention will be explained in detail below.

第1図には本発明に用いられる蒸発源とその蒸発源によ
り加熱されて蒸発する蒸発物質とを一体にした蒸着用材
料の一実施例が示されていて、この蒸着用材料1は、タ
ングステン(W)、タンタル(Ta)、モリブデン(M
o)、ニオブ(Nb)などの高融点金属をワイヤ状にし
た抵抗加熱線ヒータ2の外周に、プラチナ(Pt)、金
(Au)、銀(Ag)、パラジウム(Pd)、&l11
(Cu)などの前記抵抗加熱線ヒータ2の高融点金属材
料より低融点の金属材料からなる蒸発物質3を被覆して
、同軸状に形成したものである。
FIG. 1 shows an example of a vapor deposition material in which an evaporation source used in the present invention and an evaporation substance that is heated and evaporated by the evaporation source are integrated, and this vapor deposition material 1 is made of tungsten. (W), tantalum (Ta), molybdenum (M
o) Platinum (Pt), gold (Au), silver (Ag), palladium (Pd), &l11
It is coated with an evaporated substance 3 made of a metal material having a lower melting point than the high melting point metal material of the resistance heating wire heater 2, such as (Cu), and is formed coaxially.

第2図(a) (b)には本発明による真空蒸着装置の
第1の実施例の要部が示されていて、上記の蒸着用材料
1が、その一端が送りローラフに接続され、他端が巻取
りローラ8に接続されるとともに、被蒸着体である円筒
状の筒状体4内に挿通されている。
FIGS. 2(a) and 2(b) show the main parts of a first embodiment of the vacuum evaporation apparatus according to the present invention, in which the above-mentioned evaporation material 1 is connected at one end to a feed roller ruff and at the other end. The end thereof is connected to the take-up roller 8, and is inserted into the cylindrical body 4 which is the object to be deposited.

また、前記筒状体4の両端部の近傍には、前記長尺状の
蒸着用材料1を移動可能に支持する電極である回転ロー
ラ5.6が配設され、この一対の回転ローラ5.6間に
電圧を印加する電源9が接続されている。
Further, near both ends of the cylindrical body 4, rotating rollers 5.6, which are electrodes that movably support the elongated vapor deposition material 1, are arranged. A power supply 9 is connected to apply a voltage between the terminals 6 and 6.

さらに、前記筒状体4には、その外周に筒状体4をその
軸心を中心とする回転を与える回転部材である一対の駆
動ローラ10.10が設けられている。
Further, the cylindrical body 4 is provided with a pair of drive rollers 10.10 on its outer periphery, which are rotating members that rotate the cylindrical body 4 about its axis.

そして、上記の各部材が真空槽A内に配設されて構成さ
れた真空蒸着装置は、真空槽A内を所定の真空条件下に
保持された状態で使用される。
The vacuum evaporation apparatus configured by disposing the above-mentioned members in the vacuum chamber A is used while the inside of the vacuum chamber A is maintained under a predetermined vacuum condition.

すなわち、本発明による真空蒸着装置を第2図(a)の
ようにセットした後、前記筒状体4を、第2図[有])
に示すようにその軸心を中心に回転させながら、前記電
極である一対の回転ローラ5.6間に電源9から電圧を
印加し、前記筒状体4内に挿通される蒸着用材料lの抵
抗加熱線ヒータ2に電流を流して加熱し、抵抗加熱線ヒ
ータ2を、被覆する蒸発物質3を蒸発させ、筒状体4の
内周面に蒸発物質3の均一な薄膜を形成することができ
る。
That is, after setting the vacuum evaporation apparatus according to the present invention as shown in FIG. 2(a), the cylindrical body 4 is set as shown in FIG.
As shown in the figure, a voltage is applied from a power source 9 between the pair of rotating rollers 5 and 6, which are the electrodes, while rotating the roller around its axis, and the vapor deposition material l inserted into the cylindrical body 4 is heated. A current is applied to the resistance heating wire heater 2 to heat it, evaporate the evaporation substance 3 covering the resistance heating wire heater 2, and form a uniform thin film of the evaporation substance 3 on the inner peripheral surface of the cylindrical body 4. can.

