JPH02281169A - Optical magnetic sensor - Google Patents

Optical magnetic sensor

Info

Publication number
JPH02281169A
JPH02281169A JP1102624A JP10262489A JPH02281169A JP H02281169 A JPH02281169 A JP H02281169A JP 1102624 A JP1102624 A JP 1102624A JP 10262489 A JP10262489 A JP 10262489A JP H02281169 A JPH02281169 A JP H02281169A
Authority
JP
Japan
Prior art keywords
optical
light
magneto
optical fiber
reflected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1102624A
Other languages
Japanese (ja)
Inventor
Masaaki Tojo
正明 東城
Tomoaki Ieda
知明 家田
Noboru Kurata
昇 倉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1102624A priority Critical patent/JPH02281169A/en
Publication of JPH02281169A publication Critical patent/JPH02281169A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent a short circuit current due to a surface current by perfectly separating a light output part and a light input part from a magnetic field detection part and reflecting the irradiation light to the magnetic detection part in a light source direction. CONSTITUTION:The propagation beam of an optical fiber 1 is brought to specific linear polarized beam by a polarizer 5 and subsequently converted to parallel beam 10 by a rod lens 3. The beam 10 transmits through a magnetooptic member 6 in a polarized state to be totally reflected by a corner cube mirror 7 and again transmitted through the member 6 to become reflected beam 11. A part of the reflected beam 11 is condensed by a rod lens 4 o transmit through the polarizer 5. This beam 11 transmits through the member 6 twice to be coupled with an optical fiber 2 shield the plane of polarization thereof is rotated and the quantity thereof is reduced. This fiber 2 is thicker than the fiber 1 and high in coupling efficiency and the coupled beam becomes propagation beam 9 to be transmitted to a signal processing part. By this constitution, a magnetic detection part is perfectly separated from the fibers 1, 2 and no short circuit current flows and the possibility of the damage of equipment can be perfectly eliminated.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、電力設備などの磁界を発生する機器の磁界強
度の測定に使用する磁界センサに関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a magnetic field sensor used to measure the magnetic field strength of equipment that generates a magnetic field, such as power equipment.

従来の技術 従来、この種の光磁気センサは第3図に示すような構成
であった。第3図において、21.22は光ファイバ、
23はロッドレンズ、24は磁気光学結晶、25は反射
ミラー、26は偏光子、27は入射光、28は出射光、
29.30は光ビームである。以下、光磁気センサには
外部から磁界が加えられているものとして、従来の光磁
気センサの機能・動作を示す。
2. Description of the Related Art Conventionally, this type of magneto-optical sensor has had a configuration as shown in FIG. In Figure 3, 21.22 is an optical fiber,
23 is a rod lens, 24 is a magneto-optic crystal, 25 is a reflecting mirror, 26 is a polarizer, 27 is incident light, 28 is outgoing light,
29.30 is a light beam. Hereinafter, the functions and operations of a conventional magneto-optical sensor will be described assuming that a magnetic field is applied to the magneto-optical sensor from the outside.

光ファイバ21を伝搬する光27は二酸化チタン(Ti
O2)からなる偏光子26を透過した後、ロッドレンズ
23で光ビーム29に変換され、YIG結晶24に入射
する。YIG結晶24に入射した光ビーム29は反射ミ
ラー25で反射され、再びYIG結晶24に入射する。
The light 27 propagating through the optical fiber 21 is made of titanium dioxide (Ti
After passing through a polarizer 26 made of O2), it is converted into a light beam 29 by a rod lens 23, and enters a YIG crystal 24. The light beam 29 that has entered the YIG crystal 24 is reflected by the reflecting mirror 25 and enters the YIG crystal 24 again.

反射ビーム30はロッドレンズ23で集光され、偏光子
26を透過した後、光ファイバ22に入射し、光28と
して光フアイバ22内を伝搬する。
The reflected beam 30 is focused by the rod lens 23, passes through the polarizer 26, enters the optical fiber 22, and propagates within the optical fiber 22 as light 28.

