JPH02277774A - Method and device for continuous vapor deposition - Google Patents

Method and device for continuous vapor deposition

Info

Publication number
JPH02277774A
JPH02277774A JP9936289A JP9936289A JPH02277774A JP H02277774 A JPH02277774 A JP H02277774A JP 9936289 A JP9936289 A JP 9936289A JP 9936289 A JP9936289 A JP 9936289A JP H02277774 A JPH02277774 A JP H02277774A
Authority
JP
Japan
Prior art keywords
vapor deposition
raw material
evaporation
deposited
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9936289A
Other languages
Japanese (ja)
Other versions
JP2507804B2 (en
Inventor
Atsushi Hirokawa
広川 敦
Kunihiko Ozaki
邦彦 尾崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Ink SC Holdings Co Ltd
Original Assignee
Toyo Ink Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Ink Mfg Co Ltd filed Critical Toyo Ink Mfg Co Ltd
Priority to JP1099362A priority Critical patent/JP2507804B2/en
Publication of JPH02277774A publication Critical patent/JPH02277774A/en
Application granted granted Critical
Publication of JP2507804B2 publication Critical patent/JP2507804B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To stably produce a film to be deposited by evaporation which consists of a compd. with good productivity by continuously supplying a molded material wherein a raw material to be deposited by evaporation has been molded to a heating part and continuously discharging the evaporation residue from the heating part. CONSTITUTION:A film 23 is deposited by evaporation in an evacuated chamber 22 while winding the film 23. The pellets 17 wherein a raw material to be deposited by evaporation has been molded are continuously supplied to a heating part 27 by a feeding means 29 and evaporation residue 28 is continuously discharged from the heating part 27 and allowed to drop into a pan 30. The pellets 17 for the raw material are preferably formed into a columnar shape having 10-100mm diameter and the powder of the raw material is preferably made smaller than 200 mesh. The heating part 27 is provided with an opening part 13, a feed port 10 of the raw material to be deposited by evaporation and a discharge port 11 of evaporation residue. As the material of the heating part, alumina is preferably utilized which is little in reaction with the raw material. The adverse effect resulting from oxide and carbide generated on the interface of the raw material can be prevented. The film to be deposited by evaporation which consists of a compd. and alloy as a main component is stably produced with good productivity.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は化合物もしくは合金を主成分とする蒸着層を基
材に形成するための連続蒸着方法および装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a continuous vapor deposition method and apparatus for forming a vapor deposition layer containing a compound or alloy as a main component on a substrate.

(従来の技術) 一般に、化合物の膜を蒸着法で形成する場合、蒸着時の
熱による蒸発原料の熱分解が起こるので形成したい化合
物そのものを蒸発原料として用いることは少なく、金属
あるいは金属亜酸化物などを蒸発原料として用い、酸素
、窒素、空気、炭化水素などのガスを導入する。いわゆ
る反応蒸着法を用いることが知られている。しかし反応
蒸着法には未だ問題がある。例えば蒸発原料と導入ガス
の反応が、まだ十分蒸発できる状態に至っていない蒸発
原料界面で起きてしまい、蒸発原料の組成が変化してし
まったりあるいは蒸発しにくい酸化皮膜が原因で突沸に
よるピンホールが起きたりして安定した組成の蒸着膜を
長時間に渡り保持することは難しい。そのために導入ガ
スと蒸発原料とが接触しないよう工夫したり。
(Prior art) Generally, when forming a compound film by vapor deposition, the evaporation raw material is thermally decomposed due to the heat during vapor deposition, so the compound itself is rarely used as the evaporation raw material, and metals or metal suboxides are not used. etc. are used as evaporation raw materials, and gases such as oxygen, nitrogen, air, and hydrocarbons are introduced. It is known to use a so-called reactive vapor deposition method. However, there are still problems with reactive vapor deposition. For example, a reaction between the evaporation raw material and the introduced gas may occur at the interface of the evaporation raw material, which has not yet reached a state where it can be evaporated sufficiently, and the composition of the evaporation raw material may change, or pinholes may occur due to bumping due to an oxide film that is difficult to evaporate. It is difficult to maintain a deposited film with a stable composition for a long period of time. For this purpose, we take measures to prevent the introduced gas from coming into contact with the evaporation raw material.

導入ガスの流量、蒸発温度などを蒸発原料の組成変化あ
るいは残量に応じて常時コントロールする必要があり、
ロール状に巻取られたプラスチックフィルムや金属箔も
しくは板に蒸着するような場合、中方向と巻取り方向の
全域に渡って一定の蒸着膜を形成することは難しかった
It is necessary to constantly control the flow rate of introduced gas, evaporation temperature, etc. according to changes in the composition of the evaporation raw material or the remaining amount.
When vapor-depositing on a plastic film, metal foil, or plate wound into a roll, it is difficult to form a constant vapor-deposited film over the entire area in the middle direction and in the winding direction.