そして、前記抵抗加熱線ヒータ2の外周に被覆した蒸発
物質3が全部蒸発してしまったら、前記巻取りローラ8
により前記蒸着用材料1を所定量巻取ることにより、前
記筒状体4内に新たに原発物質3を有する蒸着用材料1
を連続的に供給し、さらに上記の操作を繰り返し、所望
の厚さの薄膜を形成できることとなる。
When the evaporative substance 3 coated on the outer periphery of the resistance heating wire heater 2 has completely evaporated, the winding roller 8
By winding up a predetermined amount of the vapor deposition material 1 with
By continuously supplying and repeating the above operation, a thin film with a desired thickness can be formed.

また、前記蒸着用材料1の供給は、真空槽内の真空を破
ることなくでき、さらに、電極である回転ローラ5.6
に通電しながら、薄膜の形成を止めることなくできるこ
ととなる。
Further, the deposition material 1 can be supplied without breaking the vacuum in the vacuum chamber, and further, the rotating rollers 5 and 6 serving as electrodes can be
This means that the thin film can be formed without stopping while energizing.

したがって、本発明においては、筒状体4の内周面に蒸
発材料3を蒸着して薄膜を確実に形成できるとともに、
筒状体4内に連続的に蒸発材料3を供給できるので、薄
膜形成効率を大幅に向上できることとなる。
Therefore, in the present invention, the evaporation material 3 can be deposited on the inner peripheral surface of the cylindrical body 4 to reliably form a thin film, and
Since the evaporation material 3 can be continuously supplied into the cylindrical body 4, the thin film forming efficiency can be greatly improved.

第3図には本発明による真空蒸着装置の他の実施例の要
部が示されていて、前記と同様な蒸着用材料1が、その
一端が送りローラ17に接続され、他端が巻取りローラ
18に接続されるとともに、被蒸着体である円筒状の筒
状体14内に往復挿通されている。
FIG. 3 shows the main parts of another embodiment of the vacuum evaporation apparatus according to the present invention, in which the same evaporation material 1 as described above is connected to a feed roller 17 at one end and wound up at the other end. It is connected to a roller 18 and is inserted reciprocatingly into a cylindrical body 14 which is an object to be deposited.

すなわち、前記筒状体14の一端側の端部近傍には、前
記茎着用材料1を移動可能に支持する電極である回転ロ
ーラ15.15′が配設され、また筒状体X4の他端側
の端部近傍には、前記筒状体14の内径より小径の電極
である回転ローラ16が配設され、被蒸着体である筒状
体14がこの回転ローラ16側から簡単に脱着できるよ
うになっているとともに、送りローラ17から出た前記
蒸着用材料1は、筒状体14内を前記一端側の回転ロー
ラ15から他端側の回転ローラ16に行き、ここで折り
返されて一端側の回転ローラ15′に到り、巻取りロー
ラ18に接続されており、前記筒状体14内に往復配設
されている。
That is, near one end of the cylindrical body 14, a rotary roller 15, 15', which is an electrode that movably supports the stem material 1, is disposed, and the other end of the cylindrical body X4 is disposed. A rotating roller 16, which is an electrode having a diameter smaller than the inner diameter of the cylindrical body 14, is disposed near the end of the side so that the cylindrical body 14, which is the object to be deposited, can be easily attached and detached from the side of the rotating roller 16. At the same time, the vapor deposition material 1 coming out from the feed roller 17 passes through the cylindrical body 14 from the rotating roller 15 on the one end side to the rotating roller 16 on the other end side, where it is folded back and transferred to the one end side. The rotating roller 15' is connected to the take-up roller 18 and reciprocated within the cylindrical body 14.

また、前記回転ローラ15.16問および回転比−ラ1
6.15′間にはそれぞれ電源19.19が接続されて
いる。
In addition, the rotating roller 15.16 and the rotation ratio - roller 1
Power supplies 19 and 19 are connected between terminals 6 and 15', respectively.