第4図に示すように、YIG結晶24に磁界が加えられ
ているとYIG結晶24内を光が進行する毎に光の偏光
面が回転する。さらに、磁界の強度が異なると偏光面の
回転の度合いが異なると言う性質を有する。したがって
、YIG結晶24内に入射する前の光ビーム29の偏光
面とYIG結晶24を透過した後の反射ビーム30の偏
光面は異なっている。偏光子26は光ビーム29は損失
なく透過するように設けられているが、光ビーム30は
偏光面が回転しているために偏光子26を透過すること
で損失が生じる。この光の損失量は加えられた磁界強度
により変化するので、磁界の変化を光の大きさで検出で
きることとなる。
As shown in FIG. 4, when a magnetic field is applied to the YIG crystal 24, the plane of polarization of the light rotates each time the light travels within the YIG crystal 24. Furthermore, it has a property that the degree of rotation of the plane of polarization differs when the strength of the magnetic field differs. Therefore, the plane of polarization of the light beam 29 before entering the YIG crystal 24 and the plane of polarization of the reflected beam 30 after passing through the YIG crystal 24 are different. The polarizer 26 is provided so that the light beam 29 passes therethrough without loss, but since the plane of polarization of the light beam 30 is rotated, a loss occurs when the light beam 30 passes through the polarizer 26 . Since the amount of loss of this light changes depending on the strength of the applied magnetic field, changes in the magnetic field can be detected by the intensity of the light.

発明が解決しようとする課題 このような従来の構成では、光磁気センサを電力設備等
に設置した場合、電力設備とセンシング信号処理部を光
ファイバで結ぶことになる。光ファイバは高い絶縁性を
持つが、光ファイバを保護する被覆は老化するに従い表
面電流を流し易くなる。光磁気センサを高電圧設備等に
設置した場合には、絶縁物であろうとも高電圧部と他の
設備とを有線で結ぶ限り、表面電流による短絡電流が発
生して電力設備が破損する可能性が極めて高くなると言
う問題があった。
Problems to be Solved by the Invention In such a conventional configuration, when a magneto-optical sensor is installed in a power facility or the like, the power facility and the sensing signal processing section are connected by an optical fiber. Optical fibers have high insulation properties, but as the coating that protects the optical fibers ages, surface currents tend to flow through them. When a magneto-optical sensor is installed in high-voltage equipment, etc., as long as the high-voltage part and other equipment are connected with wires, even if they are insulated, short-circuit currents due to surface current may occur and damage the power equipment. There was a problem that the sex was extremely high.

本発明はこのような課題を解決するもので、表面電流等
による短絡電流を完全に防止する光磁気センサを提供す
るものである。
The present invention solves these problems and provides a magneto-optical sensor that completely prevents short-circuit currents caused by surface currents and the like.

課題を解決するための手段 この課題を解決するために本発明は、光の出力および入
力部と磁界検知部を完全に分離し、磁界検出部に照射さ
れた光を光源方向に反射するようにしたものである。
Means for Solving the Problem In order to solve this problem, the present invention completely separates the light output and input section from the magnetic field detection section, and reflects the light irradiated to the magnetic field detection section in the direction of the light source. This is what I did.

作用 この構成により、磁気検知部は光ファイバから完全に離
れており短絡電流は流れないので、電力設備が破損する
可能性を完全になくす、ことができることとなる。
Effect: With this configuration, the magnetic detection section is completely separated from the optical fiber and no short-circuit current flows, making it possible to completely eliminate the possibility of damage to the power equipment.

実施例 第1図は本発明の一実施例による光磁気センサの構成を
示すものであり、第1図において、1゜2は光ファイバ
、3,4はロッドレンズ、5は偏光選択素子、6は磁気
光学部材、7はコーナーキューブミラー、8,9は光フ
ァイバで伝送される光の伝送方向を示す矢印、10.1
1は光の進行方向を示す矢印である。なお、磁気光学部
材6には磁界が加えられているものとする。
Embodiment FIG. 1 shows the configuration of a magneto-optical sensor according to an embodiment of the present invention. In FIG. 1, 1°2 is an optical fiber, 3 and 4 are rod lenses, 5 is a polarization selection element, and 6 10.1 is a magneto-optical member; 7 is a corner cube mirror; 8 and 9 are arrows indicating the transmission direction of light transmitted through the optical fiber;
1 is an arrow indicating the direction in which light travels. Note that it is assumed that a magnetic field is applied to the magneto-optical member 6.