また1合金を蒸発原料に用いて、基材に合金の蒸着膜を
形成する場合、希望する蒸着膜の合金組成比とある温度
における個々の金属の蒸発量の比が等しい合金、すなわ
ち等速度蒸発合金であることが望ましい。しかし完全に
一致することはほとんど無く。
In addition, when forming an alloy vapor deposition film on a substrate using one alloy as an evaporation raw material, an alloy with the same alloy composition ratio of the desired vapor deposition film and the ratio of the evaporation amounts of individual metals at a certain temperature, that is, uniform rate evaporation. Preferably, it is an alloy. However, there is almost no perfect match.

蒸着中に一時的に近似合金組成の蒸着膜が形成できても
1時間とともに優先蒸発しやすい成分の比率が蒸着膜中
に増加してしまうことになり、一定組成の蒸着膜が得ら
れない。
Even if a deposited film having a similar alloy composition can be temporarily formed during vapor deposition, the ratio of components that are likely to be preferentially evaporated increases in the deposited film over the course of one hour, making it impossible to obtain a deposited film with a constant composition.

蒸発原料の加熱方法の面ではEBガンのビームを蒸発原
料表面に走査させて、蒸発原料の組成とほとんど変わら
ない蒸着膜を形成するという蒸着方法も存在するが、E
Bガン1本では幅広加工に限界があり、多列にEBガン
を配置することも行われているが、■多列のビームの走
査をコントロールすることが難しい。■大型の蒸発原料
板(ターゲット)を必膜中にピンホールが発生しやすく
なるなどの問題があり、必ずしも前出の諸問題を解決す
るには至っていない。
In terms of methods for heating the evaporation raw material, there is a deposition method in which a beam from an EB gun is scanned over the surface of the evaporation raw material to form a deposited film that has almost the same composition as the evaporation raw material.
There is a limit to wide processing with a single B gun, and EB guns are sometimes arranged in multiple rows, but it is difficult to control the scanning of multiple rows of beams. ■There are problems such as the tendency for pinholes to occur in the film of a large evaporation source plate (target), and the above-mentioned problems have not necessarily been solved.

蒸発原料の供給および補充方法の面では1長尺加工する
ためには何らかの手段による蒸発原料の補充が必要とな
ってくる。
In terms of the method of supplying and replenishing the evaporation raw material, it is necessary to replenish the evaporation raw material by some means in order to process one long length.

このような要求を満足するものとして、「薄膜ハンドブ
ック」 (昭和58年12月、オーム社刊)第105頁
に記載されているような、 (1)適当な大きさの細粒
に形成した蒸着原料を、ホッパ3から樋4を経てるつぼ
1に連続供給する方法(第3図)。
As a method that satisfies these requirements, as described in "Thin Film Handbook" (December 1980, published by Ohmsha), page 105, (1) Vapor deposition formed into fine particles of appropriate size. A method of continuously supplying raw materials from a hopper 3 to a crucible 1 via a gutter 4 (Figure 3).

(2)ボート2にアルミニウムワイヤ5を連続供給する
方法(第4図)、および(3)るつぼ1下部に棒状の補
助蒸着原料7を収容する容器8を設け、駆動軸9により
補助蒸着原料をるつぼ内に供給する方法(第5図)が提
案された。これらの方法では、蒸着原料が単一の金属物
質の場合には上注の要求をほぼ満足するものの2反応蒸
着あるいは合金の蒸着の場合は、維持しなければならな
い化学的状態が微妙であるため、わずかな蒸着条件の変
化によって蒸発原料や蒸着膜の組成が変化してしまった
り、蒸着膜中のピンホールの発生率が大きくなる。とい
った問題があった。
(2) A method of continuously supplying the aluminum wire 5 to the boat 2 (Fig. 4); and (3) a container 8 for storing the rod-shaped auxiliary vapor deposition raw material 7 is provided at the bottom of the crucible 1, and the auxiliary vapor deposition raw material is supplied by the drive shaft 9. A method of feeding into a crucible (FIG. 5) was proposed. These methods generally satisfy the above requirements when the deposition material is a single metal substance, but in the case of two-reaction deposition or alloy deposition, the chemical state that must be maintained is delicate. A slight change in the deposition conditions may change the composition of the evaporation source or the deposited film, or increase the incidence of pinholes in the deposited film. There was such a problem.

(発明が解決しようとする課題) 本発明者等は、先にけい素酸化物の蒸着層をプラスチッ
クフィルム上に設ける際に蒸着原料を加熱部に連続的に
供給し、かつ連続的に排出する方法および装置によって
安定した蒸着層を形成できることを発明し、特許出願(
特願昭63−230462号)したが。
(Problems to be Solved by the Invention) The present inventors first provided a vapor deposition layer of silicon oxide on a plastic film by continuously supplying vapor deposition raw materials to a heating section and continuously discharging the vapor deposition layer. Invented that a stable vapor deposited layer could be formed by the method and apparatus, and filed a patent application (
(Japanese Patent Application No. 63-230462).

この方法および装置が上記のような課題に対しても同様
に有効であり、上記の種々の欠点を改良し、蒸着中に蒸
発原料界面にできた酸化物や炭化物あるいは組成偏析物
が、蒸着膜に悪影響を及ぼすことなく、さらに蒸着原料
の突沸による飛沫が飛散することなく、化合物もしくは
合金を主成分とする蒸着層を安定して蒸着できる方法お
よび装置であることが判明した。
This method and apparatus are equally effective against the above-mentioned problems, improve the various drawbacks mentioned above, and prevent oxides, carbides, or compositional segregations formed at the interface of the evaporation raw material during vapor deposition from forming on the vapor-deposited film. It has been found that the method and apparatus are capable of stably depositing a vapor deposition layer containing a compound or an alloy as a main component without having any adverse effect on the vapor deposition material and without scattering droplets due to bumping of the vapor deposition raw material.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 本発明は、蒸着部を連続的に走行する基材の表面に化合
物(ただし、けい素酸化物を除く。)もしくは合金を主
成分とする蒸着層を形成するにあたり。
(Means for Solving the Problems) The present invention forms a vapor deposition layer containing a compound (excluding silicon oxide) or an alloy as a main component on the surface of a base material that continuously runs through a vapor deposition section. Hits the.

蒸発原料を成形して得られる成形物を加熱部に連続的に
供給し、かつ蒸発残渣を加熱部から連続的に排出させる
ことを特徴とする蒸着方法およびそのたその装置を提供
するものである。
Provided is a vapor deposition method and apparatus thereof, characterized in that a molded article obtained by forming an evaporation raw material is continuously supplied to a heating section, and an evaporation residue is continuously discharged from the heating section. .

本発明において蒸着層を形成する化合物とは、アルミニ
ウム、インジウム、シリコン、チタン、ジルコニウム、
クロム、スズ、亜鉛などの各種金属の酸化物、窒化物、
炭化物、硫化物などがあげられ、その単体あるいは複数
であってもかまわない。また合金とは、2種類以上の金
属から構成されており。
In the present invention, the compounds forming the vapor deposition layer include aluminum, indium, silicon, titanium, zirconium,
Oxides and nitrides of various metals such as chromium, tin, and zinc,
Examples include carbides and sulfides, and they may be used alone or in combination. An alloy is made up of two or more metals.

その組成比は特に制限はない。The composition ratio is not particularly limited.

本発明において基材とは、プラスチック製、金属製、セ
ラミック製、ガラス製など特に制約はなく。
In the present invention, the base material is not particularly limited and may be made of plastic, metal, ceramic, glass, etc.

また、形状も板状あるいはフィルム状になっていてもか
まわない。また、蒸着膜の密着力などを向上させる目的
で基材の少な(とも片面がシランカップリング剤やブラ
イマーが塗布されたもの、コロナ放電処理、低温プラズ
マ処理などの表面処理が施されたもの、あるいは−軸延
伸や二軸延伸をされたプラスチックフィルムであっても
よい。また、蒸着膜組成の安定化や密着力の向上のため
に基材を蒸着中あるいは蒸着後に加熱してもかまわない
Furthermore, the shape may be plate-like or film-like. In addition, in order to improve the adhesion of the deposited film, we also use materials with a small base material (one side coated with a silane coupling agent or a brimer, surfaces treated with corona discharge treatment, low-temperature plasma treatment, etc.), Alternatively, it may be a plastic film that has been axially stretched or biaxially stretched.Furthermore, the base material may be heated during or after vapor deposition in order to stabilize the composition of the vapor deposited film and improve adhesion.

本発明において使用できる蒸着原料としては、上記蒸着
層を形成する化合物もしくは合金そのものであってもよ
く、また金属を蒸着原料として合金蒸着層としたり、あ
るいは反応蒸着によって化合物蒸着としてもよい。これ
らの蒸着原料は、連続的な供給および排出を便にし、蒸
着時の飛散を防止するために、必要に応じて結合剤また
は粘結剤、滑沢剤、崩壊剤などの成形助剤を添加し、湿
式または乾式で造粒、圧縮成形、押出成形などの方法に
より円柱状。
The vapor deposition raw material that can be used in the present invention may be the compound or alloy itself that forms the above-mentioned vapor deposition layer, or an alloy vapor deposition layer may be formed using a metal as a vapor deposition material, or a compound may be vapor deposited by reactive vapor deposition. To facilitate continuous supply and discharge of these raw materials for vapor deposition, and to prevent scattering during vapor deposition, forming aids such as binders or caking agents, lubricants, and disintegrants are added as necessary. Then, it is made into a cylindrical shape by wet or dry granulation, compression molding, extrusion molding, etc.

立方体状、直方体状、あるいはタブレット状、ペレット
状、ロッド状、ワイヤ状などの形状に成形されて成形物
とされる。得られる成形物の強度を高め。
The molded product is formed into a cube, a rectangular parallelepiped, a tablet, a pellet, a rod, a wire, or the like. Increases the strength of the resulting molded product.