さらに、前記筒状体14には、その外周に筒状体14を
その軸心を中心とする回転を与える回転部材である一対
の駆動ローラ20.20が設けられている。
Further, the cylindrical body 14 is provided with a pair of driving rollers 20, 20 on its outer periphery, which are rotating members that rotate the cylindrical body 14 about its axis.

上記のような各部材が真空槽A内に配設されて構成され
た真空蒸着装置は、前記の実施例と同様に真空槽A内を
所定の真空条件下に保持された状態で使用され、前記筒
状体14を、その軸心を中心に回転させながら、前記電
極である回転ローラ15.16問および回転ローラ16
.15′間に電B20.20から電圧を印加し、前記筒
状体14内に往復挿通される蒸着用材料1の抵抗加熱線
ヒータ2に電流を流して加熱し、抵抗加熱線ヒータ2を
被覆する蒸発物質3を蒸発させ、筒状体14の内周面に
蒸発物質3の均一な薄膜を前記の実施例の倍の速度で形
成することができることとなる。
A vacuum evaporation apparatus configured by disposing each of the above-mentioned members in a vacuum chamber A is used with the inside of the vacuum chamber A maintained under a predetermined vacuum condition as in the above embodiment, While rotating the cylindrical body 14 around its axis, the rotating rollers 15, 16 and 16, which are the electrodes, are rotated.
.. A voltage is applied from the electric wire B20.20 between 15' and a current is passed through the resistance heating wire heater 2 of the vapor deposition material 1 which is reciprocally inserted into the cylindrical body 14 to heat it, thereby covering the resistance heating wire heater 2. This makes it possible to evaporate the evaporated substance 3 and form a uniform thin film of the evaporated substance 3 on the inner circumferential surface of the cylindrical body 14 at twice the speed of the previous embodiment.

また、前記抵抗加熱線ヒータ2の外周に被覆した蒸発物
質3が全部蒸発してしまったら、前記巻取りローラ18
により前記蒸着用材料1を所定量巻き取ることにより、
前記筒状体14内に新たに蒸発物質3が被覆した蒸着用
材料1を前記の実施例と同様に連続的に供給でき、前記
の実施例と同様に、蒸着用材料1の供給を真空槽内の真
空を破ることなく、さらに、電極である回転ローラ15
.16問および回転ローラ16.15′間に通電しなが
ら、薄膜の形成を止めることなくできる。
Further, when the evaporative substance 3 coated on the outer periphery of the resistance heating wire heater 2 has completely evaporated, the winding roller 18
By winding up a predetermined amount of the vapor deposition material 1,
The evaporation material 1 newly coated with the evaporation substance 3 can be continuously supplied into the cylindrical body 14 as in the previous embodiment, and the supply of the evaporation material 1 can be carried out in a vacuum chamber as in the previous embodiment. Furthermore, without breaking the vacuum inside, the rotating roller 15, which is an electrode,
.. The thin film can be formed without stopping while applying electricity between the 16 rollers and the rotating rollers 16 and 15'.

さらにまた、上記の実施例においては、成膜した筒状体
14を回転ローラ16側から抜いて新たな被蒸着体であ
る筒状体14を簡単に装填でき、薄膜を前記の実施例の
倍の速度で形成できるとともに、蒸着製品の生産効率を
大幅に向上することができることとなる。
Furthermore, in the above embodiment, the cylindrical body 14 on which the film has been formed can be pulled out from the rotating roller 16 side and a new cylindrical body 14 to be deposited can be easily loaded. This means that the production efficiency of vapor-deposited products can be greatly improved.

