JPH02281622A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH02281622A
JPH02281622A JP10242089A JP10242089A JPH02281622A JP H02281622 A JPH02281622 A JP H02281622A JP 10242089 A JP10242089 A JP 10242089A JP 10242089 A JP10242089 A JP 10242089A JP H02281622 A JPH02281622 A JP H02281622A
Authority
JP
Japan
Prior art keywords
layer
opening
interlayer insulating
deposited
opening part
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10242089A
Other languages
Japanese (ja)
Inventor
Shigeru Murakami
茂 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP10242089A priority Critical patent/JPH02281622A/en
Publication of JPH02281622A publication Critical patent/JPH02281622A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)

Abstract

PURPOSE:To facilitate a processing of an electrode wiring and to obtain the high integration degree and high reliability of a semiconductor device by a method wherein a first conductor layer is deposited only on the surface of the sidewall in an opening part in an interlayer insulating layer, a second conductor layer is deposited on the surface of this interlayer insulating film, this second conductor layer is selectively etched to come into contact with an element region in the opening part and moreover, the electrode wiring, which is extendedly provided on the interlayer insulating layer, is formed. CONSTITUTION:Element regions, such as an impurity diffused layer 4 and the like, are formed and after an interlayer insulating layer 5 is deposited on the surface of the layer 4, an opening part 6 is formed by anisotropic etching. Then, a tungsten silicide layer 10 is deposited by argon ions using a reverse sputtering method. In such a way, a deposition rate at the upper end of the opening part 6 is reduced to zero and the deposition rate in the depth direction of the opening part is increased. A bias is increased to -400V or thereabouts, a reverse sputtering rate is made faster than the deposition rate at the upper part of the film 5 and a bias sputtering is performed until the layer 10 on the upper part of the film 5 runs out. After then, a tungsten layer 11 is deposited and is selectively etched away to form a wiring pattern.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体装置の製造方法に関し、特に電極配線を
有する半導体装置の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method of manufacturing a semiconductor device, and particularly to a method of manufacturing a semiconductor device having electrode wiring.

〔従来の技術〕[Conventional technology]

従来の半導体装置は、半導体基板上に設けた半導体素子
領域に接続する電極配線を前記半導体素子領域上に設け
た層間絶縁膜に開口部を設けた後前記開口部を含む表面
に蒸着法やスパッタリング法等により堆積した導体層を
パターニングして形成する方法が一般的である。
In a conventional semiconductor device, an electrode wiring connected to a semiconductor element region provided on a semiconductor substrate is formed by forming an opening in an interlayer insulating film provided on the semiconductor element region, and then applying vapor deposition or sputtering to the surface including the opening. A common method is to pattern a conductor layer deposited by a method or the like.