成形物中に含有される水分、内蔵ガス1不純物などを除
去するために、成形時あるいは成形後に、空気中、不活
性ガス中、または真空中で、乾燥または焼成を行なうこ
とが好ましい。取り扱いの便および成形性の面から成形
物は柱状、特に円柱状であることが好ましい。柱状の場
合には、破損のし難さおよび蒸着時の飛散防止の面から
、直径が30ON以下好ましくは10〜100龍のもの
がよい。また、蒸着原料が粉末状であり、圧縮成形によ
り成形を行なう場合には、成形性および蒸着時の反応性
の面から蒸着原料粉体は、  100meshより細か
いものを用いること、特に200meshより細かいも
のを用いることが好ましい。さらにこの成形体は必要に
応じて焼結処理をして物理的強度を高めることができる
In order to remove moisture, built-in gas impurities, etc. contained in the molded product, it is preferable to perform drying or baking in air, inert gas, or vacuum during or after molding. In terms of ease of handling and moldability, the molded product is preferably columnar, particularly cylindrical. In the case of a columnar shape, it is preferable to have a diameter of 30 ON or less, preferably 10 to 100 mm, from the viewpoint of ease of breakage and prevention of scattering during vapor deposition. In addition, when the vapor deposition raw material is in powder form and is molded by compression molding, from the viewpoint of moldability and reactivity during vapor deposition, the vapor deposition raw material powder should be finer than 100 mesh, especially finer than 200 mesh. It is preferable to use Furthermore, this molded body can be sintered if necessary to increase its physical strength.

本発明において加熱部としては、蒸着原料を成形して得
られる成形物を連続的に供給でき7上記成形物を加熱し
蒸発させる手段を備え、蒸発残渣を連続的に排出させる
ことができるものなら特に制限はなく、第6図ないし第
8図、あるいは第9図ないし第10図に示されるような
開口部10.蒸着原料供給口11および蒸発残渣排出口
12を有するものが例示できる。これらの加熱部には、
蒸着原料成形物の余熱のための手段や脱ガスのための手
段を備えていてもよい。また、加熱部の材質としては、
加熱方式によっても異なるがアルミナ、グラファイトニ
はう化チタニウム、窒化はう素複合焼結体、窒化アルミ
ニウム、酸化ベリリウムなどから選ばれ、蒸着原料との
反応性が少ないものが好ましい。
In the present invention, the heating section may be one that can continuously supply the molded product obtained by molding the vapor deposition raw material, is equipped with a means for heating and evaporating the molded product, and can continuously discharge the evaporation residue. There is no particular limitation, and the opening 10 as shown in FIGS. 6 to 8 or 9 to 10. An example is one having a vapor deposition raw material supply port 11 and an evaporation residue discharge port 12. These heating parts include
It may be provided with a means for preheating the vapor deposition raw material molded article and a means for degassing. In addition, the material of the heating part is
Although it varies depending on the heating method, it is selected from alumina, graphite titanium nitride, boron nitride composite sintered body, aluminum nitride, beryllium oxide, etc., and it is preferable to use one that has little reactivity with the vapor deposition raw material.

また、加熱部を加熱する方式としては、高周波誘導加熱
方式などの直接加熱方式1間接加熱力式、電子線加熱方
式など従来公知の加熱方式を用いることができる。第6
図ないし第8図に示された加熱部では高周波誘導コイル
14を用いた加熱を、第9図ないし第12図に示された
加熱部では直接加熱方式の1種である抵抗加熱を採用し
ている。第11図および第12図において、15は電極
を示す。生産性および汎用性の面からは、高周波誘導加
熱や抵抗加熱の方式が好ましい。また、加熱部の温度分
布を均一とするために、あるいは意図して不均一とする
ために、補助ヒーターを併用することもできる(図示し
ていない)。
Further, as a method for heating the heating section, conventionally known heating methods such as a direct heating method such as a high frequency induction heating method, an indirect heating power method, and an electron beam heating method can be used. 6th
The heating parts shown in Figures 8 through 8 employ heating using a high-frequency induction coil 14, and the heating parts shown in Figures 9 through 12 employ resistance heating, which is a type of direct heating method. There is. In FIG. 11 and FIG. 12, 15 indicates an electrode. From the viewpoint of productivity and versatility, high frequency induction heating and resistance heating methods are preferred. Furthermore, an auxiliary heater may be used (not shown) in order to make the temperature distribution of the heating section uniform or intentionally non-uniform.

また1本発明において蒸着原料成形物を実質上連続供給
するための手段としては特に制限はなく2例えば、第1
3図に示されるように無端ベルト16を用いて蒸着原料
ペレット17を連続的に供給する方法、第14図に示さ
れるように複数個のローラ18を用いて連続的に供給す
る方法などがある。
In addition, 1. In the present invention, there is no particular restriction on the means for substantially continuously supplying the vapor deposition raw material molded product. 2. For example, the first
As shown in FIG. 3, there is a method of continuously supplying the deposition raw material pellets 17 using an endless belt 16, and as shown in FIG. .