なお、上記の実施例に示した蒸着用材料1の形状はこれ
に限定されず、第4図に示すように、高融点金属を細い
薄板状に成形した抵抗加熱線ヒータ12の外周に、プラ
チナ(Pt)、金(A、u)、銀(Ag)、パラジウム
(Pd)、銅(Cu)などの前記抵抗加熱線ヒータ12
の高融点金属材料より低融点の金属材料からなる蒸発物
質13を被覆して、同軸状に形成した蒸着用材料11と
したものであってもよい。
Note that the shape of the vapor deposition material 1 shown in the above embodiment is not limited to this, and as shown in FIG. The resistance heating wire heater 12 is made of (Pt), gold (A, u), silver (Ag), palladium (Pd), copper (Cu), etc.
The vapor deposition material 11 may be formed coaxially by coating the evaporated substance 13 made of a metal material with a lower melting point than the high melting point metal material.

以下、本発明を実施例によりさらに具体的に説明する。Hereinafter, the present invention will be explained in more detail with reference to Examples.

実施例−1 前記第2 回(a) (blに示した真空蒸着装置を用
いて、抵抗加熱線ヒータ2として直径1mmのタングス
テン(W)を用い、蒸発物質3として抵抗加熱線ヒータ
2の外周に厚さ0.5mmのチタン(T i )を被覆
し、直径2mmの蒸着用材料1とし、筒状体4として、
外径10mm、長さ300mm、肉厚0.5mmのガラ
ス管を用いて、真空槽内を6X6−’Torrの真空条
件にして、電極である回転ローラ5.6間に50Aの電
流を7分間流した後、−変電流を止め、巻取りローラ8
を作動して蒸着用材料1を新たに筒状体4内に供給して
、さらに7分間、前記と同様に回転ローラ5.6間に5
0Aの電流を流して、筒状体4であるガラス管の内周面
にTiの薄膜を形成した。
Example-1 Second time (a) Using the vacuum evaporation apparatus shown in (bl), tungsten (W) with a diameter of 1 mm was used as the resistance heating wire heater 2, and the outer periphery of the resistance heating wire heater 2 was used as the evaporation material 3. was coated with titanium (T i ) with a thickness of 0.5 mm to form a vapor deposition material 1 with a diameter of 2 mm, and as a cylindrical body 4,
Using a glass tube with an outer diameter of 10 mm, a length of 300 mm, and a wall thickness of 0.5 mm, the inside of the vacuum chamber was set to a vacuum condition of 6 x 6-' Torr, and a current of 50 A was applied for 7 minutes between rotating rollers 5.6 that were electrodes. After flowing, the variable current is stopped and the winding roller 8
The vapor deposition material 1 is newly supplied into the cylindrical body 4 by operating the
A current of 0 A was applied to form a Ti thin film on the inner peripheral surface of the glass tube, which is the cylindrical body 4.

上記で成膜されたガラス管を取り出し、切断して、ガラ
ス管の内周面に形成されたTiの薄膜の膜厚を測定した
ところ1.1μmであり、膜厚分布は300mmあたり
で1.1μm±20%であり、Tiの付着力も強固なも
のであった。
The glass tube with the film formed above was taken out and cut, and the thickness of the Ti thin film formed on the inner peripheral surface of the glass tube was measured and found to be 1.1 μm, with a film thickness distribution of 1.1 μm per 300 mm. It was 1 μm±20%, and the adhesion of Ti was also strong.

実施例−2 前記第3図に示した真空蒸着装置を用いて、前記実施例
−1と同様な蒸着用材料l、筒状体14を用いて、さら
に真空条件も同様にして、電極である回転ローラ15.
16問および回転ローラ16.15′間に50Aの電流
を5分間流して、筒状体14であるガラス管の内周面に
Tiの薄膜を形成した。
Example 2 Using the vacuum evaporation apparatus shown in FIG. 3, using the same evaporation material l and cylindrical body 14 as in Example 1, and using the same vacuum conditions, an electrode was prepared. Rotating roller 15.
A current of 50 A was passed for 5 minutes between the 16 questions and the rotating rollers 16 and 15' to form a Ti thin film on the inner circumferential surface of the glass tube that was the cylindrical body 14.

ガラス管の内周面に形成されたTiの薄膜の膜厚を測定
したところ0.5μmであり、膜厚分布は300mmあ
たりで0.5am±10%であ、す、Tiの付着力も強
固なものであった。
The thickness of the Ti thin film formed on the inner peripheral surface of the glass tube was measured to be 0.5 μm, and the film thickness distribution was 0.5 am ± 10% around 300 mm.The adhesion of Ti is also strong. It was something.