また、前記開口部に於ける電極配線の段差被覆性を向上
させる為、開口部側壁に傾斜を施したり、開口部上端の
みを広く開口する方法が採られている。すなわち、第2
図に示す様に、シリコン基板1の上にフィールド酸化膜
2を設けて素子形成領域を区画し、前記素子形成領域上
に設けた酸化膜上にゲート電極3a及び配線3bを設け
、ゲート電極3aに整合して前記素子形成領域に不純物
拡散層4を形成した後、層間絶縁膜5を堆積し、層間絶
縁膜5の上にバターニングしたホトレジスト膜を設けて
前記ホトレジスト膜をマスクとして層間絶縁膜5を選択
的にエツチング除去して開口部6を設ける。この時、開
口部6の上端を大きく広げる為、まず、等方性のエツチ
ングにより層間絶縁膜らの半分の膜厚に相当する深さ迄
除去し、更に同一マスクで残りを異方性エツチングによ
り前記ホトレジスト膜パターン寸法どうりに垂直に開口
して盃状の開口部6を形成する。次に、開口部6を含む
表面に導電層7を堆積し、ホトレジスト膜をマスクに導
電層7を選択的にエツチング除去して不純物拡散層4及
び配線3bとコンタクトする配線パターンを形成する。
In addition, in order to improve the coverage of the step of the electrode wiring in the opening, methods have been adopted in which the side walls of the opening are sloped or only the upper end of the opening is widened. That is, the second
As shown in the figure, a field oxide film 2 is provided on a silicon substrate 1 to demarcate an element formation area, a gate electrode 3a and a wiring 3b are provided on the oxide film provided on the element formation area, and a gate electrode 3a After forming an impurity diffusion layer 4 in the element formation region in accordance with the above, an interlayer insulating film 5 is deposited, a patterned photoresist film is provided on the interlayer insulating film 5, and the interlayer insulating film is formed using the photoresist film as a mask. 5 is selectively etched away to form an opening 6. At this time, in order to widen the upper end of the opening 6, first remove the interlayer insulating film to a depth equivalent to half the film thickness by isotropic etching, and then use the same mask to remove the remaining part by anisotropic etching. A cup-shaped opening 6 is formed by opening perpendicularly to the dimensions of the photoresist film pattern. Next, a conductive layer 7 is deposited on the surface including the opening 6, and is selectively etched away using the photoresist film as a mask to form a wiring pattern in contact with the impurity diffusion layer 4 and the wiring 3b.

しかしながら、回路の高集積化に伴うパターンの微細化
により、開口部6の径及びプロセスマージンa、bは減
少しかつ配線の多層化の要求に応じて層間絶縁膜5が平
坦化されることにより開口部の深さは深くなる。したが
って、第3図に示す様に、開口部6は上端部を広げるこ
となく垂直な側壁を有する深い穴を形成することとなり
導体層7の充分な段差被覆性を得ることが困器となる。
However, due to the miniaturization of patterns accompanying higher integration of circuits, the diameter of the opening 6 and the process margins a and b have decreased, and the interlayer insulating film 5 has been flattened in response to the demand for multilayer wiring. The depth of the opening becomes deeper. Therefore, as shown in FIG. 3, the opening 6 forms a deep hole with vertical side walls without widening the upper end, making it difficult to obtain sufficient level coverage of the conductor layer 7.

この問題を克服する為には開口部内部を配線材料で埋め
込む方法が用いられる。これには段差被覆性の良好な気
相成長法を用いて開口部の半径を超える膜厚の配線材を
堆積する方法が一般的である。
In order to overcome this problem, a method is used in which the inside of the opening is filled with wiring material. A common method for this purpose is to deposit a wiring material with a thickness exceeding the radius of the opening using a vapor phase growth method that provides good step coverage.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述した従来の半導体装置の製造方法は、段差被覆性の
良好な気相成長法を用いたとしても、開口部の深さが開
口部の径よりも大きい様な深い開口部の場合、開口部内
部への成長反応ガスの供給は不充分となり、したがって
、開口部の上部に対して底部の膜成長速度は遅くなり第
4図に示す様に開口部内部を埋め込んで導体層8が成長
する前に開口部上端がふさがってしまい、開口部内に空
洞9を生じてしまう。したがって、開口部内に於ける実
効的な電流容量が低下し、接続抵抗の増大やエレクトロ
マイグレーションよる断線等の不具合を生じるという欠
点がある。
In the conventional semiconductor device manufacturing method described above, even if a vapor phase growth method with good step coverage is used, in the case of a deep opening where the depth of the opening is larger than the diameter of the opening, the opening The supply of the growth reaction gas to the inside becomes insufficient, and therefore the film growth rate at the bottom of the opening becomes slower than that at the top of the opening, and as shown in FIG. The upper end of the opening becomes blocked, creating a cavity 9 within the opening. Therefore, there is a drawback that the effective current capacity within the opening decreases, resulting in problems such as an increase in connection resistance and disconnection due to electromigration.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の半導体装置の製造方法は、半導体素子領域を備
えた半導体基板上に層間絶縁層を設ける工程と、前記素
子領域上の前記層間絶縁層を選択的にエツチングして開
口部を設ける工程と、前記開口部内の側壁表面のみに第
1の導体層をバイアス・スパッタリング法により堆積す
る工程と、前記開口部を含む前記層間絶縁膜の表面に第
2の導体層を堆積する工程と、前記第2の導体層を選択
的にエツチングして前記開口部の素子領域とコンタクト
し且つ前記層間絶縁層上に延在する電極配線を形成する
工程とを含んで構成される。
A method for manufacturing a semiconductor device according to the present invention includes a step of providing an interlayer insulating layer on a semiconductor substrate having a semiconductor element region, and a step of selectively etching the interlayer insulating layer on the element region to form an opening. , a step of depositing a first conductor layer only on the side wall surface in the opening by bias sputtering, a step of depositing a second conductor layer on the surface of the interlayer insulating film including the opening, and selectively etching the second conductor layer to form an electrode wiring that contacts the element region of the opening and extends on the interlayer insulating layer.

〔実施例〕〔Example〕

次に、本発明について図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図(a)、(b)は本発明の一実施例を説明するた
め工程順に示した半導体チップの断面図である。
FIGS. 1(a) and 1(b) are cross-sectional views of a semiconductor chip shown in the order of steps for explaining an embodiment of the present invention.

まず、第1図(a)に示すように、第2図の従来例と同
様の工程によりシリコン基板lの上に不純物拡散層4等
の素子領域を形成し、表面に層間絶縁膜5を1.5μm
の厚さに堆積した後、所望の位置に配線接続の為の1,
0μmX1.Qμmの断面積を有する開口部6を設ける
。この開口部6はCF4系のプラズマガスを用いた異方
性エツチングで形成される。次に、アルゴンイオンによ
るバイアススパッタリング法を用いて硅化タングステン
層10を堆積する。深い開口部6に対して通常のスパッ
タリング法による膜の堆積では所謂シャドウィング効果
により、開口部6の底の近傍での堆積速度が遅くなる。
First, as shown in FIG. 1(a), an element region such as an impurity diffusion layer 4 is formed on a silicon substrate l by a process similar to that of the conventional example shown in FIG. .5μm
1, for wiring connections at desired locations after depositing to a thickness of
0μm×1. An opening 6 having a cross-sectional area of Qμm is provided. This opening 6 is formed by anisotropic etching using CF4-based plasma gas. Next, a tungsten silicide layer 10 is deposited using a bias sputtering method using argon ions. When a film is deposited in the deep opening 6 by the usual sputtering method, the deposition rate near the bottom of the opening 6 becomes slow due to the so-called shadowing effect.

そして開口部6の上端での堆積がすすむにつれてその効
果がさらに大きくなる。そこでスパッタリング時にシリ
コン基板1側にもバイアスを印加することにより、硅化
タングステン層10の堆積と逆スパツタが同時に進行し
開口部6の上端での堆積速度を遅くする。これはスパッ
タイオンの入射角度が45°近傍で最もスパッタ効率が
高いという原理によるもので、バイアスを制御すること
により開口部6の上端での堆積速度を零とし、深さ方向
に堆積速度を高くするとかできる。具体的にはアルゴン
ガス圧が0.5パスカル、硅化タングステン層10のタ
ーゲット側電力密度が4〜6W/cm”、基板パイアス
が−200〜−400Vである。ここで、スパッタ開始
と同時に開口部6の側壁にのみ、堆積が進行するバイア
ス条件でスパッタを行うことも可能であるが、開口部の
拡散層表面をアルゴンイオンでアタックしない様に制御
することが困難である為、最初に一200V程度のバイ
アスを印加し層間絶縁膜5の上にも薄く堆積させる条件
でスパッタし、層間絶縁膜5の上に0.1μm以下、開
口部の底部の側壁に0.2μm程度の厚さに堆積させる
As the deposition progresses at the upper end of the opening 6, the effect becomes even greater. Therefore, by applying a bias to the silicon substrate 1 side during sputtering, the deposition of the tungsten silicide layer 10 and the reverse sputtering proceed simultaneously, thereby slowing down the deposition rate at the upper end of the opening 6. This is based on the principle that the sputtering efficiency is highest when the incident angle of sputtered ions is around 45 degrees, and by controlling the bias, the deposition rate at the upper end of the opening 6 is made zero, and the deposition rate is increased in the depth direction. You can do that. Specifically, the argon gas pressure is 0.5 Pascal, the power density on the target side of the tungsten silicide layer 10 is 4 to 6 W/cm'', and the substrate bias is -200 to -400V. It is also possible to perform sputtering under bias conditions that allow deposition to proceed only on the side walls of 6, but since it is difficult to control the surface of the diffusion layer in the opening so as not to attack it with argon ions, first Sputtering is performed under the conditions of applying a moderate bias to deposit a thin layer also on the interlayer insulating film 5, and depositing it to a thickness of 0.1 μm or less on the interlayer insulating film 5 and about 0.2 μm on the sidewall of the bottom of the opening. let

次に、第1図<b>に示すように、バイアスを一400
V程度に上げて層間絶縁膜5の上部で堆積よりも逆スパ
ツタ速度が速くなる条件とし、層間絶縁膜5の上部の硅
化タングステン層10が無くなるまでバイアス・スパッ
タリングを行う。しかる後に気相成長法によりタングス
テン層11を0.8μmの厚さに堆積する。気相成長は
WF6ガスのH2還元反応によって行う。WF6ガスの
分圧は1〜3X 10−’T o r r、 )−タル
ガス圧が0.1〜0.2Torrで成長温度は350℃
である。タングステン層11の成長は全面で一様に進む
が開口部6の内部では硅化タングステン層10によって
底部が狭くなっている為、底部より埋め込みながら成長
し0.5μmの厚さに堆積した時点で開口部6内は完全
に埋め込まれた状態になる。さらに、0.3μmの厚さ
に堆積してタングステン層11の表面を平坦にする。次
に、ホトレジスト膜をマスクにタングステン層11を選
択的にエツチング除去して所望の配線パターンを形成す
る。
Next, as shown in FIG. 1<b>, the bias is set to -400
Bias sputtering is performed until the tungsten silicide layer 10 on the upper part of the interlayer insulating film 5 disappears under the condition that the reverse sputtering speed is higher than the deposition speed on the upper part of the interlayer insulating film 5. Thereafter, a tungsten layer 11 is deposited to a thickness of 0.8 μm by vapor phase growth. The vapor phase growth is performed by H2 reduction reaction of WF6 gas. The partial pressure of WF6 gas is 1 to 3X 10-' Torr, )-Tar gas pressure is 0.1 to 0.2 Torr, and the growth temperature is 350°C.
It is. The growth of the tungsten layer 11 progresses uniformly over the entire surface, but inside the opening 6, the bottom is narrowed by the tungsten silicide layer 10, so it grows while filling in from the bottom, and when the tungsten layer 11 is deposited to a thickness of 0.5 μm, the opening is opened. The inside of part 6 is completely buried. Furthermore, the surface of the tungsten layer 11 is made flat by depositing it to a thickness of 0.3 μm. Next, the tungsten layer 11 is selectively etched away using the photoresist film as a mask to form a desired wiring pattern.

ここで、第1の導体層として用いた硅化タングステン層
10の代りにタングステン、モリブデン、硅化モリブデ
ン、チタン、硅化チタン等半導体装置に用い得る導体材
料を用いても良い。
Here, instead of the tungsten silicide layer 10 used as the first conductor layer, a conductor material that can be used in semiconductor devices, such as tungsten, molybdenum, molybdenum silicide, titanium, and titanium silicide, may be used.

また、タングステンの気相成長にはSiH4還元反応を
用いることも可能であり、この場合、H2還元よりも速
い成長速度を得ることができる。
Further, it is also possible to use a SiH4 reduction reaction for vapor phase growth of tungsten, and in this case, a faster growth rate than H2 reduction can be obtained.

なお、前記実施例で用いたWF6の代りにトリイソブチ
ルアルミニウム(以下TIBAと記す)を用い、気相成
長によりアルミニウム堆積しても良い。TIBAは常温
では液体である為、HeあるいはArガスをバブリング
させこれにH2ガスを混合させてソースガスとして反応
室に導入する。また供給量を増加させる為に40℃程度
に昇温する。この場合も0.8μm成長させて第1図(
b)の状態が得られるがアルミニウム配線であることか
らタングステン層の場合に比べ低抵抗の配線が得られる
という利点がある。
Note that triisobutylaluminum (hereinafter referred to as TIBA) may be used instead of WF6 used in the above embodiment, and aluminum may be deposited by vapor phase growth. Since TIBA is a liquid at room temperature, He or Ar gas is bubbled, H2 gas is mixed with the bubbled gas, and the mixture is introduced into the reaction chamber as a source gas. Further, in order to increase the supply amount, the temperature is raised to about 40°C. In this case as well, the growth was made to a thickness of 0.8 μm as shown in Figure 1 (
Although the state b) is obtained, since the wiring is made of aluminum, it has the advantage that a wiring having a lower resistance can be obtained than in the case of a tungsten layer.

また、多層配線の上下配線間の接続を行う場合に適用す
ることも可能である。
Further, it is also possible to apply the present invention to the case where connections are made between upper and lower wirings of multilayer wiring.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、配線形成方法としてバイ
アススパッタリング方法により開口部内側壁の底部に厚
く第1の導体層を形成した後、気相成長法により第2の
導体層を開口部を含む表面に堆積することにより、素子
領域と電極配線を接続する為の微細な開口部内を第2の
導体層で完全に充填することができる。また第1の導体
層を開口部内部のみに堆積することによって層間絶縁膜
上に延在する配線は第2の導体層のみで形成される為、
配線の加工が容易となる。したがって、高集積度でかつ
高信頼性の集積回路装置が実現できる効果がある。
As explained above, in the present invention, as a wiring forming method, a first conductive layer is formed thickly at the bottom of the inner wall of the opening by a bias sputtering method, and then a second conductive layer is formed by a vapor phase growth method including the opening. By depositing it on the surface, the second conductor layer can completely fill the inside of the minute opening for connecting the element region and the electrode wiring. Furthermore, by depositing the first conductor layer only inside the opening, the wiring extending on the interlayer insulating film is formed only from the second conductor layer.
Wiring processing becomes easier. Therefore, it is possible to realize an integrated circuit device with high degree of integration and high reliability.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)、(b)は本発明の一実施例を説明するた
めの工程IImに示した半導体チップの断面図、第2図
乃至第4図は従来の半導体装置の製造方法の例を説明す
るための半導体チップの断面図である。 1・・・シリコン基板、2・・・フィールド酸化膜、3
a・・・ゲート電極、3b・・・配線、4・・・不純物
拡散層、5・・・層間絶縁膜、6・・・開口部、7.8
・・・導体層、9・・・空洞、10・・・硅化タングス
テン層、11・・・タングステン層。
FIGS. 1(a) and 1(b) are cross-sectional views of a semiconductor chip shown in step IIm for explaining an embodiment of the present invention, and FIGS. 2 to 4 are examples of a conventional method for manufacturing a semiconductor device. FIG. 2 is a cross-sectional view of a semiconductor chip for explaining. 1... Silicon substrate, 2... Field oxide film, 3
a... Gate electrode, 3b... Wiring, 4... Impurity diffusion layer, 5... Interlayer insulating film, 6... Opening, 7.8
... Conductor layer, 9... Cavity, 10... Tungsten silicide layer, 11... Tungsten layer.

Claims (1)

【特許請求の範囲】[Claims]  半導体素子領域を備えた半導体基板上に層間絶縁層を
設ける工程と、前記素子領域上の前記層間絶縁層を選択
的にエッチングして開口部を設ける工程と、前記開口部
内の側壁表面のみに第1の導体層をバイアス・スパッタ
リング法により堆積する工程と、前記開口部を含む前記
層間絶縁膜の表面に第2の導体層を堆積する工程と、前
記第2の導体層を選択的にエッチングして前記開口部の
素子領域とコンタクトし且つ前記層間絶縁層上に延在す
る電極配線を形成する工程とを含むことを特徴とする半
導体装置の製造方法。
a step of providing an interlayer insulating layer on a semiconductor substrate having a semiconductor element region; a step of selectively etching the interlayer insulating layer on the element region to form an opening; and a step of forming an opening only on the sidewall surface within the opening. a step of depositing a first conductor layer by a bias sputtering method, a step of depositing a second conductor layer on the surface of the interlayer insulating film including the opening, and a step of selectively etching the second conductor layer. forming an electrode wiring that contacts the element region of the opening and extends on the interlayer insulating layer.
JP10242089A 1989-04-21 1989-04-21 Manufacture of semiconductor device Pending JPH02281622A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10242089A JPH02281622A (en) 1989-04-21 1989-04-21 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10242089A JPH02281622A (en) 1989-04-21 1989-04-21 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH02281622A true JPH02281622A (en) 1990-11-19

Family

ID=14326958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10242089A Pending JPH02281622A (en) 1989-04-21 1989-04-21 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH02281622A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03190124A (en) * 1989-12-19 1991-08-20 Mitsubishi Electric Corp Semiconductor device
JP2008028046A (en) * 2006-07-19 2008-02-07 Ulvac Japan Ltd Thin-film forming method and copper wiring film forming method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03190124A (en) * 1989-12-19 1991-08-20 Mitsubishi Electric Corp Semiconductor device
JP2008028046A (en) * 2006-07-19 2008-02-07 Ulvac Japan Ltd Thin-film forming method and copper wiring film forming method

Similar Documents

Publication Publication Date Title
US5356836A (en) Aluminum plug process
JPH0360055A (en) Manufacturing method of integrated circuit
JPS6110256A (en) Method of automatically positioning mutual connection line to connecting hole of integrated circuit
US6313030B1 (en) Method of making a conductive layer covering a hole of decreasing diameter in an insulation layer in a semiconductor device
US5893758A (en) Etching method for reducing cusping at openings
US5384281A (en) Non-conformal and oxidizable etch stops for submicron features
US6046100A (en) Method of fabricating a fabricating plug and near-zero overlap interconnect line
JPH0418701B2 (en)
US5904561A (en) Method for forming a barrier metal film with conformal step coverage in a semiconductor intergrated circuit
JP2618460B2 (en) Method of forming electrical connection body
KR100364260B1 (en) A method for preparing of integrated circuit of semiconductor
JPH02281622A (en) Manufacture of semiconductor device
US5763324A (en) Method of manufacturing a semiconductor device with improved uniformity of buried conductor in contact holes
JPS61284937A (en) Semiconductor device and manufacture thereof
JPH0483336A (en) Manufacture of semiconductor device
JPH10340952A (en) Method for forming multilayer wiring in integrated circuit
KR100505629B1 (en) Method for filling a trench
JPH02152227A (en) Manufacture of semiconductor integrated circuit device
KR100352304B1 (en) Semiconductor device and method of manufacturing the same
JP3114640B2 (en) Method for manufacturing semiconductor device
JP2782912B2 (en) Method for manufacturing semiconductor device
JP3413697B2 (en) Wiring formation method
JPH04127425A (en) Manufacture of semiconductor integrated circuit
JPH0425159A (en) Forming method of electrode wiring
JPH02151034A (en) Manufacture of semiconductor device