また、第15図に示すような一部間欠的な供給方式であ
っても実質的には連続供給と同等の効果があるので使用
することができる。第15図において。
Further, even a partially intermittent supply method as shown in FIG. 15 can be used since it has substantially the same effect as continuous supply. In FIG.

加熱部の蒸着原料ペレット供給口10に接続する供給溝
19に成形体ペレット17が置かれ、その左端に左右に
駆動する押し出しロンド20の右端が接触しており、こ
の押し出しμノド20は成形体の長さ分だけ予め定めら
れたゆっくりした一定の速度(例えば5mm/分)で右
方に移動して成形ペレットを連続的に加熱部に供給する
。そして所定位置まで移動した後に比較的早い速度(例
えば50cm/分)で左方に、成形ペレット17の長さ
分だけ移動させることによって、成形ペレット17の補
給手段21から1個の成形ペレット17が溝19に落下
する。その後直ちに押し出しロンド20は再び元のゆっ
くりした一定の速度で右方に移動して成形ベレットを連
続的に加熱部に供給する。このようにすると、ミクロに
見ると成形ベレット17の加熱部への供給は断続するが
マクロ的には連続しており、実質上は連続していると云
える。
A molded object pellet 17 is placed in a supply groove 19 connected to the vapor deposition raw material pellet supply port 10 of the heating section, and the right end of an extrusion rond 20 that is driven left and right is in contact with the left end of the molded object pellet 17, and this extrusion μ nod 20 is used to feed the formed object. The molded pellets are continuously fed to the heating section by moving to the right at a predetermined slow constant speed (for example, 5 mm/min) by the length of . After moving to a predetermined position, one molded pellet 17 is removed from the molded pellet 17 supplying means 21 by moving the molded pellet 17 to the left at a relatively fast speed (for example, 50 cm/min) by the length of the molded pellet 17. It falls into the groove 19. Immediately thereafter, the extrusion iron 20 moves to the right again at the original slow and constant speed to continuously feed the forming pellets to the heating section. In this way, the supply of the forming pellet 17 to the heating section is intermittent from a microscopic point of view, but it is continuous from a macroscopic point of view, and can be said to be substantially continuous.

また、蒸着原料成形物の供給方向は、フレキシブルプラ
スチックフィルム23の走行方向と同じであっても逆で
あってもよい。
Further, the feeding direction of the vapor deposition raw material molded product may be the same as or opposite to the traveling direction of the flexible plastic film 23.

本発明において蒸発残渣を加熱部から連続的に排出させ
る手段としては特に制限はないが、特別の手段を設けな
くとも前述の蒸着原料ベレット17を連続供給させるた
めの手段により押出すことによって連続的に排出させる
ことができる。
In the present invention, there is no particular restriction on the means for continuously discharging the evaporation residue from the heating section, but even if no special means is provided, the evaporation residue can be continuously discharged by extrusion using a means for continuously supplying the evaporation raw material pellet 17 described above. can be discharged.

第16図は基材がプラスチックフィルムの場合の本発明
に係る蒸着装置を示す概略図であり、減圧手段(図示し
ていない。)に連結した減圧室22と。
FIG. 16 is a schematic diagram showing a vapor deposition apparatus according to the present invention when the base material is a plastic film, and includes a decompression chamber 22 connected to a decompression means (not shown).

該減圧室内に設けられたフレキシブルプラスチックフィ
ルム23の巻き出しローラ24および巻き取りローラ2
5.蒸着原料の加熱部27.成形された蒸着原料ベレッ
ト17を実質上連続的に該加熱部に供給する手段29.
および蒸発残渣を実質上連続的に該加熱部より排出する
手段とからなり、蒸発残渣28は受は皿30に落下する
。蒸着原料はフィルム230幅によって2個以上配置さ
れ1通常10cm〜20 cffl毎とする。
An unwinding roller 24 and a winding roller 2 of the flexible plastic film 23 provided in the vacuum chamber
5. Vapor deposition raw material heating section 27. Means 29 for substantially continuously supplying the shaped vapor deposition raw material pellet 17 to the heating section.
and a means for substantially continuously discharging the evaporation residue from the heating section, and the evaporation residue 28 falls into the tray 30. Two or more vapor deposition raw materials are arranged depending on the width of the film 230, and one is usually arranged every 10 cm to 20 cffl.

減圧室の真空度は10−3以下、好ましくは10−4以
下であり、また、蒸着薄層の厚さをチエツクするため膜
厚センサー31を設けることもできる。
The degree of vacuum in the vacuum chamber is 10@-3 or less, preferably 10@-4 or less, and a film thickness sensor 31 may be provided to check the thickness of the deposited thin layer.

また、基材が板状の場合にも、自体公知の基材供給装置
を用いて、同様にして蒸着することが可能である。
Further, even when the base material is plate-shaped, it is possible to perform vapor deposition in the same manner using a known base material supply device.

(実施例) 以下実施例により本発明を説明する。(Example) The present invention will be explained below with reference to Examples.

実施例1 重量比が9:1である酸化インジウムと酸化スズの混合
物を常法により、圧縮成形して直径20mm厚さ15鳳
臘のタブレット状成形物を得た。得られた成形物を第9
図に示されたような窒化はう素糸複合焼結体製の加熱部
の供給口へ10m/分の速度で連続供給し、酸素ガスの
導入により2 X 10−’Torrの酸素雰囲気を保
持し1100℃に加熱して、速度20鶴/分で走行中の
厚さ100μmのポリエチレンテレフタレートフィルム
に蒸着を施した。得られた蒸着ポリエチレンテレフタレ
ートフィルムを100℃のオーブンでエージング処理を
2日間行った後、蒸着面の表面抵抗の測定を四探針法で
測定した。測定結果は第17図に示すとおり、蒸着開始
後時間の経過にかかわらず、抵抗値がほぼ一定で安定し
ていた。
Example 1 A mixture of indium oxide and tin oxide having a weight ratio of 9:1 was compression molded by a conventional method to obtain a tablet-shaped molded product having a diameter of 20 mm and a thickness of 15 mm. The obtained molded product was
As shown in the figure, the nitriding was continuously supplied to the supply port of the heating section made of borosilicate fiber composite sintered body at a speed of 10 m/min, and an oxygen atmosphere of 2 x 10-' Torr was maintained by introducing oxygen gas. The film was heated to 1100° C. and vapor-deposited on a 100 μm thick polyethylene terephthalate film while running at a speed of 20 m/min. After aging the obtained vapor-deposited polyethylene terephthalate film in an oven at 100° C. for 2 days, the surface resistance of the vapor-deposited surface was measured using a four-probe method. As shown in FIG. 17, the measurement results showed that the resistance value was almost constant and stable regardless of the passage of time after the start of vapor deposition.

比較例1 実施例1で得られたタブレット状成形物を加熱部の端か
ら端まで充填し、蒸発原料の補充をしなかった以外は実
施例2と同様にして、蒸着を行い1表面抵抗の測定を行
った。測定結果を第18図に示すとおり、蒸着開始後時
間の経過とともに抵抗値が増大していた。
Comparative Example 1 Vapor deposition was carried out in the same manner as in Example 2, except that the tablet-shaped molded product obtained in Example 1 was filled from end to end of the heating section, and the evaporation raw material was not replenished. Measurements were taken. As shown in the measurement results in FIG. 18, the resistance value increased with time after the start of vapor deposition.

実施例2 FeとNiの重量比が85=15で直径10鶴の合金丸
棒で長さが3011の蒸発原料を第10図〜第12図に
示されるような形をした内面がアルミナ製の1600℃
に保たれている間接加熱式別熱部供給口へ2ms/分の
速度で連続供給し、  3 X 10−’Torrの真
空度を保持しながら速度10m/分で走行中の厚さ50
μmのポリエチレンテレフタレートフィルムに蒸着を施
した。得られた蒸着フィルムをけい光X線分析装置を用
いて蒸着膜中のFeとNiの組成比を調べた。測定結果
を第19図に示すとおり、蒸着開始後時間の経過にかか
わらず蒸発原料とほぼ同じ組成比の蒸着膜が安定してで
きた。
Example 2 An evaporation raw material with a weight ratio of Fe and Ni of 85=15 and a diameter of 10 mm and a length of 3011 mm was used as an evaporation material having an inner surface made of alumina and having a shape as shown in FIGS. 10 to 12. 1600℃
It is continuously supplied at a speed of 2 ms/min to the indirect heating type separate heating section supply port maintained at
Vapor deposition was performed on a μm polyethylene terephthalate film. The composition ratio of Fe and Ni in the deposited film was examined using a fluorescence X-ray analyzer. As the measurement results are shown in FIG. 19, a deposited film having almost the same composition ratio as the evaporation raw material was stably formed regardless of the passage of time after the start of the deposition.

比較例2 供給口へ連続供給しなかったこと以外は実施例2と同じ
ようにして、蒸着を行い、蒸着膜中の組成比を調べた。
Comparative Example 2 Vapor deposition was performed in the same manner as in Example 2, except that the material was not continuously supplied to the supply port, and the composition ratio in the deposited film was examined.

第20図に示すとおり、Feが優先蒸発するため、蒸着
初期はFeが多く2時間の経過とともにFeが減少し、
一定組成の合金膜が得られなかった。
As shown in Figure 20, since Fe evaporates preferentially, there is a lot of Fe at the beginning of the evaporation, and Fe decreases as 2 hours pass.
An alloy film with a constant composition could not be obtained.

〔発明の効果〕〔Effect of the invention〕

本発明により、化合物もしくは合金を主成分とする蒸着
層を有する蒸着フィルムも安定に生産性よく製造できる
ようになった。
According to the present invention, a vapor deposited film having a vapor deposited layer containing a compound or an alloy as a main component can also be produced stably and with high productivity.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図はそれぞれ従来のパッチ式連続蒸着
機め加熱部の概略を示す斜視図、第3図および第4図は
それぞれ従来の連続蒸着機における連袂供給装置の概略
を示す斜視図、第5図は従来の隷属蒸着機における蒸着
原料の連続供給装置の概略を示す断面図、第6図は本発
明に係る加熱部の一実施態ようを示す平面図、第7図は
第6図に示された加熱部のA−A ’断面図、第8図は
第6図に示された加熱部の側面図、第9図は本発明にか
かわる加熱部の一実施態ようを示す平面図、第10図は
本発明に係る加熱部の他の実施態様を示す平面図、第1
1図および第12図はその正面図および側面図であり、
第13図および第14図はそれぞれ本発明に係る蒸着原
料成形物の連続供給装置の一実施゛態ようを示す概略図
、第15図は同じく蒸着原料成形物の連続供給装置の他
の実施前ようを示す正面図、第16図は本発明に係る蒸
着装置の概略図を示す。 第17図は実施例1における蒸着開始後の時間と表面抵
抗との関係図、第18図は比較例1における蒸着開始後
の時間と表面抵抗との関係図、第19図は実施例2にお
ける蒸着開始後の時間と蒸着層の組成比との関係図、第
20図は比較例2における蒸着開始後の時間と蒸着層の
組成比との関係図である。 図中の主な記号は次のとおりである。 1・・・・・・・・・るつぼ、    2・・・・・・
・・・ボート。 3・・・・・・・・・ホッパ、    4・・・・・・
・・・樋。 5・・・・・・・・・アルミニウムワイヤ。 6・・・・・・・・・ワイヤフィーダ。 7・・・・・・・・・補助蒸着原料。 8・・・・・・・・・容器、      9・・・・・
・・・・駆動軸。 lO・・・・・・・・・蒸着原料成形物供給口。 11・・・・・・・・・蒸発残渣排出口。 13・・・・・・・・・開口部。 14・・・・・・・・・高周波誘導コイル。 15・・・・・・・・・電極、     16・・・・
・・・・・無端ベルト。 17・・・・・・・・・蒸着原料ベルト。 18・・・・・・・・・ローラ、    19・・・・
・・・・・供給溝。 20・・・・・・・・・押し出しロフト。 21・・・・・・・・・補給手段、   22・・・・
・・・・・減圧室。 23・・・・・・・・・フレキシブルプラスチックフィ
ルム。 24・・・・・・・・・巻出しローラ、25・・・・・
・・・・巻取りローラ。 26・・・・・・・・・冷却ロール、  27・・・・
・・・・・加熱部。 28・・・・・・・・・蒸発残渣、   29・・・・
・・・・・供給手段。 30・・・・・・・・−受は皿、    31・・・・
・・・・・膜厚センサー。
Figures 1 and 2 are perspective views schematically showing the heating section of a conventional patch-type continuous vapor deposition machine, and Figures 3 and 4 are perspective views schematically showing a continuous line supply device in a conventional continuous vapor deposition machine, respectively. , FIG. 5 is a cross-sectional view schematically showing a continuous supply device for vapor deposition raw materials in a conventional slave vapor deposition machine, FIG. 6 is a plan view showing an embodiment of the heating section according to the present invention, and FIG. 8 is a side view of the heating section shown in FIG. 6, and FIG. 9 is a plan view showing one embodiment of the heating section according to the present invention. 10 are plan views showing other embodiments of the heating section according to the present invention, and FIG.
1 and 12 are a front view and a side view thereof,
FIGS. 13 and 14 are schematic diagrams showing one embodiment of the continuous supply device for vapor deposition raw material molded products according to the present invention, and FIG. FIG. 16 is a schematic diagram of the vapor deposition apparatus according to the present invention. FIG. 17 is a diagram of the relationship between time after the start of evaporation and surface resistance in Example 1, FIG. 18 is a diagram of the relationship between time after the start of evaporation and surface resistance in Comparative Example 1, and FIG. 19 is a diagram of the relationship between time after the start of evaporation and surface resistance in Example 2. FIG. 20 is a diagram showing the relationship between time after the start of vapor deposition and the composition ratio of the vapor deposited layer in Comparative Example 2. FIG. The main symbols in the diagram are as follows. 1・・・・・・・・・Melting pot, 2・・・・・・
···boat. 3・・・・・・・・・Hopper, 4・・・・・・
···gutter. 5.......aluminum wire. 6.....Wire feeder. 7...Auxiliary vapor deposition raw material. 8... Container, 9...
...Drive shaft. lO: Vapor deposition raw material molding supply port. 11... Evaporation residue outlet. 13......Opening. 14......High frequency induction coil. 15...... Electrode, 16...
...Endless belt. 17... Vapor deposition raw material belt. 18... Laura, 19...
...Supply groove. 20...Extruded loft. 21...... Supply means, 22...
...Decompression chamber. 23...Flexible plastic film. 24...... Unwinding roller, 25...
...Take-up roller. 26......Cooling roll, 27...
... Heating section. 28... evaporation residue, 29...
...Means of supply. 30・・・・・・・The receiver is a plate, 31・・・・
...Film thickness sensor.

Claims (1)

【特許請求の範囲】 1、蒸着部を連続的に走行する基材の表面に化合物(た
だし、けい素酸化物を除く。)もしくは合金を主成分と
する蒸着層を形成するにあたり、蒸発原料を成形して得
られる成形物を加熱部に連続的に供給し、かつ蒸発残渣
を加熱部から連続的に排出させることを特徴とする蒸着
方法。 2、蒸着部を連続的に走行する基材の表面に化合物(た
だし、けい素酸化物を除く。)もしくは合金を主成分と
する蒸着層を設ける蒸着製造装置であり、該装置は減圧
手段に連結した減圧室と、該減圧室内に設けられた基材
の巻き出しローラおよび巻き取りローラ、蒸着原料の加
熱部、成形された蒸着原料を実質上連続的に該加熱部に
供給する手段、および蒸発残渣を実質上連続的に該加熱
部より排出する手段とからなることを特徴とする上記装
置。
[Claims] 1. When forming a vapor deposition layer containing a compound (excluding silicon oxide) or an alloy as a main component on the surface of a substrate that continuously runs through the vapor deposition section, the vaporization raw material is A vapor deposition method characterized in that a molded article obtained by molding is continuously supplied to a heating section, and an evaporation residue is continuously discharged from the heating section. 2. This is a vapor deposition production device in which a vapor deposition layer containing a compound (excluding silicon oxide) or an alloy as a main component is formed on the surface of a substrate that continuously runs through the vapor deposition section, and the device is equipped with a pressure reducing means. A connected vacuum chamber, a base material unwinding roller and a take-up roller provided in the vacuum chamber, a heating section for vapor deposition raw material, means for substantially continuously supplying the shaped vapor deposition raw material to the heating section, and and means for substantially continuously discharging the evaporation residue from the heating section.
JP1099362A 1989-04-19 1989-04-19 Continuous vapor deposition method and apparatus Expired - Fee Related JP2507804B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1099362A JP2507804B2 (en) 1989-04-19 1989-04-19 Continuous vapor deposition method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1099362A JP2507804B2 (en) 1989-04-19 1989-04-19 Continuous vapor deposition method and apparatus

Publications (2)

Publication Number Publication Date
JPH02277774A true JPH02277774A (en) 1990-11-14
JP2507804B2 JP2507804B2 (en) 1996-06-19

Family

ID=14245463

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1099362A Expired - Fee Related JP2507804B2 (en) 1989-04-19 1989-04-19 Continuous vapor deposition method and apparatus

Country Status (1)

Country Link
JP (1) JP2507804B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3733926A4 (en) * 2017-12-26 2021-05-19 Posco Deposition apparatus and deposition method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02122813A (en) * 1988-11-02 1990-05-10 Nippon Atom Ind Group Co Ltd Device for generating metallic vapor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02122813A (en) * 1988-11-02 1990-05-10 Nippon Atom Ind Group Co Ltd Device for generating metallic vapor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3733926A4 (en) * 2017-12-26 2021-05-19 Posco Deposition apparatus and deposition method

Also Published As

Publication number Publication date
JP2507804B2 (en) 1996-06-19

Similar Documents

Publication Publication Date Title
US5107791A (en) Process for the manufacture of deposition films and apparatus therefor
US5230923A (en) Process and apparatus for the substantially continuous manufacture of a silicon oxide deposition film on a flexible plastic film
US5803976A (en) Vacuum web coating
EP0570182B1 (en) Evaporation source material and evaporation method of forming transparent barrier film
US4748313A (en) Apparatus by the continuous vaporization of inorganic compositions by means of a photon-generating thermal source of radiation heat
US20120040516A1 (en) Method and device for depositing semiconductor film on substrate using close-spaced sublimation process
KR20190020103A (en) Vacuum deposition apparatus and method
EP0652302B1 (en) Vacuum web coating
Park et al. Effect of gas flow rates and nozzle throat width on deposition of α-alumina films of granule spray in vacuum
JP4519653B2 (en) Apparatus and method for depositing a coating material
CZ291562B6 (en) Device for coating a substrate surface and a process for coating a substrate surface
US2846971A (en) Apparatus for coating particulate material by thermal evaporation
JPH07286265A (en) Method and apparatus for vacuum web coating
WO2008012921A1 (en) Apparatus for chemical vapor deposition and method of chemical vapor deposition
JPH02277774A (en) Method and device for continuous vapor deposition
KR102525994B1 (en) deposition evaporator device
JP7240963B2 (en) Vacuum deposition equipment
US4470370A (en) Means for loading vapor coating materials into an evaporator
JPH06322521A (en) Continuous vapor deposition method and device
NL8201093A (en) DEVICE FOR APPLYING THIN LAYERS.
KR101037121B1 (en) Vapor deposition system and vapor deposition method
JPH0297663A (en) Production of steel sheet plated with zn-mg by vapor deposition
RU2302927C1 (en) Method for producing finely dispersed metal powders
JP3494185B2 (en) Material supply device for vacuum evaporation
JP3261864B2 (en) Vacuum evaporation apparatus and vacuum evaporation method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees