JPH02280106A - Optical fiber cable - Google Patents

Optical fiber cable

Info

Publication number
JPH02280106A
JPH02280106A JP1102019A JP10201989A JPH02280106A JP H02280106 A JPH02280106 A JP H02280106A JP 1102019 A JP1102019 A JP 1102019A JP 10201989 A JP10201989 A JP 10201989A JP H02280106 A JPH02280106 A JP H02280106A
Authority
JP
Japan
Prior art keywords
film
optical fiber
cable
fiber cable
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1102019A
Other languages
Japanese (ja)
Other versions
JP2765039B2 (en
Inventor
Taiichi Kurome
泰一 黒目
Nobuaki Ito
伸明 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP1102019A priority Critical patent/JP2765039B2/en
Publication of JPH02280106A publication Critical patent/JPH02280106A/en
Application granted granted Critical
Publication of JP2765039B2 publication Critical patent/JP2765039B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Abstract

PURPOSE:To obtain a low-cost optical fiber cable having superior heat resistance and superior characteristics at low temp. by using a specified arom. polyamide film as a heat resistant film for a coating layer. CONSTITUTION:A coating layer made of a heat resistant film is formed around an assembly composed of coated single- or multi-core optical fibers, a buffer layer and bodies having high tensile strength. The heat resistant film is an arom. polyamide film having 2-20mum thickness, <=3.5X10<-5>/ deg.C coefft. of thermal expansion in the longitudinal direction and <=5.0% rate of shrinkage at 250 deg.C. A low-cost cable hardly reducing transmission efficiency even in an environment at high or low temp. can be obtd.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は光ファイバーケーブルに関し、さらに詳しくは
耐熱、耐低温安定性が要求される光ファイバーケーブル
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an optical fiber cable, and more particularly to an optical fiber cable that requires heat resistance and low temperature stability.

[従来の技術] 光ファイバーケーブルは大容量通信を可能にすることか
らその応用範囲が拡大しており、長距離通信網の基幹回
線などに利用される場合も増加している。このような状
況の下で光ファイバーケーブルは種々の環境下に置かれ
ることになり、耐熱あるいは耐低温特性に優れたケーブ
ルの開発が重要になってきている。
[Prior Art] Optical fiber cables have expanded their range of applications because they enable large-capacity communications, and are increasingly being used as backbone lines in long-distance communication networks. Under these circumstances, optical fiber cables are placed in various environments, and it has become important to develop cables with excellent heat resistance or low temperature resistance.

光ファイバーケーブルの対温度安定性は光ファイバー心
線の温度特性もさることながら、その被覆材の特性に依
存する部分が大きく、被覆層の寸法変化が光ファイバー
心線に与えるマイクロベンディングによって伝送損失が
増大するため、被覆層の材質あるいは構造の選定は重要
である。これにより、ケーブルの被覆材としては従来の
ナイロン、ポリエチレン、塩化ビニルなどに対してより
耐熱性の高いフッ素系樹脂(FEP:フッ化エチレン・
フッ化プロピレン共重合体、PFA:ポリテトラフルオ
ロエチレン・パーフロオロアルキルビニルエーテル共重
合体など)、ポリアミドイミド、ポリスルホン、ポリエ
ーテルスルホン、ポリイミドなどの樹脂が用いられるよ
うになってきている。
The temperature stability of an optical fiber cable depends not only on the temperature characteristics of the optical fiber core, but also on the properties of its coating material, and transmission loss increases due to microbending caused by dimensional changes in the coating layer on the optical fiber core. Therefore, selection of the material or structure of the covering layer is important. As a result, fluorine-based resin (FEP: fluorinated ethylene resin) has higher heat resistance than conventional nylon, polyethylene, vinyl chloride, etc.
Resins such as fluorinated propylene copolymer, PFA (polytetrafluoroethylene/perfluoroalkyl vinyl ether copolymer, etc.), polyamideimide, polysulfone, polyethersulfone, polyimide, etc. have come to be used.

