JPH02282439A - Shift fork for transmission - Google Patents

Shift fork for transmission

Info

Publication number
JPH02282439A
JPH02282439A JP10410489A JP10410489A JPH02282439A JP H02282439 A JPH02282439 A JP H02282439A JP 10410489 A JP10410489 A JP 10410489A JP 10410489 A JP10410489 A JP 10410489A JP H02282439 A JPH02282439 A JP H02282439A
Authority
JP
Japan
Prior art keywords
solid lubricant
shift fork
reinforcing material
diameter
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10410489A
Other languages
Japanese (ja)
Inventor
Masahiro Kubo
雅洋 久保
Yoshio Fuwa
良雄 不破
Shinji Kato
愼治 加藤
Tetsuya Suganuma
菅沼 徹哉
Takashi Morikawa
隆 森川
Tetsuya Nukami
額見 哲也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP10410489A priority Critical patent/JPH02282439A/en
Publication of JPH02282439A publication Critical patent/JPH02282439A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H63/00Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism
    • F16H63/02Final output mechanisms therefor; Actuating means for the final output mechanisms
    • F16H63/30Constructional features of the final output mechanisms
    • F16H63/32Gear shift yokes, e.g. shift forks
    • F16H2063/324Gear shift yokes, e.g. shift forks characterised by slide shoes, or similar means to transfer shift force to sleeve

Abstract

PURPOSE:To manufacture the shift fork having excellent seizure resistance in the sliding surface of the click part by using an Al alloy compositely reinforced by a reinforcing material having specified diameter and volume rate and a solid lubricant having specified compsn., diameter and volume rate on the click part of a shift fork. CONSTITUTION:An Al alloy compositely reinforced by a reinforcing material 22 and a solid lubricant 24 is used on the click part 20 of a shift fork 26 for a transmission. At this time, the diameter of the reinforcing material 22 (such as silicon carbide whiskers) is regulated to <=5mu and the volume rate to 2 to 15%; the solid lubricant 24 is constituted of C, BN, Pb and the mixture thereamong and the diameter is regulated to <=150mu and the volume rate to 15 to 40%. In this way, the shift fork 26 having excellent wear resistance in the sliding surface of the click part 20 can be obtd.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、トランスミッション用のシフトフォークに係
り、更に詳細には少くとも爪部が複合材料よりなるトラ
ンスミッション用シフトフォークに係る。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a shift fork for a transmission, and more particularly to a shift fork for a transmission in which at least the pawl portion is made of a composite material.

従来の技術及び発明が解決しようとする課題トランスミ
ッション用のシフトフォークの爪部は苛酷な摺動条件に
曝されるため、例えば特開昭62−35925号公報に
記載されている如く、爪部全体又は爪部の表面部のみが
アルミナ−シリカ繊維の如き強化繊維にて複合強化され
た軽合金よりなる複合材料で構成することが従来より試
みられている。しかし爪部がアルミナ−シリカ繊維の如
き強化繊維にて複合強化されたアルミニウム合金よりな
る複合材料であるシフトフォークは、近年の高速トラン
スミッション用のシフトフォークとしては耐久性が不十
分である。特にかかるシフトフォークは高速且高油温下
にて高面圧の負荷が与えられると、爪部の摺動面に焼付
きが生じ易い。
Problems to be Solved by the Prior Art and the Invention Since the pawl portion of a shift fork for a transmission is exposed to severe sliding conditions, for example, as described in JP-A-62-35925, the entire pawl portion is Alternatively, attempts have been made in the past to construct only the surface portion of the claw portion from a composite material made of a light alloy reinforced with reinforcing fibers such as alumina-silica fibers. However, shift forks whose pawls are made of a composite material made of aluminum alloy reinforced with reinforcing fibers such as alumina-silica fibers have insufficient durability as shift forks for modern high-speed transmissions. In particular, when such a shift fork is subjected to a high surface pressure load at high speed and high oil temperature, seizure is likely to occur on the sliding surface of the pawl portion.

また例えば特開昭63−243237号公報に記載され
ている如く、強化繊維と共に黒鉛質の炭素繊維の如き自
己潤滑材を使用することが既に提案されている。かかる
自己潤滑材及び強化繊維が使用された複合材料は、アル
ミナ−シリカ繊維等の゛みを強化材とする複合材料に比
して耐摩耗性に優れているが、固体潤滑材の大きさや量
によってはシフトフォークの爪部の耐摩耗性、特に耐焼
付き性を十分に向上させることができない。
Furthermore, as described in, for example, Japanese Patent Application Laid-Open No. 63-243237, it has already been proposed to use a self-lubricating material such as graphitic carbon fiber together with reinforcing fibers. Composite materials using such self-lubricating materials and reinforcing fibers have superior wear resistance compared to composite materials using only reinforcement materials such as alumina-silica fibers, but the size and amount of the solid lubricant In some cases, it is not possible to sufficiently improve the wear resistance, particularly the seizure resistance, of the pawl portion of the shift fork.

本発明は、爪部が強化繊維又は強化繊維及び固体潤滑材
にて複合強化された軽合金よりなる従来のシフトフォー
クに於ける上述の如き問題に鑑み、爪部の摺動面の耐摩
耗性、特に耐焼付き性に優れたトランスミッション用シ
フトフォークを提供することを目的としている。
In view of the above-mentioned problems in conventional shift forks in which the pawl portion is made of reinforcing fibers or a light alloy composite reinforced with reinforcing fibers and a solid lubricant, the present invention aims to improve the wear resistance of the sliding surface of the pawl portion. The purpose of the present invention is to provide a shift fork for a transmission that has particularly excellent seizure resistance.

課題を解決するための手段 上述の如き目的は、本発明によれば、爪部が強化材及び
固体潤滑材にて複合強化されたアルミニウム合金よりな
り、強化材の径及び体積率がそれぞれ5μ以下、2〜1
5%であり、固体潤滑材はC5BNSPb、及びこれら
の混合物よりなり、径及び体積率がそれぞれ150μ以
下、15〜40%であるトランスミッション用シフトフ
ォークによって達成される。
Means for Solving the Problems According to the present invention, the claw portion is made of an aluminum alloy compositely reinforced with a reinforcing material and a solid lubricant, and the diameter and volume fraction of the reinforcing material are each 5μ or less. , 2-1
5%, the solid lubricant is made of C5BNSPb, and a mixture thereof, and the diameter and volume ratio are 150μ or less and 15 to 40%, respectively. This is achieved by a shift fork for a transmission.

発明の作用及び効果 本発明によれば、爪部が強化材及び固体潤滑材にて複合
強化されたアルミニウム合金の複合材料よりなり、強化
材の径及び体積率、固体潤滑材の種類、径、及び体積率
がそれぞれ適切に設定さ−れるので、爪部の摺動面の耐
摩耗性、特1と耐焼付き性に優れたシフトフォークを得
ることができる。
Effects and Effects of the Invention According to the present invention, the claw portion is made of an aluminum alloy composite material reinforced with a reinforcing material and a solid lubricant, and the diameter and volume ratio of the reinforcing material, the type and diameter of the solid lubricant, Since the ratio and the volume ratio are respectively set appropriately, it is possible to obtain a shift fork with excellent wear resistance, particularly 1, and seizure resistance of the sliding surface of the pawl portion.

本願発明者等が行った実験的研究の結果によれば、強化
材の径は3μ以下であることが好ましく、また強化材の
体積率は2〜10%であることが好ましい。従って本発
明の一つの実施例によれば、強化材の径は3μ以下に設
定され、強化材の体積率は2〜10%に設定される。
According to the results of experimental studies conducted by the inventors of the present application, the diameter of the reinforcing material is preferably 3 μm or less, and the volume fraction of the reinforcing material is preferably 2 to 10%. Therefore, according to one embodiment of the present invention, the diameter of the reinforcing material is set to 3 microns or less, and the volume fraction of the reinforcing material is set to 2-10%.