まず始めに、コーナーキューブミラーの機能について説
明する。第2図にコーナーキューブミラー構成を示す。
First of all, I will explain the function of the corner cube mirror. FIG. 2 shows a corner cube mirror configuration.

同図(a)に示したコーナーキューブミラー12は互い
に直角な3つの反射平面からなる反射部(コーナーキュ
ーブ)13を複数個同一平面に配置したものである。同
図(b)はこのコーナーキューブ12の光の反射の様子
を示すもので、入射光14はコーナーキューブ12の内
部で完全反射を3回行い、反射光15は反射光14にフ
〔シて1.80度の方向に射出する。この動作は入射光
14の入射角゛に全く依存せず、光の入射方向に必ず反
射する。なお、3回反射するので反射光の位相状態は1
回の反射とほぼ同しである。コア径100μmの光ファ
イバlを伝搬する光8は偏光子5(a)を透過し、特定
の直線偏光にされた後、ロッドレンズ3で平行ビーム1
0に変換される。
The corner cube mirror 12 shown in FIG. 1A has a plurality of reflecting portions (corner cubes) 13 each consisting of three reflecting planes perpendicular to each other arranged on the same plane. Figure (b) shows how light is reflected by the corner cube 12. The incident light 14 is completely reflected three times inside the corner cube 12, and the reflected light 15 is attached to the reflected light 14. 1.Eject in the direction of 80 degrees. This operation is completely independent of the incident angle of the incident light 14, and the light is always reflected in the direction of incidence. Note that since it is reflected three times, the phase state of the reflected light is 1.
It is almost the same as the reflection of the times. Light 8 propagating through an optical fiber 1 with a core diameter of 100 μm is transmitted through a polarizer 5 (a) and converted into a specific linearly polarized light, and then transformed into a parallel beam 1 by a rod lens 3.
Converted to 0.

その偏光を保ったまま光ビーム10は直径1 cm、厚
み300μmのYIG結晶板6に入射する。この入射光
はYIG結晶板6を透過してコーナーキューブミラー7
で全反射された後、再びYIG結晶板6を透過し、反射
ビーム11となってその一部がロッドレンズ4に入射す
る。ロッドレンズ4はこの光を集光し、検光子5(b)
を透過する。反射ビーム11はYIG結晶板6を2回透
過し、その偏光面は回転しているために、検光子5(b
)を透過するときにその光量が減少する。検光子5(b
)を透過した光だけがコア径200μmの光ファイバ2
に結合する。受光用光ファイバ2は送信用光ファイバ1
よりも太いので結合効率が大変高く、結合した光は伝搬
光9となって信号処理部(図示ぜず)に伝送される。
The light beam 10 enters a YIG crystal plate 6 with a diameter of 1 cm and a thickness of 300 μm while maintaining its polarization. This incident light passes through the YIG crystal plate 6 and the corner cube mirror 7
After being totally reflected, the beam passes through the YIG crystal plate 6 again, becomes a reflected beam 11, and a portion of the reflected beam 11 enters the rod lens 4. The rod lens 4 collects this light, and the analyzer 5(b)
Transparent. The reflected beam 11 passes through the YIG crystal plate 6 twice, and its plane of polarization is rotated, so the analyzer 5 (b
), the amount of light decreases when it passes through. Analyzer 5 (b
) Only the light transmitted through optical fiber 2 with a core diameter of 200 μm
join to. The receiving optical fiber 2 is the transmitting optical fiber 1
The coupling efficiency is very high because the coupling efficiency is very high, and the coupled light becomes propagating light 9 and is transmitted to a signal processing section (not shown).

発明の効果 以上のように本発明によれば、1個のロッドレンズと、
光軸を用いて設けた1本の光ファイバと、上記ロッドレ
ンズおよび光ファイバの間に設けた偏光子から構成し並
列に設けた2組の光コリメータからなる光送信/受信部
と、板状の磁気光学結晶とコーナーキューブからなる検
知部から構成され、光送信部から出射した光が磁気光学
結晶を透過した後コーナーキューブで反射され、再度磁
気光学結晶を透過して光受信部に入力するようにしたこ
とにより、光送信/受信部と磁界検知部が完全に分離し
ているために、検知部から光送信/受信部に短絡電流が
流れることがないと言う効果が得られる。さらに、検知
部と光送信/受信部が離れているので、使用する光波長
に対して透明な容器に密閉したものの中に検知部を設置
して使用することができると言う効果が得られる。
Effects of the Invention As described above, according to the present invention, one rod lens,
An optical transmitting/receiving section consisting of one optical fiber provided using the optical axis and two sets of optical collimators arranged in parallel, each consisting of a polarizer provided between the rod lens and the optical fiber, and a plate-shaped The light emitted from the optical transmitter passes through the magneto-optic crystal, is reflected by the corner cube, passes through the magneto-optic crystal again, and enters the optical receiver. By doing this, since the optical transmitting/receiving section and the magnetic field detecting section are completely separated, it is possible to obtain the effect that a short circuit current does not flow from the detecting section to the optical transmitting/receiving section. Furthermore, since the detection section and the optical transmitting/receiving section are separated, there is an advantage that the detection section can be installed and used inside a sealed container that is transparent to the wavelength of light used.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例による光磁気センサを示す構成
図、第2図は本発明の実施例による光磁気センサで使用
した反射ミラー(コーナーキューブミラー)の構成およ
び動作を示した図、第3図は従来の光磁気センサの構成
を示した図、第4図は磁界中における磁気光学結晶中の
光の偏光面の変化の仕方を説明した図である。 1.2・・・・・・光ファイバ、3,4・・・・・・ロ
ッドレンズ、5・・・・・・偏光選択素子、6・・・・
・・磁気光学部材、7・・・・・・コーナーキューブミ
ラー 8,9・・・・・・光ファイバで伝送される光の
伝送方向を示す矢印、10.11・・・・・・光の進行
方向を示す矢印、12・・・・・・コーナーキューブミ
ラー 13・・・・・・互いに直角な3つの反射平面か
らなる反射部(コーナーキューブ)、14・・・・・・
入射光、15・・・・・・反射光。 代理人の氏名 弁理士 粟野重孝 ほか1名第1図 一光フアイバ ーロッドレンズ 一鳴光遜訊素芸 磁気光宇部材 コーナー午ユープミラー 一光ファイバ1イ云迭、される 光の方向を示す矢印 lθ、l/−光の進行方向′FL示″′を矢印? Oつ 城 ト笥 N
FIG. 1 is a configuration diagram showing a magneto-optical sensor according to an embodiment of the present invention, and FIG. 2 is a diagram showing the configuration and operation of a reflecting mirror (corner cube mirror) used in the magneto-optical sensor according to an embodiment of the present invention. FIG. 3 is a diagram showing the configuration of a conventional magneto-optical sensor, and FIG. 4 is a diagram illustrating how the plane of polarization of light in a magneto-optic crystal changes in a magnetic field. 1.2... Optical fiber, 3, 4... Rod lens, 5... Polarization selection element, 6...
...Magneto-optical member, 7...Corner cube mirror 8,9...Arrow indicating the transmission direction of light transmitted by optical fiber, 10.11... Arrow indicating the direction of travel, 12... Corner cube mirror 13... Reflection section (corner cube) consisting of three mutually perpendicular reflecting planes, 14...
Incident light, 15...Reflected light. Name of agent: Patent attorney Shigetaka Awano and one other person Figure 1: Optical fiber rod lens: Optical fiber rod lens; Is the traveling direction of light 'FL indication' an arrow?

Claims (1)

【特許請求の範囲】[Claims] (1)偏光選択素子を挟み光軸を一致して設けた1個の
ロッドレンズと、光ファイバとから構成した第1、第2
の光コリメータを並列に設けて構成した光送信/受信部
と、板状の磁気光学部材と上記磁気光学部材の片面に設
けたコーナーキューブとから構成した検知部とからなり
、上記光送信部/受信部の第1の光コリメータから出射
した光が検知部の磁気光学部材に照射・透過した後、上
記コーナーキューブミラーで反射され、この反射光が上
記送信部/受信部の第2の光コリメータに入射すること
を特徴とする光磁気センサ。 2 第2の光コリメータの光ファイバのコア径が第1の
光コリメータの光ファイバのコア径よりも大きいことを
特徴とする特許請求の範囲第1項記載の光磁気センサ。
(1) A first and a second lens consisting of a rod lens with a polarization selection element sandwiched in between and having optical axes aligned with each other, and an optical fiber.
The optical transmitting/receiving section is composed of an optical transmitting/receiving section configured by installing optical collimators in parallel, and a detecting section configured from a plate-shaped magneto-optical member and a corner cube provided on one side of the magneto-optical member. After the light emitted from the first optical collimator of the receiving section irradiates and passes through the magneto-optical member of the detecting section, it is reflected by the corner cube mirror, and this reflected light is transmitted to the second optical collimator of the transmitting section/receiving section. A magneto-optical sensor characterized in that the light is incident on the sensor. 2. The magneto-optical sensor according to claim 1, wherein the core diameter of the optical fiber of the second optical collimator is larger than the core diameter of the optical fiber of the first optical collimator.
JP1102624A 1989-04-21 1989-04-21 Optical magnetic sensor Pending JPH02281169A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1102624A JPH02281169A (en) 1989-04-21 1989-04-21 Optical magnetic sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1102624A JPH02281169A (en) 1989-04-21 1989-04-21 Optical magnetic sensor

Publications (1)

Publication Number Publication Date
JPH02281169A true JPH02281169A (en) 1990-11-16

Family

ID=14332397

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1102624A Pending JPH02281169A (en) 1989-04-21 1989-04-21 Optical magnetic sensor

Country Status (1)

Country Link
JP (1) JPH02281169A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6232763B1 (en) 1993-03-29 2001-05-15 Matsushita Electric Industrial Co., Ltd. Magneto-optical element and optical magnetic field sensor
JP2008523401A (en) * 2004-12-13 2008-07-03 シュランベルジェ、ホールディング、リミテッド Magneto-optic sensor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6232763B1 (en) 1993-03-29 2001-05-15 Matsushita Electric Industrial Co., Ltd. Magneto-optical element and optical magnetic field sensor
EP1176427A2 (en) * 1993-03-29 2002-01-30 Matsushita Electric Industrial Co., Ltd. Magneto-optical element and optical magnetic field sensor
EP1176427A3 (en) * 1993-03-29 2002-07-03 Matsushita Electric Industrial Co., Ltd. Magneto-optical element and optical magnetic field sensor
JP2008523401A (en) * 2004-12-13 2008-07-03 シュランベルジェ、ホールディング、リミテッド Magneto-optic sensor

Similar Documents

Publication Publication Date Title
US5475489A (en) Determination of induced change of polarization state of light
EP0054411B1 (en) Optical arrangement for optically coupling optical fibres
CA2474200C (en) Current measuring apparatus
JPH0475470B2 (en)
US4998063A (en) Fiber optic coupled magneto-optic sensor having a concave reflective focusing surface
US6049412A (en) Reflective Faraday-based optical devices including an optical monitoring tap
JPH0283523A (en) Optical isolator
JPH02281169A (en) Optical magnetic sensor
JP4868310B2 (en) Photocurrent sensor
JPH0322595B2 (en)
JP3145798B2 (en) Optical magnetic field sensor and magnetic field measuring device
JPS61212773A (en) Photosensor
JP6753581B2 (en) Optical measuring device
JPH0782036B2 (en) Optical fiber type voltage sensor
JPH0618567A (en) Optical-fiber current sensor
JPS5899761A (en) Electric field/magnetic field measuring apparatus with light
JPS6135321A (en) Optical sensor
JPS62150210A (en) Semiconductor laser and optical fiber coupling module with optical isolator
JP2666362B2 (en) Optical pulse tester
JPS6130247B2 (en)
JPH05232406A (en) Optical circulator
JPS58146858A (en) Optical current and magnetic field measuring device
JPH09274056A (en) Current measuring device for optical fiber
JPS6264969A (en) Optical fiber type current sensor
JPS6236579A (en) Optical current and magnetic field measuring apparatus