し発明が解決しようとする課題] 光ファイバーケーブルの被覆層として前述の樹脂を押出
成形あるいはコーティングによって成形する場合には、
成形時の歪の発生が大きく、機械的強度も小さいため、
テープ状に加工した耐熱フィルムをケーブル外周部にス
パイラル状に巻回することが例えば特開昭62−194
208などで提案されている。しかし、一般に耐熱フィ
ルムと呼ばれるものの中でも、ポリスルホン、ポリエテ
ルスルホン、ポリエーテルイミドなどの非品性樹脂から
成るフィルムは、ケーブル外周への巻回のように応力下
で小さな曲率で保持されるとひび割れを起こすストレス
クラッキングという現象を生じるために不適である。一
方、ポリイミドフィルムなどは結晶性樹脂であるため前
記のような問題は生じないが、それらは一般に高価であ
り、特にフィルム厚さが20μmより薄い場合には製造
が難しくなるためこの傾向がより強い。このフィルムの
厚さについては、ケーブルを軽量化する、あるいは光フ
ァイバー心線に与える側圧を減少させるという点から薄
い方がケーブル特性上好ましい。
[Problems to be Solved by the Invention] When molding the above-mentioned resin as a coating layer of an optical fiber cable by extrusion molding or coating,
Due to the large amount of distortion generated during molding and low mechanical strength,
For example, in Japanese Patent Application Laid-Open No. 62-194, a heat-resistant film processed into a tape shape is wound spirally around the outer circumference of the cable.
208, etc. However, even among what are generally called heat-resistant films, films made of non-grade resins such as polysulfone, polyethersulfone, and polyetherimide tend to crack when held under stress with a small curvature, such as when wrapped around the outer circumference of a cable. It is unsuitable because it causes a phenomenon called stress cracking. On the other hand, since polyimide films are crystalline resins, they do not suffer from the above-mentioned problems, but they are generally expensive and are particularly difficult to manufacture when the film thickness is less than 20 μm, so this tendency is stronger. . Regarding the thickness of this film, it is preferable from the viewpoint of cable characteristics that it be thinner in order to reduce the weight of the cable or to reduce the lateral pressure applied to the optical fiber core wire.

本発明は以上のような課題を解決し、耐熱耐低温特性に
優れ、安価な光ファイバーケーブルを提供することを目
的とするものである。
It is an object of the present invention to solve the above-mentioned problems and provide an inexpensive optical fiber cable that has excellent heat and low temperature resistance characteristics.

[課題を解決するための手段] 本発明は、単心または複数心の光ファイバー心線と緩衝
層および/または抗張力体とから成る集合体の外周に、
耐熱フィルムから成る被覆層を設けた光ファイバーケー
ブルにおいて、該耐熱フィルムが厚さ2μm以上20μ
m以下、フィルム長手方向の熱膨張係数が3. 5 x
 10−’ (1/’C)以下、250℃での熱収縮率
が5.0%以下の芳香族ポリアミドフィルムであること
を特徴とするものである。
[Means for Solving the Problems] The present invention provides a structure in which, on the outer periphery of an assembly consisting of a single-core or multi-core optical fiber, a buffer layer and/or a tensile strength member,
In an optical fiber cable provided with a coating layer made of a heat-resistant film, the heat-resistant film has a thickness of 2 μm or more and 20 μm or more.
m or less, the coefficient of thermal expansion in the longitudinal direction of the film is 3. 5 x
It is characterized by being an aromatic polyamide film having a heat shrinkage rate of 10-'(1/'C) or less and a heat shrinkage rate of 5.0% or less at 250°C.

本発明で使用する光ファイバー心線は、石英、多成分ガ
ラスなどから成る光ファイバーにUV硬化塗料、シリコ
ン樹脂、ナイロン樹脂などの被覆を施したものでその構
成に特に限定はない。またグレーティドインデックス形
、ステップインデックス形、その他種々のものから選択
することができる。
The optical fiber core used in the present invention is an optical fiber made of quartz, multi-component glass, etc., coated with UV curing paint, silicone resin, nylon resin, etc., and its structure is not particularly limited. Further, it is possible to select from various types such as a graded index type, a step index type, and others.