本願発明者等が行った実験的研究の結果によれば、固体
潤滑材はC粒子であることが好ましく、固体潤滑材の径
は105μ以下であることが好ましく、また固体潤滑材
の体積率は20〜35%であることが好ましい。従って
本発明の他の一つの実施例によれば、固体潤滑材はC粒
子であり、固体潤滑材の径及び体積率はそれぞれ105
μ以下、20〜35%に設定される。
According to the results of experimental research conducted by the inventors of the present application, the solid lubricant is preferably C particles, the diameter of the solid lubricant is preferably 105μ or less, and the volume fraction of the solid lubricant is It is preferably 20 to 35%. Therefore, according to another embodiment of the present invention, the solid lubricant is C particles, and the diameter and volume fraction of the solid lubricant are each 105
μ or less, it is set to 20 to 35%.

尚本発明に於ける強化材は短繊維、ウィスカ、粒子の如
き形態をなしていてよく、材質はセラミックや金属であ
ってよい。また強化材が短繊維又はウィスカである場合
には、それらの平均繊維長は10μ〜21II程度であ
ってよい。
The reinforcing material in the present invention may be in the form of short fibers, whiskers, or particles, and the material may be ceramic or metal. Further, when the reinforcing material is short fibers or whiskers, the average fiber length thereof may be about 10μ to 21II.

以下に添付の図を参照しつつ、本発明を実施例について
詳細に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The invention will be explained in detail below by way of example embodiments with reference to the accompanying figures.

実施例1 まず固体潤滑材として如何なる種類のものが適している
かの検討を行った。
Example 1 First, a study was conducted to determine what type of solid lubricant would be suitable.

強化材として繊維径0,2〜1μ、繊維長30〜50μ
の炭化ケイ素ウィスカ(東海カーボン株式会社製)を用
意し、固体潤滑材として下記の表1に示された潤滑材を
用意した。
Fiber diameter 0.2-1μ, fiber length 30-50μ as reinforcing material
Silicon carbide whiskers (manufactured by Tokai Carbon Co., Ltd.) were prepared, and the lubricants shown in Table 1 below were prepared as solid lubricants.

ζ O4ζ 一守マ :lL         00 い 4    z ω い へ    (ト) 1 3?033 脩 O。ζ O4ζ Ichimori Ma :lL 00 I 4  z ω I go (g) 1 3?033 Shu O.

Oシ ′2.v や 、Ω 8 八  1ト N  く  ・−く 次いで炭化ケイ素ウィスカと各固体潤滑材とを混合し、
該混合液を10%のシリカバインダ水溶液中に投入して
撹拌し、該水溶液に対し吸引成形を行うことにより、体
積率5%の炭化ケイ素ウィスカと体積率30%の固体潤
滑材とよりなる成形体を形成した。次いで固体潤滑材と
して黒鉛粉末が使用された成形体については大気中にて
500℃に2時間熱処理した後、他の成形体については
そのままの状態で、各成形体をシフトフォークの爪部の
形状に機械加工した。
Osi'2. Then, mix silicon carbide whiskers and each solid lubricant,
The mixed liquid is poured into a 10% silica binder aqueous solution and stirred, and the aqueous solution is subjected to suction molding to form a molded product consisting of silicon carbide whiskers with a volume ratio of 5% and solid lubricant with a volume ratio of 30%. formed a body. Next, the compacts in which graphite powder was used as a solid lubricant were heat-treated at 500°C in the atmosphere for 2 hours, and the other compacts were left as they were. machined into.

次いで各成形体を500℃に予熱した後、第1図に示さ
れている如く成形体10をダイキャスト装置12のモル
トキャビティ14の爪部を郭定する部分に配置し、該モ
ルトキャビティ内に湯温730℃のアルミニウム合金(
JIS規IADcI2)の溶湯16をプランジャ18に
より供給して溶湯を約500気圧にて加圧し、その加圧
状態を溶湯が完全に凝固するまで保持した。溶出が完全
に凝固した後、凝固体をダイキャスト装置より取出し、
凝固体に対し所定の機械加工を施すことにより、第2図
及び第3図に示されている如く爪部20が炭化ケイ素ウ
ィスカ22及び固体潤滑材24にて複合強化されたアル
ミニウム合金よりなるシフトフォーク26を形成した。
Next, after preheating each molded body to 500° C., the molded body 10 is placed in the part defining the claw part of the malt cavity 14 of the die-casting device 12, as shown in FIG. Aluminum alloy with hot water temperature of 730℃ (
A molten metal 16 according to JIS standard IADcI2) was supplied by a plunger 18, and the molten metal was pressurized at about 500 atmospheres, and the pressurized state was maintained until the molten metal completely solidified. After the elution has completely solidified, the solidified body is taken out from the die-casting device,
By performing predetermined machining on the solidified body, as shown in FIGS. 2 and 3, the claw portion 20 is made of aluminum alloy compositely reinforced with silicon carbide whiskers 22 and solid lubricant 24. A fork 26 was formed.

尚一般に固体潤滑材としてよく知られている二硫化モリ
ブデン及び二硫化タングステンを使用して同様にシフト
フォークの製造を試みたが、これらの固体潤滑材は加圧
鋳造段階に於て分解してしまい、従ってシフトフォーク
の製造には適していないことが認められた。
We also attempted to manufacture a shift fork using molybdenum disulfide and tungsten disulfide, which are generally well known as solid lubricants, but these solid lubricants decomposed during the pressure casting stage. Therefore, it was recognized that it was not suitable for manufacturing shift forks.

また比較の目的で、爪部がアルミニウム合金よりなるシ
フトフォーク(比較例1)及び爪部が体積率5%の炭化
ケイ素ウィスカのみにて複合強化されたアルミニウム合
金よりなるシフトフォーク(比較例2)を形成した。
For comparison purposes, a shift fork with claws made of an aluminum alloy (Comparative Example 1) and a shift fork with claws made of an aluminum alloy compositely reinforced with only silicon carbide whiskers with a volume fraction of 5% (Comparative Example 2) was formed.

次いで上述の如く形成されたシフトフォークをトランス
ミッションに組込み、トランスミッションを通常の回転
速度の10倍の回転速度にて作動させる実機試験を行っ
た。その結果を表2に示す。
Next, the shift fork formed as described above was assembled into a transmission, and an actual machine test was conducted in which the transmission was operated at a rotation speed 10 times the normal rotation speed. The results are shown in Table 2.

尚表2に於て、◎は全く焼付きが生じなかつたことを意
味し、Qは殆ど焼付きが生じなかったことを意味し、Δ
は部分的に焼付きが生じたことを意味し、×は焼付きが
生じたことを意味する(後述の表3〜表6に於ても同じ
)。表2より、固体潤滑材としてC5BN、Pbが適し
ており、特にCが適していることが解る。
In Table 2, ◎ means that no seizure occurred at all, Q means that almost no seizure occurred, and Δ
indicates that burn-in occurred partially, and x means that burn-in occurred (the same applies to Tables 3 to 6, which will be described later). From Table 2, it can be seen that C5BN and Pb are suitable as solid lubricants, and C is particularly suitable.

表   2 固体潤滑材    結 果 Pb  b O N o 03 O3 nO 2O−6T g aF2 比較例 1 比較例 2 尚強化材として平均繊維径1μ、繊維長50〜100μ
の窒化ケイ素ウィスカ(タテホ化学株式会社製)が使用
された点を除き、実施例1の場合と同様の試験を行った
ところ、表2に示された結果と同一の結果が得られた。
Table 2 Solid lubricant Results Pb b O N o 03 O3 nO 2O-6T g aF2 Comparative example 1 Comparative example 2 As a reinforcing material, the average fiber diameter is 1μ, the fiber length is 50 to 100μ
When the same test as in Example 1 was conducted, except that silicon nitride whiskers (manufactured by Tateho Chemical Co., Ltd.) were used, the same results as shown in Table 2 were obtained.

実施例2 次に固体潤滑材の体積率が如何なる値であることが適し
ているかについての検討を行った。
Example 2 Next, a study was conducted as to what value is suitable for the volume fraction of the solid lubricant.

平均繊維径3μ、平均繊維長2■のアルミナ短繊維(I
C1社製「サフィルRGJ)及び実施例1に於て使用さ
れたC粉末と同一のC粉末を596のアルミナバインダ
水溶液中に投入して撹拌混合し、吸引圧縮成形により成
形体を形成した。この場合各成形体中に於けるアルミナ
短繊維の体積率は7%であり、C粉末の体積率は5%、
10%、15%、20%、25%、30%、35%、4
0%、45%、50%に設定された。
Alumina short fibers (I) with an average fiber diameter of 3 μ and an average fiber length of 2
"Saphir RGJ" manufactured by C1 Co., Ltd. and the same C powder as the C powder used in Example 1 were poured into an aqueous alumina binder solution of 596, stirred and mixed, and a molded body was formed by suction compression molding. In this case, the volume percentage of alumina short fibers in each compact is 7%, the volume percentage of C powder is 5%,
10%, 15%, 20%, 25%, 30%, 35%, 4
They were set to 0%, 45%, and 50%.

次いでマトリックス金属として720℃のアルミニウム
合金(JIS規格ADC10)が使用された点を除き、
実施例1の場合と同一の要領及び条件にてシフトフォー
クを形成し、各シフトフォークについて実施例の場合と
同一の要領及び条件にて実機試験を行った。その結果を
下記の表3に示す。表3より、固体潤滑材の体積率は1
5〜40%、特に20〜35%であることが好ましいこ
とが解る。
Next, except that a 720°C aluminum alloy (JIS standard ADC10) was used as the matrix metal.
A shift fork was formed in the same manner and under the same conditions as in Example 1, and an actual machine test was conducted on each shift fork in the same manner and under the same conditions as in Example. The results are shown in Table 3 below. From Table 3, the volume fraction of the solid lubricant is 1
It can be seen that 5 to 40%, particularly 20 to 35%, is preferred.

表   3 C粉末の体積率%    結 果 5        × 10        Δ 20        ◎ 25        ◎ 30        ◎ 35        ◎ 45        Δ 50        × 尚強化材として実施例1に於て炭化ケイ素ウィスカと同
一の炭化ケイ素ウィスカが使用され、固体潤滑材として
実施例1に於て使用されたBN粉末と同一のBN粉末が
使用された点を除き、実施例1の場合と同一の要領及び
条件にて実機試験を行ったところ、表3に示された結果
と同一の結果が得られた。
Table 3 Volume fraction % of C powder Results 5 × 10 Δ 20 ◎ 25 ◎ 30 ◎ 35 ◎ 45 Δ 50 An actual machine test was conducted under the same procedure and conditions as in Example 1, except that the same BN powder as that used in Example 1 was used as the lubricant, and the results shown in Table 3. Results identical to those shown were obtained.

実施例3 次に固体潤滑材の大きさとして如何なる値が適している
かについての検討を行った。
Example 3 Next, a study was conducted as to what value is suitable for the size of the solid lubricant.

強化材として平均粒径1,2μの炭化チタン粉末(日本
新金属株式会社製)が使用され、固体潤滑材として平均
粒径1μ、5μ、10μ、65μ、105μ、150μ
、250μのC粉末(日本黒鉛株式会社製)が使用され
、炭化チタン及び炭素粉末の体積率がそれぞれ10%、
25%に設定された点を除き、実施例1の場合と同一の
要領及び条件にて実機試験を行った。その結果を下記の
表4に示す。表4より、固体潤滑材の粒径は150μ以
下、特に105μ以下であることが好ましいことが解る
Titanium carbide powder (manufactured by Japan Shinkinzoku Co., Ltd.) with an average particle size of 1.2μ is used as the reinforcing material, and as a solid lubricant, the average particle size is 1μ, 5μ, 10μ, 65μ, 105μ, and 150μ.
, 250μ C powder (manufactured by Nippon Graphite Co., Ltd.) was used, and the volume percentage of titanium carbide and carbon powder was 10% each.
An actual machine test was conducted under the same procedure and conditions as in Example 1, except that the ratio was set to 25%. The results are shown in Table 4 below. From Table 4, it can be seen that the particle size of the solid lubricant is preferably 150μ or less, particularly 105μ or less.

表   4 固体潤滑材の粒径   結 果 1       ◎ 5       ◎ 10       ◎ 65       ◎ 105       ◎ 250       Δ 尚強化材として実施例2で使用されたアルミナ短繊維と
同一のアルミナ短繊維が使用され、固体潤滑材として実
施例1に於て使用されたpb粉末と同一のpb粉末が使
用された点を除き、実施例1の場合と同一の要領及び条
件にて実機試験を行ったところ、表4に示された結果と
同一の結果が得られた。
Table 4 Particle size of solid lubricant Result 1 ◎ 5 ◎ 10 ◎ 65 ◎ 105 ◎ 250 Δ The same alumina short fibers as the alumina short fibers used in Example 2 were used as the reinforcing material, and as a solid lubricant. When an actual machine test was conducted under the same procedure and conditions as in Example 1, except that the same PB powder as that used in Example 1 was used, the results shown in Table 4 were obtained. The same results were obtained.

実施例4 次に強化材の体積率が如何なる値に設定されることが適
しているかについての検討を行った。
Example 4 Next, a study was conducted as to what value is suitable for setting the volume fraction of the reinforcing material.

平均繊維径1μ、繊維長50〜100μの窒化ケイ素ウ
ィスカ(タテホ化学株式会社)と平均−繊維径10μの
C粉末(日本黒鉛工業株式会社製)とを種々の比率にて
混合することにより、窒化ケイ素ウィスカの体積率が1
%、2%、3%、5%、7.5%、10%、15%、2
0%、30%であり、C粉末の体積率が30%に設定さ
れた点を除き、実施例1の場合と同一の要領及び条件に
て実機試験を行った。その結果の表5に示す。表5より
、強化材の体積率は2〜15%、特に2〜10%である
ことが好ましいことが解る。
By mixing silicon nitride whiskers (Tateho Chemical Co., Ltd.) with an average fiber diameter of 1μ and fiber length of 50 to 100μ and C powder (manufactured by Nippon Graphite Industries Co., Ltd.) with an average fiber diameter of 10μ in various ratios, nitridation can be achieved. The volume fraction of silicon whiskers is 1
%, 2%, 3%, 5%, 7.5%, 10%, 15%, 2
An actual machine test was conducted in the same manner and under the same conditions as in Example 1, except that the volume fraction of C powder was set to 30%. The results are shown in Table 5. From Table 5, it can be seen that the volume fraction of the reinforcing material is preferably 2 to 15%, particularly 2 to 10%.

表    5 強化材の体積率(%)  結 果 1        Δ 2        ◎ 3        ◎ 5        ◎ 7.5      ◎ 10        ◎ 20        Δ 30               ×尚強化材として
実施例1に於て炭化ケイ素ウィスカと同一の炭化ケイ素
ウィスカが使用され、固体潤滑材として実施例1に於て
使用されたBN粉末と同一のBN粉末が使用された点を
除き、実施例4の場合と同一の要領及び条件にて実機試
験を行ったところ、表5に示された結果と同一の結果が
得られた。
Table 5 Volume fraction (%) of reinforcing material Results 1 Δ 2 ◎ 3 ◎ 5 ◎ 7.5 ◎ 10 ◎ 20 Δ 30 An actual machine test was conducted under the same procedure and conditions as in Example 4, except that the same BN powder as that used in Example 1 was used as the solid lubricant. , the same results as shown in Table 5 were obtained.

実施例5 次に強化材の大きさが如何なる値であることが適してい
るかについての検討を行った。
Example 5 Next, a study was conducted to find out what value is suitable for the size of the reinforcing material.

強化材として平均粒径0.3μ、1μ、3μ、5μ、7
.5μ、10μ、15μ、20μ、30μの炭化ケイ素
粉末が使用され、固体潤滑材として平均粒径65μのC
粉末(日本黒鉛工業株式会社)が使用され、炭化ケイ素
粉末及びC粉末の体積率がそれぞれ5%、25%に設定
された点を除き、実施例1の場合と同一の要領及び条件
にて実機試験を行った。その結果の表6に示す。表6よ
り、強化材の平均粒径は5μ以下、特に3μ以下である
ことが好ましいことが解る。
As a reinforcing material, the average particle size is 0.3μ, 1μ, 3μ, 5μ, 7
.. Silicon carbide powders of 5μ, 10μ, 15μ, 20μ, and 30μ are used, and C with an average particle size of 65μ is used as a solid lubricant.
The actual machine was manufactured in the same manner and under the same conditions as in Example 1, except that powder (Nippon Graphite Industries Co., Ltd.) was used and the volume percentages of silicon carbide powder and C powder were set to 5% and 25%, respectively. We conducted a test. The results are shown in Table 6. From Table 6, it can be seen that the average particle size of the reinforcing material is preferably 5 μ or less, particularly 3 μ or less.

表   6 強化材の粒径(μ)   結 果 0.3       ◎ 1         ◎ 3         ◎ 7.5       Δ 10         Δ 15         × 20         × 30          x 以上に於ては本発明を幾つかの実施例について詳細に説
明したが、本発明はこれらの実施例に限定されるもので
はなく、本発明の範囲内にて他の種々の実施例が可能で
あることは当業者にとって明らかであろう。
Table 6 Particle size (μ) of reinforcing material Results 0.3 ◎ 1 ◎ 3 ◎ 7.5 Δ 10 Δ 15 × 20 × 30 x The present invention has been described in detail with respect to several embodiments above. However, it will be obvious to those skilled in the art that the present invention is not limited to these embodiments, and that various other embodiments are possible within the scope of the present invention.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はダイキャスト装置を用いて行われるシフトフォ
ークの鋳造工程を示す解図、第2図は本発明によるシフ
トフォークを示す正面図、第3図は第2図の線■−■に
沿う断面図である。 10・・・成形体、12・・・ダイキャスト装置、14
・・・モールドキャビティ、16・・・アルミナ合金の
溶湯、18・・・プランジャ、20・・・爪部、22・
・・炭化ケイ素ウィスカ、24・・・固体潤滑材、26
・・・シフトフォーク 第1図 特 許 出 願 人   トヨタ自動車株式会社代  
 理   人   弁理士  明石 昌毅第2図 第3図
Fig. 1 is an illustration showing the casting process of a shift fork performed using a die-casting device, Fig. 2 is a front view showing a shift fork according to the present invention, and Fig. 3 is taken along the line ■-■ in Fig. 2. FIG. 10... Molded object, 12... Die casting device, 14
...Mold cavity, 16... Molten metal of alumina alloy, 18... Plunger, 20... Claw portion, 22...
...Silicon carbide whiskers, 24...Solid lubricant, 26
...Shift fork Figure 1 Patent applicant Toyota Motor Corporation representative
Patent Attorney Masatake AkashiFigure 2Figure 3

Claims (1)

【特許請求の範囲】[Claims]  爪部が強化材及び固体潤滑材にて複合強化されたアル
ミニウム合金よりなり、強化材の径及び体積率がそれぞ
れ5μ以下、2〜15%であり、固体潤滑材はC、BN
、Pb、及びこれらの混合物よりなり、径及び体積率が
それぞれ150μ以下、15〜40%であるトランスミ
ッション用シフトフォーク。
The claw part is made of an aluminum alloy compositely reinforced with a reinforcing material and a solid lubricant, and the diameter and volume ratio of the reinforcing material are 5μ or less and 2 to 15%, respectively, and the solid lubricant is C and BN.
, Pb, and a mixture thereof, and has a diameter and a volume fraction of 150 μm or less and 15 to 40%, respectively.
JP10410489A 1989-04-24 1989-04-24 Shift fork for transmission Pending JPH02282439A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10410489A JPH02282439A (en) 1989-04-24 1989-04-24 Shift fork for transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10410489A JPH02282439A (en) 1989-04-24 1989-04-24 Shift fork for transmission

Publications (1)

Publication Number Publication Date
JPH02282439A true JPH02282439A (en) 1990-11-20

Family

ID=14371812

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10410489A Pending JPH02282439A (en) 1989-04-24 1989-04-24 Shift fork for transmission

Country Status (1)

Country Link
JP (1) JPH02282439A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0620286A1 (en) * 1993-03-18 1994-10-19 Hitachi, Ltd. Ceramic-particle-dispersed metallic member, manufacturing method of same and use of same
JP2013096458A (en) * 2011-10-28 2013-05-20 Aisin Ai Co Ltd Shift device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0620286A1 (en) * 1993-03-18 1994-10-19 Hitachi, Ltd. Ceramic-particle-dispersed metallic member, manufacturing method of same and use of same
JP2013096458A (en) * 2011-10-28 2013-05-20 Aisin Ai Co Ltd Shift device

Similar Documents

Publication Publication Date Title
EP0458865A1 (en) Shaped bodies containing short inorganic fibers
US4029000A (en) Injection pump for injecting molten metal
DE102006051201A1 (en) Material for tribological applications
JPH03237062A (en) Sliding member
JPH02282439A (en) Shift fork for transmission
DE10130395A1 (en) Friction material used in the production of friction elements for brakes and couplings in vehicles comprises a structural component and an infiltration component formed as a penetrating network
JP2007016286A (en) Metal matrix composite and its manufacturing method
JPS59121414A (en) Shift fork
JPH02277733A (en) Shift fork for transmission
JP7401233B2 (en) Sintered friction material and method for manufacturing sintered friction material
JP3962779B2 (en) Method for producing preform for fiber reinforced composite material and method for producing fiber reinforced composite material
JPH0478374A (en) Shift fork for transmission
CH647813A5 (en) Article made of sintered metal-ceramic and process for its manufacture
JP2508145B2 (en) Fiber Reinforced Metals for Manufacturing Composite Materials
JPH03155450A (en) Manufacture of composite sliding member
JPS6235925A (en) Shift fork for trasmission
KR100261059B1 (en) Method of manufacturing a sintered alloy material
KR100222068B1 (en) Hybrid composites and method for making same
JPH0665734B2 (en) Metal-based composite material with excellent friction and wear characteristics
JPH0790420A (en) Fiber reinforced al alloy
JPS61194135A (en) Combination of member
JPH0533013A (en) Production of highly accurate aluminum alloy sliding parts
JPH0533295B2 (en)
JPH07216480A (en) Fiber reinforced al alloy
JPH0570863A (en) Production of sic whisker reinforced al alloy material