なお、上記の実施例で筒状体として円筒状のガラス管を
用いたが、金属、セラミックスなどでもよく、また、筒
状であればいずれのものでも適用できる。
Although a cylindrical glass tube was used as the cylindrical body in the above embodiment, it may be made of metal, ceramics, etc., and any cylindrical body may be used.

〔発明の効果〕〔Effect of the invention〕

本発明は上記のように構成したので、筒状体の内周面に
薄膜を確実に形成できるとともに、真空を破ることなく
、かつ、薄膜の形成を止めることなく薄膜形成材料であ
る蒸発物質を連続的に供給することができるので、薄膜
形成効率を大幅に向上することができるなどのすぐれた
効果を有するものである。
Since the present invention is configured as described above, it is possible to reliably form a thin film on the inner circumferential surface of the cylindrical body, and also to remove the evaporated substance, which is the thin film forming material, without breaking the vacuum or stopping the formation of the thin film. Since it can be supplied continuously, it has excellent effects such as greatly improving thin film formation efficiency.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に用いる蒸着用材料の一実施例の説明図
、第2図(a) (b)は本発明の真空蒸着装置の第1
の実施例の要部を示し、第2図(a)は概略図、第2図
(b)は要部説明図、第3図は本発明の真空蒸着装置の
第2の実施例の概略図、第4圓は本発明に用いる蒸着用
材料の他の実施例の説明図、第5関(al (b) (
C)はそれぞれ従来の蒸着用材料の説明図である。 1.11・・・・・・蒸着用材料 2.12.21・・・・・・抵抗加熱線ヒータ3.13
.22.32.42・・・・・・蒸発物質4.14・・
・・・・筒状体 5.6.15、 +5’、16・・・・・・回転ローラ(電極)7.17
・・・・・・送りローラ 8.18・・・・・・巻取りローラ 9.19・・・・・・電源 1O120・・・・・・駆動ローラ A・・・・・・真空槽 31・・・・・・ボート 41・・・・・・るつぼ 43・・・・・・イオンビーム 第1図 第4図 )蒐鮮裕料 第5 図 手 続 ネ甫 正 書 (自発 ■、朋牛の耘 2、発明の名称 3、補正をする者 羽生との関係 住所 氏名 (名称) 4、代理人 断 平成 1年特許願第103168号 真空蒸着方法およびその装置
FIG. 1 is an explanatory diagram of one embodiment of the vapor deposition material used in the present invention, and FIGS.
2(a) is a schematic diagram, FIG. 2(b) is an explanatory diagram of the essential part, and FIG. 3 is a schematic diagram of a second embodiment of the vacuum evaporation apparatus of the present invention. , the fourth circle is an explanatory diagram of another example of the vapor deposition material used in the present invention, and the fifth circle is (al (b) (
C) is an explanatory diagram of conventional vapor deposition materials. 1.11... Material for vapor deposition 2.12.21... Resistance heating wire heater 3.13
.. 22.32.42... Evaporated substance 4.14...
...Cylindrical body 5.6.15, +5', 16...Rotating roller (electrode) 7.17
...Feed roller 8.18...Take-up roller 9.19...Power supply 1O120...Drive roller A...Vacuum chamber 31. ... Boat 41 ... Crucible 43 ... Ion beam Fig. 1 Fig. 4) Procurement fees Fig. 5 Procedures Nefu Seisho (Volunteer ■, Tomogyu no Yuu) 2. Name of the invention 3. Name and address of the person making the amendment (Name) 4. Attorney's name Patent Application No. 103168 of 1999 Vacuum deposition method and apparatus

Claims (5)

【特許請求の範囲】[Claims] (1)真空槽(A)内に配設した被蒸着体に薄膜を形成
する真空蒸着方法であって、長尺状の抵抗加熱線ヒータ
(2)(12)の外周に蒸発物質(3)(13)を被覆
して形成され、かつ、一端が送りローラ(7)(17)
に、また他端が巻取りローラ(8)(18)にそれぞれ
巻回された蒸着用材料(1)(11)を、被蒸着体であ
る筒状体(4)(14)内に挿通して配設し、前記筒状
体(4)(14)の両端部の近傍に配設した蒸着用材料
(1)(11)を移動可能に支持する電極(5)(15
)、(6)(16)を介して前記抵抗加熱線ヒータ(2
)(12)に通電し、前記抵抗加熱線ヒータ(2)(1
2)を被覆した蒸発物質(3)(13)を加熱・蒸発さ
せ、前記筒状体(4)(14)の内周面に蒸発物質(3
)(13)の薄膜を形成することを特徴とする真空蒸着
方法。
(1) A vacuum evaporation method for forming a thin film on an object to be evaporated placed in a vacuum chamber (A), in which an evaporated substance (3) is placed on the outer periphery of a long resistance heating wire heater (2) (12). (13), and one end is formed by covering the feed roller (7) (17)
Insert the deposition materials (1) and (11) whose other ends are respectively wound around take-up rollers (8) and (18) into the cylindrical bodies (4) and (14) to be deposited. electrodes (5) (15) movably supporting the vapor deposition materials (1) (11) disposed near both ends of the cylindrical bodies (4) (14);
), (6) and the resistance heating wire heater (2) via (16).
) (12), the resistance heating wire heater (2) (1
The evaporative substance (3) (13) coated with
) A vacuum deposition method characterized by forming the thin film of (13).
(2)前記筒状体(4)(14)をその軸心を中心に回
転しながら薄膜を形成する請求項1記載の真空蒸着方法
(2) The vacuum evaporation method according to claim 1, wherein the thin film is formed while rotating the cylindrical body (4) (14) around its axis.
(3)真空槽(A)内に、非蒸着体である筒状体(4)
(14)と、この筒状体(4)(14)内に挿通される
とともに、長尺状の抵抗加熱線ヒータ(2)(12)の
外周に蒸発物質(3)(13)を被覆して形成され、か
つ、一端が送りローラ(7)(17)に、また他端が巻
取りローラ(8)(18)にそれぞれ巻回された蒸着用
材料(1)(11)と、前記筒状体(4)(14)の両
端部の近傍に設けられ、前記蒸着用材料(1)(11)
を移動可能に支持する電極(5)(15)(15′)、
(6)(16)とを配設し、前記電極(5)(15)(
15′)(6)(16)間に電圧を印加し、前記抵抗加
熱線ヒータ(2)(12)を被覆した蒸発物質(3)(
13)を蒸発し、前記筒状体(4)(14)の内周面に
蒸着させることを特徴とする真空蒸着装置。
(3) Inside the vacuum chamber (A), there is a cylindrical body (4) that is a non-evaporated body.
(14), and the outer periphery of the long resistance heating wire heater (2) (12) that is inserted into the cylindrical body (4) (14) and coated with the evaporative substance (3) (13). evaporation materials (1) and (11) formed by the cylinder and wound around the feed rollers (7) and (17) at one end and around the take-up rollers (8 and 18) at the other end; The vapor deposition material (1) (11) is provided near both ends of the shaped body (4) (14).
electrodes (5) (15) (15') movably supporting the
(6) (16) and the electrodes (5) (15) (
15') (6) (16), the evaporative substance (3) (covering the resistance heating wire heaters (2) (12))
13) is evaporated and deposited on the inner peripheral surfaces of the cylindrical bodies (4) and (14).
(4)前記筒状体(4)(14)をその軸心を中心に回
転させる回転部材(10)(20)を具えた請求項3記
載の真空蒸着装置。
(4) The vacuum evaporation apparatus according to claim 3, further comprising a rotating member (10) (20) for rotating the cylindrical body (4) (14) about its axis.
(5)前記蒸着用材料(1)(11)は、前記電極(1
5)、(15′)で支持される部分が、さらに、筒状体
(14)の内径より小径の他の電極(16)で支持され
ることで折り返され、蒸着用材料(1)(11)の折り
返された電極(15)、(16)間および電極(16)
、(15′)間の部分が筒状体(14)の内部に位置し
ている請求項3記載の真空蒸着装置。
(5) The vapor deposition material (1) (11) is the electrode (1).
5), the part supported by (15') is further folded back by being supported by another electrode (16) whose diameter is smaller than the inner diameter of the cylindrical body (14), and the part supported by the vapor deposition material (1) (11 ) between the folded electrodes (15) and (16) and the electrode (16)
, (15') is located inside the cylindrical body (14).
JP10316889A 1989-04-22 1989-04-22 Method and device for vacuum deposition Pending JPH02282477A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10316889A JPH02282477A (en) 1989-04-22 1989-04-22 Method and device for vacuum deposition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10316889A JPH02282477A (en) 1989-04-22 1989-04-22 Method and device for vacuum deposition

Publications (1)

Publication Number Publication Date
JPH02282477A true JPH02282477A (en) 1990-11-20

Family

ID=14346977

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10316889A Pending JPH02282477A (en) 1989-04-22 1989-04-22 Method and device for vacuum deposition

Country Status (1)

Country Link
JP (1) JPH02282477A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001223375A (en) * 2000-02-10 2001-08-17 Semiconductor Energy Lab Co Ltd Carrying apparatus for flexible substrate, and deposition apparatus
US6467425B1 (en) * 1997-08-20 2002-10-22 Rheinmetall Industrie Ag Apparatus for internally coating a metal tube
JP2010018871A (en) * 2008-07-14 2010-01-28 Ulvac Japan Ltd Coaxial type vacuum arc deposition source and vacuum deposition system
JP2010111948A (en) * 2009-12-25 2010-05-20 Semiconductor Energy Lab Co Ltd Film deposition system, solar cell and method for producing solar cell

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6467425B1 (en) * 1997-08-20 2002-10-22 Rheinmetall Industrie Ag Apparatus for internally coating a metal tube
JP2001223375A (en) * 2000-02-10 2001-08-17 Semiconductor Energy Lab Co Ltd Carrying apparatus for flexible substrate, and deposition apparatus
JP2010018871A (en) * 2008-07-14 2010-01-28 Ulvac Japan Ltd Coaxial type vacuum arc deposition source and vacuum deposition system
JP2010111948A (en) * 2009-12-25 2010-05-20 Semiconductor Energy Lab Co Ltd Film deposition system, solar cell and method for producing solar cell

Similar Documents

Publication Publication Date Title
US3517644A (en) Apparatus for making metal alloy resistors
US5239612A (en) Method for resistance heating of metal using a pyrolytic boron nitride coated graphite boat
JPH02282477A (en) Method and device for vacuum deposition
EP0546006A1 (en) Ion plating method
US2450856A (en) Method of coating by evaporating metals
US2450851A (en) Method of coating by evaporating metals
JPS5864381A (en) Vacuum depositing device
JPS6037869B2 (en) Vapor deposition method
US3171017A (en) Evaporation of metal or metalloids
US2463791A (en) Method of coating with quartz by thermal evaporation
JPS5855563A (en) Method for vapor deposition
JPH01212759A (en) Target for sputtering inside of tube
US3488214A (en) Evaporant material control for vapor deposition apparatus
CN113764248B (en) Metal ion source and application and use method thereof
JPS5941509B2 (en) Equipment for depositing highly adhesive, particularly hard carbon layers over large areas
JPH08325714A (en) Vapor deposition apparatus
JPH01226792A (en) Molecular beam source cell
JP2000128528A (en) Production of superconducting thin film
JPS5918541A (en) Manufacturing method for electron emission cathode
JPH0241165Y2 (en)
JPS58207371A (en) Vapor deposition source for vacuum deposition
JPS58137941A (en) Ion source
JPS5864376A (en) Vapor depositing method
JPS61194177A (en) Film forming device for small parts
JPS593815B2 (en) ion source