本発明における芳香族ポリアミドフィルムとは、一般式 %式% で示される繰返し構成単位を単独または共重合の形で含
む芳香族ポリアミド重合体を少なくとも80%以上含む
重合体から成るフィルムである。
The aromatic polyamide film in the present invention is a film made of a polymer containing at least 80% or more of an aromatic polyamide polymer containing repeating units represented by the general formula %, either alone or in copolymerized form.

ここでAr、、Ar2.Ar、は少なくとも1個の芳香
環を含み、同一でも異なっていてもよく、これらの代表
例としては次のものが挙げられる。
Here, Ar, , Ar2. Ar contains at least one aromatic ring, which may be the same or different, and representative examples thereof include the following.

ここでXは、 0− −CH2−、−8o2 H3 S〜、   −CO−−C CH3 から選ばれる。またこれらの芳香環の環上の水素原子の
一部がハロゲン基、ニトロ基、01〜c3のアルキル基
、C1〜C3のアルコキシ基から選ばれる置換基で置換
されているものも含み、さらに上記一般式中でアミド結
合を構成する窒素原子に結合する水素原子が置換基で置
換されているものも含む。
Here, X is selected from 0--CH2-, -8o2H3S~, -CO--CCH3. These aromatic rings also include those in which a portion of the hydrogen atoms on the ring are substituted with a substituent selected from a halogen group, a nitro group, an 01-c3 alkyl group, and a C1-C3 alkoxy group. It also includes those in which the hydrogen atom bonded to the nitrogen atom constituting the amide bond in the general formula is substituted with a substituent.

これらの芳香族ポリアミドの内、重合体中のベンゼン環
の50%以上がパラ位で結合されているものがフィルム
に成形した場合にヤング率が大きくなり易く、したがっ
て薄いフィルムが製造し易い点で好ましく、さらにベン
ゼン環の40%以上が環上の水素原子の一部をハロゲン
基などで置換されているものが、湿度膨張係数が小さく
なる点において好ましい。
Among these aromatic polyamides, those in which 50% or more of the benzene rings in the polymer are bonded at the para position tend to have a large Young's modulus when formed into a film, and are therefore easy to manufacture into thin films. Preferably, 40% or more of the benzene rings have some of the hydrogen atoms on the rings substituted with halogen groups, etc., from the viewpoint of reducing the humidity expansion coefficient.

本発明の芳香族ポリアミドフィルムの厚さは2μm以上
20μm以下、好ましくは2μm以上10μmである。
The thickness of the aromatic polyamide film of the present invention is 2 μm or more and 20 μm or less, preferably 2 μm or more and 10 μm or less.

2μm未満ではフィルムの巻回操作が、フィルムのステ
ィフネス(腰の強さ)が小さいために著しく困難になる
ため好ましくなく、またフィルムが20μmを越える厚
い場合には、フィルムをスパイラル状に重ね巻きあるい
は開き巻きした時に生じる段差(フィルムが重なってい
る部分と重ならない部分との差)が大きくなり、この部
分での光ファイバー心線への側圧の変動が大きくなるた
めに一種のマイクロベンディングのような状態を引き起
こして伝送損失が増大するために好ましくない。このよ
うな薄いフィルムは、ポリイミドフィルムでは製造する
ことが困難であり製造された場合でも非常に高価になる
のであるが、芳香族ポリアミドフィルムの場合は製造方
法の点からも、フィルムの高ヤング率化が容易である点
からも薄いフィルムが安価に精度良く製造できるため有
利である。この点からフィルムの長手方向のヤング率は
500 (kg/mm2)以上であることが好ましい。
If the thickness is less than 2 μm, it is undesirable to wind the film because it becomes extremely difficult due to the low stiffness of the film, and if the film is thicker than 20 μm, it may be necessary to wind the film spirally. The difference in level (difference between the overlapped part and the non-overlapping part of the film) that occurs when the film is unfolded becomes large, and the fluctuation of the lateral pressure on the optical fiber at this part becomes large, resulting in a kind of micro-bending situation. This is undesirable because it causes an increase in transmission loss. It is difficult to produce such a thin film using polyimide film, and even if it is produced, it is very expensive.However, in the case of aromatic polyamide film, the film has a high Young's modulus due to the manufacturing method. It is advantageous in that thin films can be manufactured at low cost and with high precision in terms of ease of production. From this point of view, the Young's modulus of the film in the longitudinal direction is preferably 500 (kg/mm2) or more.

寸法安定性の面から本発明の芳香族ポリアミドフィルム
の熱膨張係数は長手方向について3.5x 10−5(
1/’C)以下、好ましくは2.5X10−’(1/℃
)以下であり、この範囲から外れる場合には光ファイバ
ー心線あるいは抗張力体として使用されるスチール線、
芳香族ポリアミド繊維などの熱膨張係数との差が大きく
なり、特に低温下でフィルムの収縮が大きくなってケー
ブル長軸方向にフィルムが引張るような状態となってケ
ーブルにマイクロベンディングを生じさせ、光の伝送損
失が増加するため不適である。
In terms of dimensional stability, the thermal expansion coefficient of the aromatic polyamide film of the present invention is 3.5x 10-5 (
1/'C) or less, preferably 2.5X10-'(1/'C) or less
) or less, and if outside this range, steel wire used as optical fiber core or tensile strength body,
The difference between the coefficient of thermal expansion and that of aromatic polyamide fibers, etc. becomes large, and the shrinkage of the film becomes large, especially at low temperatures, causing the film to be stretched in the long axis direction of the cable, causing microbending in the cable. It is unsuitable because the transmission loss increases.

一方、高温下での寸法安定性という面から、本発明のフ
ィルムの熱収縮率は長手方向について、250℃で5.
0%以下、好ましくは3.0%以下である。この特性に
は2つの側面があり、1つはケーブルが高温に曝された
時にフィルムの収縮によって光ファイバー心線が締め付
けられて伝送損失が増加することを防ぐ意味と、ケーブ
ル製造工程においてフィルム巻回層の外側に耐熱樹脂を
押出し成形あるいはコーティング等によって積層する際
の加熱によって同様の現象が起こることを防ぐ意味とが
ある。
On the other hand, in terms of dimensional stability at high temperatures, the heat shrinkage rate of the film of the present invention is 5.5 at 250°C in the longitudinal direction.
It is 0% or less, preferably 3.0% or less. This characteristic has two aspects: one is to prevent the optical fiber core from being tightened due to film shrinkage when the cable is exposed to high temperatures, increasing transmission loss, and the other is to prevent the film from being wound during the cable manufacturing process. The purpose is to prevent a similar phenomenon from occurring due to heating when a heat-resistant resin is laminated on the outside of the layer by extrusion molding or coating.

次に本発明の光ファイバーケーブルの製造方法について
説明する。
Next, a method for manufacturing an optical fiber cable according to the present invention will be explained.

被覆層に用いる芳香族ポリアミドフィルムは以下の方法
によって得られる。まず芳香族ポリアミドの重合はアミ
ド系溶媒中での低温溶液重合や水系媒体を用いた界面重
合法などの公知の重合法により行なうことができる。次
に重合で得られたポリマー溶液あるいはポリマーを単離
した後に溶媒に再溶解したポリマー溶液からフィルムを
製膜する。
The aromatic polyamide film used for the coating layer can be obtained by the following method. First, the aromatic polyamide can be polymerized by a known polymerization method such as low-temperature solution polymerization in an amide solvent or interfacial polymerization using an aqueous medium. Next, a film is formed from a polymer solution obtained by polymerization or a polymer solution obtained by isolating the polymer and redissolving it in a solvent.

製膜は公知の溶液製膜法によって行なうことができ、乾
式、湿式、乾湿式などの区別が溶液製膜法にはあるが、
いずれでも良く特に限定されない。
Film formation can be performed by a known solution film forming method, and there are distinctions among solution film forming methods such as dry method, wet method, dry-wet method, etc.
Any one is fine and there is no particular limitation.

製膜中に通常フィルムは、250〜350℃で0゜1〜
10分間程度の熱処理とフィルム長手方向、幅方向に1
.0〜5.0倍程度の延伸が施されるが、これらの操作
条件はフィルム特性のうち特に熱収縮率や熱膨張係数な
どに影響するため、ポリマー組成に応じて本発明に必要
な特性値となるように条件を適宜選択する。−船釣には
熱処理は温度が高く長時間である程、延伸は倍率が小さ
い程、熱収縮率は小さく熱膨張係数は大きくなる傾向に
ある。
During film formation, the film is usually heated at 0°1 to 250°C to 350°C.
Heat treatment for about 10 minutes and heat treatment in the longitudinal and width directions of the film.
.. Stretching is performed by approximately 0 to 5.0 times, but these operating conditions affect the film properties, especially the thermal shrinkage rate and coefficient of thermal expansion, so the characteristic values required for the present invention may vary depending on the polymer composition. Select conditions appropriately so that -For boat fishing, the higher the temperature and the longer the heat treatment, and the lower the stretching ratio, the lower the thermal contraction rate and the higher the thermal expansion coefficient.

かくして得られたフィルムはテープ状にスリットした後
、光ファイバー心線と緩衝層および/または抗張力体と
から成る集合体の外周に、重ね巻きあるいは開き巻きで
スパイラル状に巻回される。
The film thus obtained is slit into a tape shape, and then spirally wound around the outer periphery of an assembly consisting of an optical fiber core, a buffer layer, and/or a tensile strength member, in an overlapping or open winding manner.

ここで光ファイバー心線と緩衝層、抗張力体の材質、構
造については本発明では特に限定はない。
Here, the present invention does not particularly limit the materials and structures of the optical fiber core, buffer layer, and tensile strength body.

テープ状のフィルムを巻回後、必要に応じてフッ素系樹
脂などの耐熱樹脂を押出し成形あるいはコーティングな
どの方法によってフィルム外面に積層し、本発明の光フ
ァイバーケーブルが製造される。得られた光ファイバー
ケーブルは単独で使用されてもよく、また電カケープル
内に埋設されたような状態で使用されてもよく特に限定
されない。
After winding the tape-shaped film, a heat-resistant resin such as a fluororesin is laminated on the outer surface of the film by extrusion molding or coating, as necessary, to produce the optical fiber cable of the present invention. The obtained optical fiber cable may be used alone or may be used embedded in an electric cable without any particular limitation.

[用途] 以上のようにして製造された光ファイバーケープルは一
般の光通信用ケーブルとして使用することができるが、
特に屋外に架設されるような環境変動の大きな用途に好
適に使用することができる。
[Application] The optical fiber cable manufactured as described above can be used as a general optical communication cable.
In particular, it can be suitably used in applications where the environment is subject to large fluctuations, such as those installed outdoors.

[特性の評価方法] 本発明の特性値の評価方法は次のとおりである。[Characteristics evaluation method] The method for evaluating characteristic values of the present invention is as follows.

(1)熱膨張係数 熱機械分析計(TMA)を用いて、熱収縮や吸脱湿の影
響を除くためにフィルムを一旦150℃まで加熱後、徐
々に冷却した時の80℃〜150℃の間の範囲における
寸法変化から計算した。
(1) Using a thermal expansion coefficient thermomechanical analyzer (TMA), the film was heated to 150°C and then gradually cooled to eliminate the effects of thermal contraction and moisture absorption and desorption. Calculated from dimensional changes in the range between.

(2)熱収縮率 幅10mm、試長100mmのフィルムサンプルを、無
荷重で、250℃の熱風オーブン中で10分間熱処理を
行ない、次式によって熱収縮率(%)を算出した。
(2) Heat Shrinkage A film sample with a width of 10 mm and a sample length of 100 mm was heat treated in a hot air oven at 250° C. for 10 minutes without any load, and the heat shrinkage (%) was calculated using the following formula.

[実施例] 本発明を実施例に基づいて説明する。[Example] The present invention will be explained based on examples.

実施例1 N−メチルピロリドン(NMP)に芳香族ジアミン成分
として90モル%に相当する2−クロルパラフェニレン
ジアミンと10モル%に相当する4、4′ −ジアミノ
ジフェニルエーテルとを溶解させ、これに芳香族二酸ク
ロリド成分として20モル%に相当するテレフタル酸ク
ロリドと80モル%に相当する2−クロルテレフタル酸
クロリドとを添加し、2時間撹拌して重合を完了した。
Example 1 2-chloroparaphenylenediamine corresponding to 90 mol% and 4,4'-diaminodiphenyl ether corresponding to 10 mol% as aromatic diamine components are dissolved in N-methylpyrrolidone (NMP), and aromatic diamine components are dissolved in N-methylpyrrolidone (NMP). Terephthalic acid chloride corresponding to 20 mol% and 2-chloroterephthalic acid chloride corresponding to 80 mol% were added as group diacid chloride components, and the mixture was stirred for 2 hours to complete polymerization.

これを水酸化カルシウムで中和して、ポリマ濃度10重
量%、粘度3060ポイズの芳香族ポリアミド溶液を得
た。
This was neutralized with calcium hydroxide to obtain an aromatic polyamide solution having a polymer concentration of 10% by weight and a viscosity of 3060 poise.

このポリマー溶液をステンレス製ベルト上に流延し、1
30℃の熱風で4.5分間加熱して溶媒を蒸発させ自己
保持性を得たフィルムをベルトから連続的に剥離した。
This polymer solution was cast onto a stainless steel belt and
The film was heated with hot air at 30° C. for 4.5 minutes to evaporate the solvent to obtain self-retention properties and was continuously peeled off from the belt.

次に水槽内へフィルムを導入して残存溶媒と中和で生じ
た塩化カルシウムの水抽出を行ない、テンターで水分の
乾燥と熱処理を行なって厚さ6μmの芳香族ポリアミド
フィルムを得た。この間にフィルム長手方向と幅方向に
各々1.2倍、1.3倍延伸を行ない、熱処理は300
℃で1.5分間行なった。
Next, the film was introduced into a water tank, and residual solvent and calcium chloride produced by neutralization were extracted with water, and water was dried using a tenter and heat treatment was performed to obtain an aromatic polyamide film with a thickness of 6 μm. During this time, the film was stretched 1.2 times and 1.3 times in the longitudinal direction and width direction, respectively, and the heat treatment was performed at 300%
It was carried out for 1.5 minutes at ℃.

得られたフィルムの物性値はフィルム長手方向について
熱膨張係数0. 9 x 10−5(1/’C)、25
0℃の熱収縮率2.6%であった。
The physical properties of the obtained film include a coefficient of thermal expansion of 0.0 in the longitudinal direction of the film. 9 x 10-5 (1/'C), 25
The heat shrinkage rate at 0°C was 2.6%.

次に、光ファイバーにシリコン樹脂被覆を施した光ファ
イバー心線7本にパラ系芳香族ポリアミド繊維から成る
抗張力体として縦添えしたものの外周に、前記の芳香族
ポリアミドフィルムを幅8mmにスリットしたテープを
重なり部がテープ幅の約1/3となるように重ね巻きし
、さらにその外側にPFA樹脂を押出し被覆して直径1
0mmの光ファイバーケーブルを作成した。
Next, a tape made by slitting the aromatic polyamide film to a width of 8 mm was layered around the outer circumference of seven optical fiber cores made of optical fibers coated with silicone resin and attached vertically as tensile strength members made of para-aromatic polyamide fibers. Wrap the tape in layers so that the width is about 1/3 of the tape width, and then extrude and coat the outside with PFA resin to create a diameter of 1/3.
A 0mm optical fiber cable was created.

作成直後の常温における伝送損失(波長1.1μm)を
測定したところ2(dB/km)であり、次にケーブル
を一40℃下に置いたところ伝送損失は8 (dB/k
m) 、更にこのケーブルを一旦260℃で5分間加熱
した後に常温まで冷却して測定した伝送損失は5 (d
B/km)と非常に温度安定性が良好であった。
When the transmission loss (wavelength 1.1 μm) at room temperature was measured immediately after the cable was created, it was 2 (dB/km), and when the cable was then placed at -40°C, the transmission loss was 8 (dB/km).
m), and the transmission loss measured by heating this cable for 5 minutes at 260°C and then cooling it to room temperature was 5 (d
B/km) and had very good temperature stability.

実施例2 芳香族ジアミン成分として70モル%の2−クロル−p
−フェニレンジアミンと30モル%の4゜4′−ジアミ
ノジフェニルスルホンを用い、芳香族二酸クロリド成分
としてテレフタル酸クロリドを用い、実施例1と延伸倍
率及び熱処理条件を変えた他は同様の方法で重合、製膜
を行ない厚さ10μmの芳香族ポリアミドフィルムを得
た。
Example 2 70 mol% 2-chloro-p as aromatic diamine component
- Using the same method as in Example 1 except that phenylene diamine and 30 mol% of 4゜4'-diaminodiphenylsulfone were used, terephthalic acid chloride was used as the aromatic diacid chloride component, and the stretching ratio and heat treatment conditions were changed. Polymerization and film formation were performed to obtain an aromatic polyamide film with a thickness of 10 μm.

得られたフィルムを使用して光ファイバーケーブルの作
成および伝送損失の評価を行なったところ第1表のよう
に耐熱、耐低温特性に優れた性質を示した。
Using the obtained film, an optical fiber cable was prepared and the transmission loss was evaluated, and as shown in Table 1, it showed excellent heat resistance and low temperature resistance properties.

比較例1〜2 実施例1で調整したポリマー溶液から、実施例1とは延
伸と熱処理条件およびフィルム厚さを変化させて製膜を
行ない、実施例1と同様の光ファイバーの作成および伝
送損失の測定を行なった結果を第1表に示す。
Comparative Examples 1 to 2 Films were formed from the polymer solution prepared in Example 1 by changing the stretching and heat treatment conditions and film thickness, and the same optical fibers as in Example 1 were created and the transmission loss was reduced. The results of the measurements are shown in Table 1.

比較例1のように厚いフィルムを使用した場合にはケー
ブル作成時、加熱後の伝送損失が大きく、比較例2のよ
うに熱収縮率の大きな場合には加熱後の伝送特性が良好
ではなかった。
When a thick film was used as in Comparative Example 1, the transmission loss after heating was large during cable creation, and when the heat shrinkage rate was large as in Comparative Example 2, the transmission characteristics after heating were not good. .

比較例3 メタフェニレンジアミンと4,4′−ジアミノジフェニ
ルメタンから実施例1と同様の方法で重合、製膜を行な
い、得られた芳香族ポリアミドフィルムを用いて光ファ
イバーケーブルの作成、伝送特性の測定を行なったが、
低温下および加熱後の伝送損失は大きなものであった。
Comparative Example 3 Polymerization and film formation were performed from metaphenylene diamine and 4,4'-diaminodiphenylmethane in the same manner as in Example 1, and the resulting aromatic polyamide film was used to create an optical fiber cable and measure transmission characteristics. I did it, but
The transmission loss was large at low temperatures and after heating.

結果を第1表に示す。The results are shown in Table 1.

[発明の効果] 以上のように、本発明の光ファイバーケーブルでは特定
の熱膨張係数および熱収縮率を有する薄い芳香族ポリア
ミドフィルムをケーブル被覆層として使用するため、高
温、低温環境下での伝送効率の低下が小さく、また安価
なケーブルの製造が可能である。
[Effects of the Invention] As described above, in the optical fiber cable of the present invention, since a thin aromatic polyamide film having a specific thermal expansion coefficient and thermal contraction rate is used as a cable coating layer, the transmission efficiency is improved in high-temperature and low-temperature environments. It is possible to manufacture a cable at low cost with a small decrease in .

Claims (1)

【特許請求の範囲】[Claims] 単心または複数心の光ファイバー心線と緩衝層および/
または抗張力体とから成る集合体の外周に、耐熱フィル
ムから成る被覆層を設けた光ファイバーケーブルにおい
て、該耐熱フィルムが厚さ2μm以上20μm以下、フ
ィルム長手方向の熱膨張係数が3.5×10^−^5(
1/℃)以下、250℃での熱収縮率が5.0%以下の
芳香族ポリアミドフィルムであることを特徴とする光フ
ァイバーケーブル。
Single or multi-core optical fiber, buffer layer and/or
Or, in an optical fiber cable in which a coating layer made of a heat-resistant film is provided on the outer periphery of an assembly consisting of a tensile strength member, the heat-resistant film has a thickness of 2 μm or more and 20 μm or less, and a coefficient of thermal expansion in the longitudinal direction of the film of 3.5 × 10^. −^5(
An optical fiber cable characterized in that it is an aromatic polyamide film having a heat shrinkage rate of 5.0% or less at 250°C.
JP1102019A 1989-04-21 1989-04-21 Fiber optic cable Expired - Fee Related JP2765039B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1102019A JP2765039B2 (en) 1989-04-21 1989-04-21 Fiber optic cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1102019A JP2765039B2 (en) 1989-04-21 1989-04-21 Fiber optic cable

Publications (2)

Publication Number Publication Date
JPH02280106A true JPH02280106A (en) 1990-11-16
JP2765039B2 JP2765039B2 (en) 1998-06-11

Family

ID=14316040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1102019A Expired - Fee Related JP2765039B2 (en) 1989-04-21 1989-04-21 Fiber optic cable

Country Status (1)

Country Link
JP (1) JP2765039B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015016240A1 (en) * 2013-08-02 2015-02-05 株式会社フジクラ Optical fiber cable

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58141202U (en) * 1982-03-18 1983-09-22 三菱レイヨン株式会社 fiber optic cable
JPS6019010U (en) * 1983-07-18 1985-02-08 日本電信電話株式会社 fiber optic cable
JPS60247605A (en) * 1984-05-24 1985-12-07 Mitsubishi Rayon Co Ltd Optical transmission plastic fiber

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58141202U (en) * 1982-03-18 1983-09-22 三菱レイヨン株式会社 fiber optic cable
JPS6019010U (en) * 1983-07-18 1985-02-08 日本電信電話株式会社 fiber optic cable
JPS60247605A (en) * 1984-05-24 1985-12-07 Mitsubishi Rayon Co Ltd Optical transmission plastic fiber

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015016240A1 (en) * 2013-08-02 2015-02-05 株式会社フジクラ Optical fiber cable
JP2015031810A (en) * 2013-08-02 2015-02-16 株式会社フジクラ Optical fiber cable

Also Published As

Publication number Publication date
JP2765039B2 (en) 1998-06-11

Similar Documents

Publication Publication Date Title
JP7195164B2 (en) Polyamideimide film and method for producing the same
KR102534257B1 (en) Polyamide-imide film and preparation method thereof
US4056651A (en) Moisture and heat resistant coating for glass fibers
US9063268B2 (en) Dual coated optical fibers and methods for forming the same
TWI710588B (en) Process for preparing a poly(amide-imide) film and a poly(amide-imide) film prepared by the same
US20240118487A1 (en) Thermoplastic-coated optical elements
KR100686568B1 (en) Cured fluorenyl polyimides
SE411911B (en) FORMAT FOREMAL INCLUDING A POLYMER CONSISTING OF AN AROMATIC POLYKETONE
JPH0444878B2 (en)
US5714196A (en) Method of forming a strippable polyimide coating for an optical fiber
JPH02280106A (en) Optical fiber cable
US3843481A (en) Plastic laminate
US4921758A (en) Molded product of polyarylene thioether and the use thereof
JPS62263228A (en) Polyimide tubular body
KR100772263B1 (en) Insulating varnish for coating electrical wire, manufactured electrical wire using the same, and manufacturing method of the electrical wire
JP3757548B2 (en) Spiral tubular product and method for producing the same
JP3822979B2 (en) Spiral tubular heater and manufacturing method thereof
JP3486357B2 (en) Optical polyimide substrate
JP3822967B2 (en) Spiral tubular heater and manufacturing method thereof
AU668259B2 (en) Aqueous size for fiber composites
JP3719734B2 (en) Plastic optical fiber cord and bundle fiber
JP2587682B2 (en) Manufacturing method of glass based optical fiber
JPH01126602A (en) Plastic clad light transmission fiber and bundled fiber
JPH01183607A (en) Heat resistant coated optical fiber
JPH03237155A (en) Aromatic polycarbonate/aromatic polyamide block copolymer composition

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080403

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090403

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees